Numerous studies associate genetic markers with iron- and erythrocyte-related parameters, but few relate them to iron-clinical phenotypes. Novel SNP rs1375515, located in a subunit of the calcium channel gene CACNA2D3, is associated with a higher risk of anaemia. The aim of this study is to further
investigate the association of this SNP with iron-related parameters and iron-clinical phenotypes, and to explore the potential role of calcium channel subunit region in iron regulation. Furthermore, we aim to replicate the association of other SNPs reported previously in our population. We tested 45 SNPs selected via systematic review and fine mapping of CACNA2D3 region, with haematological and biochemical traits in 358 women of reproductive age. Multivariate analyses include back-step logistic regression and decision trees. The results replicate the association of SNPs with iron-related traits, and also confirm the protective effect of both A allele of rs1800562 (HFE) and G allele of rs4895441 (HBS1L-MYB). The risk of developing anaemia is increased in reproductive age women carriers of A allele of rs1868505 (CACNA2D3) and/or T allele of rs13194491 (HIST1H2BJ). Association of SNPs from fine mapping with ferritin and serum iron suggests that calcium channels could be a potential pathway for iron uptake in physiological conditions.
BACKGROUND & AIMS: Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subs
equently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations. METHODS: We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls. RESULTS: We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09-1.18; P = 1.8 x 10(-11)) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86-0.93; P = 7.5 x 10(-9)). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87-0.93; P = 3.72 x 10(-9)). CONCLUSIONS: We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response.
Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax tox
n>in. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis.
Yang CH, etal., Environ Toxicol. 2014 Nov 28. doi: 10.1002/tox.22078.
The metabolic loading is heavier in liver especially when injured or inflammation. San Huang Shel Shin Tang (SHSST) was an old traditional herbal decoction, which composed with Rheum officinale Baill, Scutellaria baicalnsis Geprgi and Coptis chinensis Franch (1:1:2 in weight), can provide a liver pr
otection effects. We used a beta-cyclodextrin (beta-CD) drug modification method in reduce of the necessary dose of the SHSST. As the results, the FAS-FADD expressions leaded apoptosis in CCl4 intraperitoneal (IP) injection induced acute liver injury in rats. Silymarin, baicalein, SHSST, and SHSST beta-CD complex (SHSSTc) pretreatments protected liver through the decreasing of the expressions of FAS-FADD and downstream caspase-3 and caspase-8. Particularly, SHSSTc (30 mg/kg day) treatment enhanced cell survival pathway activation through the PI3K, Akt and Bad phosphorylation. Compared with SHSST as well as silymarin and baicalein, SHSSTc provided a magnificent liver protection effect, especially in survival pathway activation/TUNEL-apoptotic cell reduction/serum cholesterol level suppression. All these data suggested that beta-CD complex modified the SHSST and promoted the bioavailability and liver protection effects. (c) 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
Wang T, etal., Environ Toxicol. 2009 Feb;24(1):33-42. doi: 10.1002/tox.20391.
To elucidate the possible metabolic mechanism of intrauterine growth retardation induced by nicotine, this study determines the effects of prenatal nicotine exposure on fetal development and cytochrome P4501A1 (CYP1A1), CYP2E1, and P-glycoprotein (Pgp) expression in maternal liver and placenta. Preg
nant rats were given 1.0 mg/kg nicotine subcutaneously twice a day from gestational day (GD) 8 to GD 15, 18, or 21. In nicotine-treated groups, fetal developmental parameters including body weight were significantly lower. The activities of CYP1A1 and CYP2E1 in maternal liver microsomes in nicotine-treated groups increased significantly with progressing gestation when compared with the corresponding control, but returned to the level similar to the control in late pregnancy. Nicotine-treated groups induced pathological changes and increased malondialdehyde (MDA) content in the placenta when compared with the control. The gene expressions of CYP1A1 and CYP2E1 in the placenta increased significantly in nicotine-treated groups on GD 15 and GD 18, but returned to the level similar to the corresponding control on GD 21. In nicotine group, there was a decrease of mdr1a expression on GD 15, GD 18, and GD 21, with the most significant decrease on GD 15. In contrast, no significant difference was found in mdr1b mRNA expression between the nicotine-treated animals and the corresponding control. In comparison with the corresponding control, the placental Pgp protein significantly decreased on GD 15 and GD 18. Our results showed that prenatal nicotine exposure resulted in inhibition of fetal growth significantly. The induction of CYP2E1 and CYP1A1 gene expression by nicotine in the maternal liver and placenta may be involved with the observed increase in oxidative stress and lipid peroxidation. The inhibition of the placental Pgp expression by nicotine may also contribute to an increased susceptibility of the fetus to environmental toxins.
Lim CH, etal., Environ Toxicol. 2005 Apr;20(2):212-8. doi: 10.1002/tox.20097.
Rats were exposed for 6 h per day in inhalation chambers to a 10 mg/m(3) concentration of metalworking fluid (MWF) contaminated with endotoxin at concentrations of 1813 (low dose) and 20,250 eu/m(3) (high dose) 5 days per week for 8 weeks. It was found that 94.7
% of the MWF aerosol particles had diameters in the range of 0.42-4.6 microm, with geometric mean diameter of 1.56 microm. The body weight and pulmonary function parameters were measured every week during the 8 weeks of exposure, whereas bronchoalveolar lavage (BAL) fluid was prepared to measure the inflammatory markers and cytokines after the 8 weeks of exposure. There were no changes in body weight and respiratory function (tidal volume and respiratory frequency) during the 8 weeks of exposure to the MWF containing endotoxins, yet lung weight increased significantly (P < 0.05) in the rats exposed to the MWF both with and without endotoxins. The number of polymorphonuclear (PMN) cells in the BAL fluid increased significantly (P < 0.05) in the rats exposed to MWF with endotoxins, and the levels of cytokines such as IL-4, INF-gamma, IL-1beta, and TNF-alpha also were significantly increased (P < 0.05) compared to the control. The NOx production activity of the BAL cells increased significantly (P < 0.05) in the rats exposed to the MWF with and without endotoxins. Increases in lung weight, number of PMN cells, and levels of extracellular cytokines and NOx were all more significant in the rats exposed to the MWF with endotoxins rather than in those exposed to MWF without endotoxins. In spleen cell cultures, T-cell proliferation activity was decreased, yet cytokine levels (INF-gamma, IL-1beta, IL-4, and TNF-alpha) remained unchanged after repeated exposure to MWF with and without endotoxins. Although the levels of total IgG(1), IgG(2a), and IgE antibodies in the serum were not changed, the levels of endotoxin-specific antibodies, including IgG(2a) and IgE, were increased significantly (P < 0.05) in the rats exposed to endotoxins, but there was not a significant increase in endotoxin-specific IgG(1). When taken together, the results indicate that lung inflammatory responses can be induced without changing pulmonary function after repeated exposure to MWFs contaminated with endotoxins. In addition, endotoxin-specific IgG(2a) and IgE may be effective biomarkers for workers exposed to MWFs contaminated with endotoxins in the workplace.
Sun J and Jacquez P, Toxins (Basel). 2016 Jan 22;8(2):34. doi: 10.3390/toxins8020034.
Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA) binds to the cell surface receptor, enters the cell throug
h receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2) plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig)-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.
Saito A, etal., Environ Toxicol. 2011 Jun;26(3):224-32. doi: 10.1002/tox.20547.
Volatile organic compounds (VOCs) are considered the main cause of sick building syndrome and they are likely to irritate the skin, eyes, and mucous membrane; however, the toxic threshold and the mechanisms of cutaneous reaction induced by long-time VOC exposu
re have not been clarified. In the present study, we investigated the effect of repeated painting of VOCs onto mouse skin. Various concentrations of toluene, xylene, and formaldehyde (FA) were applied once a week for 5 weeks. While FA solution (2-10%) induced remarkable ear swelling and caused evident infiltration of inflammatory cells, high concentrations of toluene and xylene (50 or 100%) evoked mild ear swelling and marginal inflammatory cell invasion. In addition, FA exposure markedly increased the expression of interleukin-4 (IL-4), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and transient receptor potential vanilloid-1 (TRPV-1) mRNAs in the ears and IL-4 and NT-3 mRNAs in the cervical lymph nodes. Furthermore, capsazepine, a TRPV-1 antagonist, significantly suppressed ear swelling caused by repeated painting of 5% FA. These findings demonstrate that FA has more potent irritancy against skin than toluene or xylene and suggest that the Th2 response, neurotrophins and TRPV-1 play important roles in FA-induced skin inflammation.
Yurekli M, etal., Environ Toxicol. 2009 Jun;24(3):279-86. doi: 10.1002/tox.20430.
Adrenomedullin (AdM) is synthesized and secreted by a number of cells and tissue. AdM is a potent vasodilator but it is also considered a neuromodulator, an angiogenic factor, and a hormone regulator. AdM possess antiapoptotic, antioxidant, and antimicrobial properties. Heavy metals such as cadmium
and lead are found widely in the environment and they have important biological functions. Lead (Pb) and cadmium (Cd) can accumulate in the lungs, liver, bone, and kidneys and cause serious organ damage. In the present study, we investigated the effect of AdM, Pb + AdM, and Cd + AdM treatments on superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities as well as the level of malondialdehyde (MDA) in the kidney. Heavy metal accumulation was determined in kidney with and without AdM infusion and kidney damage was evaluated by light and electron microscopy. Increased heavy metal accumulation was observed in the heavy metal and AdM treated groups. SOD, CAT, GSH-Px activities, and MDA levels were significantly different in the treatment groups when compared with the control group. Tubular degeneration, necrosis, cell swelling, mononuclear cell infiltration, and degenerated organelles were observed in the kidney following treatment. Therefore, AdM infusion has no beneficial and/or compensatory role in cadmium and lead toxicity in the kidney. We conclude that heavy metal accumulation in the kidney in conjunction with AdM infusion is cytotoxic despite the known beneficial effects of adrenomedullin.
To study associations between type 2 diabetes (T2DM) candidate genes and microvascular complications of diabetes (MVCDs), we performed case-control association studies for both T2DM and MVCDs in Han Chinese subjects. We recruited 1,939 unrelated Han Chinese T2DM patients and 918 individuals with nor
mal blood glucose levels as nondiabetic controls. Among T2DM patients, 1116 have MVCDs, 266 have a history of T2DM of >10 years but never developed MVCDs. Eighty-two single-nucleotide polymorphisms (SNPs) in 54 candidate genes were genotyped. Discrete association studies were performed by the PLINK program for T2DM and MVCDs. Significant associations were found among candidate gene SNPs and T2DM, including rs1526167 of the TOX gene (allele A, P = 2.85 × 10(-9), OR = 1.44). The SNP rs10811661 of the CDKN2A/B gene was also associated with T2DM (allele T, P = 4.09 × 10(-7), OR = 1.36). When we used control patients with >10 years of T2DM history without MVCD, we found that the G allele of SNP rs1526167 of the TOX gene was associated with MVCD (nominal P = 4.33 × 10(-4)). In our study, significant associations were found between TOX and CDKN2A/B gene SNPs and T2DM. The TOX polymorphism might account for the higher risk of T2DM and the lower risk of MVCDs in the Han Chinese population.
Lu H, etal., Toxicon. 2015 Jun 1;99:44-50. doi: 10.1016/j.toxicon.2015.03.008. Epub 2015 Mar 19.
Swainsonine (SW) is the principal toxic ingredient of locoweeds, which can cause intensive vacuolar degeneration because of alpha-mannosidase inhibition after animal ingestion. While SW can lead to obvious liver damage in vivo, the mechanism of hepatotox
e='font-weight:700;'>toxic damage caused by SW is not clear. Therefore, BRL-3A cells were treated for 24, 48, and 72 h with SW at various concentrations (0, 700, 900, 1100 mug/mL). The alpha-mannosidase (AMAN) activity was determined in BRL-3A cells using an enzyme substrate technique. The expression of mRNA and proteins of GM II (MAN2A1) and LAM (MAN2B1) in BRL-3A cells was detected by qPCR and Western-blot. The results showed that SW could significantly reduce the activity of AMAN in a time-dose effect relationship. Compared with the control group, the activity of AMAN significantly decreased only in the group treated with 1100 mug/mL SW for 24 h (P < 0.01), but the activity decreased significantly (P < 0.05 or P < 0.01) in all experimental groups treated for 48 or 72 h. SW also significantly reduced the expression of MAN2A1 and MAN2B1 mRNA and proteins in a time-dose effect relationship (P < 0.05 or P < 0.01), while the inhibition of SW was stronger for MAN2B1 than for MAN2A1. These results suggest that SW can significantly reduce the activity and expression of alpha-mannosidase thus causing SW-induced hepatotoxic damage.
Hu WS, etal., Environ Toxicol. 2019 Jan;34(1):5-12. doi: 10.1002/tox.22651. Epub 2018 Sep 21.
Consumption of high fat diet (HFD) is associated with increased cardiovascular risk factors among elderly people. Aging and obesity induced-cardiac remodeling includes hypertrophy and fibrosis. Gelsolin (GSN) induces cardiac hypertrophy and TGF-β, a key cytokine, which induces fibrosis. The relation
ship between TGF-β and GSN in aging induced cardiac remodeling is still unknown. We evaluated the expressions of TGF-β and GSN in HFD fed 22 months old aging SD rats, followed by the administration of either probucol or alcalase potato protein hydrolysate (APPH). Western blotting and Masson trichrome staining showed that APPH (45 and 75 mg/kg/day) and probucol (500 mg/kg/day) treatments significantly reduced the aging and HFD-induced hypertrophy and fibrosis. Echocardiograph showed that the performance of the hearts was improved in APPH, and probucol treated HFD aging rats. Serum from all rats was collected and H9c2 cells were cultured with collected serums separately. The GSN dependent hypertrophy was inhibited with an exogenous TGF-β in H9c2 cells cultured in HFD+ APPH treated serum. Thus, we propose that along with its role in cardiac fibrosis, TGF-β also acts as an upstream activator of GSN dependent hypertrophy. Hence, TGF-β in serum could be a promising therapeutic target for cardiac remodeling in aging and/or obese subjects.
We evaluated the role of p35 in the maturation of hippocampal granule neurons in offspring caused by developmental iodine deficiency. Two developmental rat models were established with either an iodine-deficient diet, or propylthiouracil-adulterated water (5 ppm) to impair thyroid function, in pregn
ant rats from gestational day 6 until postnatal day 28. The protein levels of p35, cyclin-dependent kinase 5, ß-catenin, and N-cadherin were assessed on postnatal day 14, 21, and 28. Dendritic morphogenesis of newborn granule neurons in dentate gyrus was examined. Developmental hypothyroidism induced by iodine deficiency and PTU treatment delayed the maturation of hippocampal granule neurons in the offspring and decreased the percentage of Dcx-positive neurons that expressed ß-catenin on postnatal day 21 and 28. In addition, downregulation of p35 was observed in dentate gyrus of hypothyroid groups. Developmental hypothyroidism induced by iodine deficiency and PTU treatment could delay the maturation of newborn granule neurons in dentate gyrus, and this deficit may be attributed to the downregulation of p35.
Yi Y, etal., Toxicology. 2021 Jul;459:152853. doi: 10.1016/j.tox.2021.152853. Epub 2021 Jul 9.
Oxaliplatin (OXA) is a third-generation platinum drug; however, its application is greatly limited due to the severe peripheral neurotoxicity. This study aims to confirm the transport mechanism of OXA and to explore whether L-tetrahydropalmatine (L-THP) would al
leviate OXA-induced peripheral neurotoxicity by selectively inhibiting these uptake transporters in vitro and in vivo. Our results revealed that organic cation transporter 2 (OCT2), organic cation/carnitine transporter 1 (OCTN1) and organic cation/carnitine transporter 2 (OCTN2) were involved in the uptake of OXA in dorsal root ganglion (DRG) neurons and mitochondria, respectively. L-THP (1-100 μM) reduced OXA (40 μM) induced cytotoxicity in MDCK-hOCT2 (Madin-Darby canine kidney, MDCK), MDCK-hOCTN1, MDCK-hOCTN2, and rat primary DRG cells, and decreased the accumulation of OXA in above cells and rat DRG mitochondria, but did not affect its efflux from MDCK-hMRP2 cells. Furthermore, Co-administration of L-THP (5-20 mg/kg for mice, 10-40 mg/kg for rats; twice a week, iv or ig) attenuated OXA (8 mg/kg for mice, 4 mg/kg for rats; twice a week, iv) induced peripheral neurotoxicity and reduced the platinum concentration in the DRG. Whereas, L-THP (1-100 μM for cells; 10-20 mg/kg for mice) did not impair the antitumour efficacy of OXA (40 μM for cells; 8 mg/kg for mice) in HT29 tumour-bearing nude mice nor in tumour cells (HT29 and SW620 cells). In conclusion, OCT2, OCTN1 and OCTN2 contribute to OXA uptake in the DRG and mitochondria. L-THP attenuates OXA-induced peripheral neurotoxicity via inhibiting OXA uptake but without impairing the antitumour efficacy of OXA. L-THP is a potential candidate drug to attenuate OXA-induced peripheral neurotoxicity.
Shi YQ, etal., Environ Toxicol. 2013 Jan;28(1):31-41. doi: 10.1002/tox.20694. Epub 2011 Mar 7.
One,1-dichloro-2,2 bis(p-chlorophenyl) ethylene (p,p'-DDE), the major metabolite of 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT), is a known persistent organic pollutant and male reproductive toxicant. It has antiandrogenic effect. However, the mechanism
by which p,p'-DDE exposure causes male reproductive toxicity remains unknown. To elucidate the mechanism underpinning the testicular effects of p,p'-DDE, we sought to investigate apoptotic effects and mRNA expression of apoptosis-associated genes in the testis of pubertal rats, including Fas, FasL, calpain-1, cytochrome c, Bax, Bcl-w, Bak, and caspase-3, -8, -9, -12. Animals were administered with different doses of p,p'-DDE (0, 20, 60, 100 mg/kg body weight) every other day by intraperitoneal injection for 10 days. The results indicated that p,p'-DDE exposure at over 20 mg/kg body weight showed the induction of apoptotic cell death. p,p'-DDE could induce decrease in SOD and GSH-Px activity of serum in 60 mg/kg body weight group. Significant elevations in the mRNA levels of Fas, FasL, calpain-1, cytochrome c, Bax, Bak, and caspase-3, -8, -9, -12 were observed in testis of rat treated with p,p'-DDE. Taken together, these results lead us to speculate that in vivo exposure to p,p'-DDE might induce testicular apoptosis in pubertal rats through the involvement of Fas/FasL, mitochondria and endoplasmic reticulum-mediated pathways.
Lv Y, etal., Toxicology. 2019 Jan 1;411:60-70. doi: 10.1016/j.tox.2018.10.020. Epub 2018 Nov 1.
Dicyclohexyl phthalate (DCHP) is a phthalate plasticizer with a ring structure in the alcohol moiety. The objective to the current study was to determine the effects of DCHP on Leydig cell regeneration in the adult rat-testis. Adult male Sprague Dawley rats received intraperitoneally an injection of
ethane dimethane sulfone (EDS) to eliminate all Leydig cells in the testis and then were divided into 4 groups of 0 (control), 10, 100, and 1000 mg/kg/day DCHP. Rats were gavaged either vehicle (corn oil, control) or DCHP from post-EDS day 7 to day 21 and 28. On post-EDS day 21 and day 28, rats were euthanized and serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) levels were measured, and Leydig cell number, cell size, gene, and protein expression were evaluated. During the course of exposure, DCHP did not cause the general toxicity to rats. On post-EDS day 21, DCHP significantly increased serum testosterone level at 10 and 100 mg/kg and increased Leydig cell number at 10 mg/kg via stimulating their mitosis. On post-EDS day 28, DCHP lowered serum testosterone levels and Leydig cell number at 1000 mg/kg. DCHP dose-dependently down-regulated the expression of many Leydig cell genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, and Insl3) and their proteins, especially at 1000 mg/kg. DCHP also lowered the pAKT1/AKT1 and pERK1/2/ERK1/2 ratios. In conclusion, DCHP at low doses (10 and 100 mg/kg) increased Leydig cell number during the initial regeneration and inhibited Leydig cell regeneration during the course of its exposure.
Liu ZH, etal., Environ Toxicol. 2016 Mar;31(3):261-8. doi: 10.1002/tox.22040. Epub 2014 Sep 12.
This study was the first to investigate the genetic abnormalities and structural dysplasia of anorectal malformations (ARMs) in male rats induced by di(n-butyl) phthalate (DBP). DBP was administered to timed-pregnant rats to establish the ARM rat model. The incidence of ARMs in male offspring was 39
.5%. In neonatal period, decreased body weight and anogenital distance were observed. The general image and histological analysis of male offspring confirmed the presence of ARMs. Anatomical examination of the ARM male rats revealed the dysplasia in solid organs (heart-lung, liver, spleen, and kidney). The decreases of serum testosterone concentration and androgen receptor expression in terminal rectum were indicative of the antiandrogenic effects of DBP. Moreover, significant decreased mRNA expressions of these androgen-related genes such as sonic hedgehog, Gli2, Gli3, bone morphogenetic protein 4, Wnt5a, Hoxa13, Hoxd13, fibroblast growth factor 10, and fibroblast growth factor receptor 2 were found in terminal rectum of the ARM male pubs. These results demonstrated that development of ARM rats was impaired by maternal exposure to DBP. The antiandrogenic effects of DBP disturbing the androgen-related signaling networks might play an important role in the occurrence of ARMs.
Man S, etal., Environ Toxicol. 2017 Jan;32(1):99-108. doi: 10.1002/tox.22215. Epub 2015 Nov 21.
Rhizoma Paridis saponins (RPS) is a traditional Chinese medicine (TCM) from the plant Paris polyphylla var. yunnanensis (Fr.) Hand.-Mazz. Despite its potentially clinical utility such as anticancer and anti-inflammation, it has slight side effects and toxicity a
Yue Z, etal., Environ Toxicol. 2012 Nov;27(11):653-61. doi: 10.1002/tox.20688. Epub 2011 Mar 3.
The 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) exists in diesel exhaust particles (DEP), and is also one of the degradation products of insecticide fenitrothion. To assess potential nephrotoxicity of PNMC, male Sprague-Dawley (SD) rats were subcutaneously d
osed with PNMC at 1, 10, and 100 mg/kg/day for five consecutive days. No significant changes were detected in body weights and relative weights of kidneys by the treatment of PNMC. However, the extent of cellular necrosis was found to be severe in renal tubular epithelial cells of PNMC-treated rats. In addition, PNMC exposure significantly increased the number of terminal deoxynucleotidyle transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells compared to the control in renal tubule of PNMC-treated rats. Moreover, immunohistochemical results indicated that significant decrease in the B-cell lymphoma 2 (Bcl-2) expressions andincrease in the Bcl-2 associated x protein (Bax) expression were detected in PNMC-treated rats. The ratio of Bcl-2/Bax was also reduced significantly at PNMC-treated rats dosed at 10 or 100 mg kg(-1) . Furthermore, the significant increase of FAS (CD95/APO-1) expression was found in the groups dosed at 10 or 100 mg kg(-1) of PNMC. The expression of Caspase-3 was higher in PNMC-treated rats, compared to the control group. Our results indicated that activation of mitochondria and Caspase-3 protease may contribute to the PNMC-induced apoptosis, suggesting that PNMC could cause both necrosis and apoptosis resulting in cell death of renal epithelium cells and could induce renal toxicity.
Zhu G, etal., Environ Toxicol. 2018 Jun;33(6):631-639. doi: 10.1002/tox.22547. Epub 2018 Feb 19.
Chronic lead exposure causes peripheral sympathetic nerve stimulation, including increased blood pressure and heart rate. Purinergic receptors are involved in the sympathoexcitatory response induced by myocardial ischemia injury. However, whether P2X4 receptor participates in sympathoexcitatory resp
onse induced by chronic lead exposure and the possible mechanisms are still unknown. The aim of this study was to explore the change of the sympathoexcitatory response induced by chronic lead exposure via the P2X4 receptor in the stellate ganglion (SG). Rats were given lead acetate through drinking water freely at doses of 0 g/L (control group), 0.5 g/L (low lead group), and 2 g/L (high lead group) for 1 year. Our results demonstrated that lead exposure caused autonomic nervous dysfunction, including blood pressure and heart rate increased and heart rate variability (HRV) decreased. Western blotting results indicated that after lead exposure, the protein expression levels in the SG of P2X4 receptor, IL-1β and Cx43 were up-regulated, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was activated. Real-time PCR results showed that the mRNA expression of P2X4 receptor in the SG was higher in lead exposure group than that in the control group. Double-labeled immunofluorescence results showed that P2X4 receptor was co-expressed with glutamine synthetase (GS), the marker of satellite glial cells (SGCs). These changes were positively correlated with the dose of lead exposure. The up-regulated expression of P2X4 receptor in SGCs of the SG maybe enhance the sympathoexcitatory response induced by chronic lead exposure.
Li YY, etal., Environ Toxicol. 2012 Aug;27(8):495-502. doi: 10.1002/tox.20666. Epub 2010 Nov 29.
It has been suggested that lead (Pb) exposure in early life may increase amyloid precursor protein (APP) expression and promote the pathogenesis of Alzheimer's disease in old age. The current study examined whether the DNA methylation patterns of APP gene in rat pheochromocytoma (PC12) cells change
d after Pb acetate exposure. Undifferentiated PC12 cells were exposed to three doses of Pb acetate (50, 250, and 500 nM) and one control for 2 days or 1 week. The methylation patterns of APP promoter and global DNA methylation were analyzed. The DNA methyltransferase 1 (DNMT1) expression and the level of amyloid beta peptide (Abeta) were also investigated. The results showed that the exposure of the three concentrations of Pb acetate could make the APP promoter hypomethylated. The global DNA methylation level and the expression of DNMT1 were changed in the 500 nM group after 2 days exposure and in the 250 and 500 nM group after 7 days exposure. Thus, Pb may exert neurotoxic effects through mechanisms that alter the global and promoter methylation patterns of APP gene. (c) 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.
Epidemiologic studies have provided solid evidence for the neurotoxic effect of lead for decades of years. In view of the fact that children are more vulnerable to the neurotoxicity of lead, lead exposure has been an urgent
public health concern. The modes of action of lead neurotoxic effects include disturbance of neurotransmitter storage and release, damage of mitochondria, as well as induction of apoptosis in neurons, cerebrovascular endothelial cells, astroglia and oligodendroglia. Our studies here, from a novel point of view, demonstrates that lead specifically caused induction of COX-2, a well known inflammatory mediator in neurons and glia cells. Furthermore, we revealed that COX-2 was induced by lead in a transcription-dependent manner, which relayed on transcription factor NFAT, rather than AP-1 and NFκB, in glial cells. Considering the important functions of COX-2 in mediation of inflammation reaction and oxidative stress, our studies here provide a mechanistic insight into the understanding of lead-associated inflammatory neurotoxicity effect via activation of pro-inflammatory NFAT3/COX-2 axis.
Pillay Y, etal., Toxicon. 2015 Jun 1;99:1-5. doi: 10.1016/j.toxicon.2015.03.004. Epub 2015 Mar 12.
Patulin (PAT), a mycotoxin contaminant of apples and apple products, has been implicated in nephrotoxicity. PAT depletes glutathione (GSH) and elevates reactive oxygen species (ROS). The antioxidant (AO) response is activate
d by Nuclear erythroid 2-related factor (NRF2) and enhanced by Silent information regulator 3 (SIRT3). The effects of PAT on these molecules have yet to be examined. We investigated the effects of PAT on AO response survival pathways in human embryonic kidney cells (HEK293). PAT cytotoxicity on HEK293 cells was evaluated (MTT assay; 24 h; [0-100 muM]) to determine an IC50. GSH levels were measured using luminometry. Intracellular ROS was evaluated by flow cytometry. Protein expression of Keap1, NRF2, SIRT3 and PGC-1alpha was quantified by western blotting and gene expression of SOD2, CAT and GPx was evaluated by qPCR. PAT caused a dose dependent decrease in HEK293 cell viability and a significant increase in levels of intracellular ROS (p = 0.0006). A significant increase in protein expression (p = 0.029) was observed. PAT increased gene expression of SOD2 and CAT (p = 0.0043), however, gene expression of GPx was significantly reduced (p = 0.0043). These results show the up-regulation of NRF2 mediated AO mechanisms in response to PAT toxicity.
Wang T, etal., Toxicology. 2017 Apr 1;380:38-49. doi: 10.1016/j.tox.2017.02.005. Epub 2017 Feb 8.
Excessive exposure to 1,2-Dichloroethane (1,2-DCE), a chlorinated organic toxicant, can lead to liver dysfunction. To fully explore the mechanism of 1,2-DCE-induced hepatic abnormalities, 30 male National Institutes of Health (NIH) Swiss mice were exposed to 0,
350, or 700mg/m3 of 1,2-DCE, via inhalation, 6h/day for 28days. Increased liver/body weight ratios, as well as serum AST and serum ALT activity were observed in the 350 and 700mg/m3 1,2-DCE exposure group mice, compared with the control group mice. In addition, decreased body weights were observed in mice exposed to 700mg/m3 1,2-DCE, compared with control mice. Exposure to 350 and 700mg/m3 1,2-DCE also led to significant accumulation of hepatic glycogen, free fatty acids (FFA) and triglycerides, elevation of blood triglyceride and FFA levels, and decreases in blood glucose levels. Results from microarray analysis indicated that the decreases in glucose-6-phosphatase catalytic subunit (G6PC) and liver glycogen phosphorylase (PYGL) expression, mediated by the activation of AKT serine/threonine kinase 1 (Akt1), might be responsible for the hepatic glycogen accumulation and steatosis. Further in vitro study demonstrated that 2-chloroacetic acid (1,2-DCE metabolite), rather than 1,2-DCE, up-regulated Akt1 phosphorylation and suppressed G6PC and PYGL expression, resulting in hepatocellular glycogen accumulation. These results suggest that hepatic glucose and lipid homeostasis are impaired by 1,2-DCE exposure via down-regulation of PYGL and G6PC expression, which may be primarily mediated by the 2-chloroacetic acid-activated Akt1 pathway.
Shi H, etal., Toxicology. 2012 Nov 9. pii: S0300-483X(12)00381-2. doi: 10.1016/j.tox.2012.10.025.
Chlorogenic acid (CGA) is a type of polyphenol with anti-inflammatory, antioxidant activities. Our previous studies showed CGA could efficiently inhibit carbon tetrachloride (CCl(4))-induced liver fibrosis in rats. However, the specific underlying mechanism remains unclear. The aim of this study is
to investigate the effects of CGA on liver inflammation and fibrosis induced by CCl(4) and whether they are related to inhibition of toll-like receptor 4 (TLR4) signaling pathway. Male Sprague-Dawley (SD) rats were administrated CCl(4) together with or without CGA for 8 weeks. Histopathological and biochemical analyses were carried out. The mRNA and protein expression levels of proinflammatory and profibrotic mediators were detected by RT-PCR and Western blot, respectively. The levels of serum proinflammatory cytokines were detected by ELISA. CGA significantly attenuated CCl(4)-induced liver damage and symptoms of liver fibrosis, accompanied by reduced serum transaminase levels, collagen I and alpha-smooth muscle actin (alpha-SMA) expression. As compared with the CCl(4)-treated group, the expression levels of TLR4, myeloid differentiation factor 88 (MyD88), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were reduced in the treatment group of CCl(4) and CGA, whereas bone morphogenetic protein and activin membrane-bound inhibitor (Bambi) expression was increased. CGA also suppressed CCl(4) induced nuclear factor-kappaB (NF-kappaB) activation. Moreover, the hepatic mRNA expression and serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1beta (IL-1beta) were significantly increased in CCl(4)-treated rats and attenuated by co-treatment with CGA. Our data indicate that CGA can efficiently inhibit CCl(4)-induced liver fibrosis in rats and the protective effect may be due to the inhibition of TLR4/MyD88/NF-kappaB signaling pathway.
Prenatal caffeine ingestion is one of the risk factors for intrauterine growth retardation (IUGR). Adrenal plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. We have shown that prenatal caffeine ingestion can i
nhibit fetal adrenal corticosterone production, but the underlying mechanism is unknown. This study investigated the effects of prenatal caffeine ingestion on corticosterone and its associated synthesized enzymes (steroidogenic acute regulatory protein, StAR; 3beta-hydroxysteroid dehydrogenase, 3beta-HSD; cytochrome P450 cholesterol side chain cleavage, P450scc; P450c21; and P450c11) in the fetal adrenal in rats and further explored the underlying mechanism by analyzing the epigenetic modification and expression of the key transcription factor steroidogenic factor-1 (SF-1). The pregnant rats were intragastrically treated with 120 mg/kg.d caffeine from gestational day 11-20. The results showed that the IUGR rate was 51.2% after caffeine treatment. The contents of corticosterone and the mRNA levels of StAR, P450scc, P450c21, and P450c11 were decreased significantly in the fetal adrenal. Furthermore, caffeine reduced both the protein and the mRNA expression of SF-1 in the fetal adrenal. The epigenetic analysis showed that caffeine treatment can significantly enhance the mRNA expression of DNA methyltransferase (Dnmt) 1, Dnmt3a, histone deacetylases (Hdac) 1, and Hdac2. The detection of DNA methylation by bisulfite-sequencing PCR uncovered a notably increased total methylation rate in the SF-1 promoter. The ChIP assay showed decreased acetylation levels of H3K9 and H3K14 in the SF-1 promoter. In conclusion, prenatal caffeine ingestion is able to induce aberrant DNA methylation and histone acetylation of the SF-1 promoter in the rat fetal adrenal. These effects may contribute to the inhibition of the expression of SF-1 and its associated steroidogenic enzymes and the production of corticosterone during fetal development.
Wang H, etal., Toxicology. 2025 Jun;514:154120. doi: 10.1016/j.tox.2025.154120. Epub 2025 Mar 15.
Polychlorinated biphenyls (PCBs) remain an environmental health concern due to their persistence and ongoing release from legacy and emerging sources. 2,2',5,5'-Tetrachlorobiphenyl (PCB52), a PCB congener frequently detected in the environment and human blood, is oxidized to 2,2',5,5'-tetrachlorobip
henyl-4-ol (4-52). The neurotoxicity of this hydroxylated (OH-PCB) metabolite remains poorly characterized. In this study, we exposed 4-week-old male Sprague Dawley rats to 4-52 via a polymeric implant drug delivery system grafted in the subcutaneous cavity at 4-52 concentrations of 0 %, 1 %, 5 %, and 10 % in the implant (w/w) for 28 days. Metabolomic analyses were performed in the serum. RNA sequencing, immunofluorescence, and dopamine (DA) measurement with electrochemical detection were used to characterize the effects of 4-52 on the striatum and cerebellum, brain regions implicated in PCB neurotoxicity. Serum metabolomic analysis revealed disruptions in the "arginine biosynthesis" pathway following 4-52 exposure. Exposure to 4-52 caused moderate transcriptomic changes in pathways related to "oxidative phosphorylation" and "neuroactive ligand-receptor interactions." Immunofluorescence showed no significant alterations in microglial, astrocytic, or apoptotic biomarkers. In the medium dose group, the levels of the DA metabolite DOPAL (3,4-dihydroxyphenylacetaldehyde) were significantly reduced in the striatum. Subsequent multi-omics network analysis identified interactions among OH-PCBs, endogenous metabolites, and the transcriptome. For example, levels of glutamic acid, aspartic acid, choline, and glycerophosphocholine negatively correlated with 4-52 in the striatum. Expression levels of heat shock protein (HSP) family genes, Hsp90b1, Hspa8, and Hspa5, positively correlated with serum metabolites, including proline, 1-methylguanidine, and methionine sulfoxide. These findings identify novel biomarkers and targets of 4-52-induced neurotoxicity.
Majhi CR, etal., Environ Toxicol. 2014 Feb;29(2):187-98. doi: 10.1002/tox.20785. Epub 2011 Nov 25.
We evaluated whether the commonly used analgesic-antipyretic drug acetaminophen can modify the arsenic-induced hepatic oxidative stress and also whether withdrawal of acetaminophen administration during the course of long-term arsenic exposure can increase susceptibility of liver to arsenic tox
yle='font-weight:700;'>toxicity. Acetaminophen was co-administered orally to rats for 3 days following 28 days of arsenic pre-exposure (Phase-I) and thereafter, acetaminophen was withdrawn, but arsenic exposure was continued for another 28 days (Phase-II). Arsenic increased lipid peroxidation and reactive oxygen species (ROS) generation, depleted glutathione (GSH), and decreased superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione reductase (GR) activities. Acetaminophen caused exacerbation of arsenic-mediated lipid peroxidation and ROS generation and further enhancement of serum alanine aminotransferase and aspartate aminotransferase activities. In Phase-I, acetaminophen caused further GSH depletion and reduction in SOD, catalase, GPx and GR activities, but in Phase-II, only GPx and GR activities were more affected. Arsenic did not alter basal and inducible nitric oxide synthase (iNOS)-mediated NO production, but decreased constitutive NOS (cNOS)-mediated NO release. Arsenic reduced expression of endothelial NOS (eNOS) and iNOS genes. Acetaminophen up-regulated eNOS and iNOS expression and NO production in Phase-I, but reversed these effects in Phase-II. Results reveal that acetaminophen increased the risk of arsenic-mediated hepatic oxidative damage. Withdrawal of acetaminophen administration also increased susceptibility of liver to hepatotoxicity. Both ROS and NO appeared to mediate lipid peroxidation in Phase-I, whereas only ROS appeared responsible for peroxidative damage in Phase-II.
Lin MH, etal., Toxicology. 2014 Jan 6;315:24-37. doi: 10.1016/j.tox.2013.11.007. Epub 2013 Nov 28.
This study investigates the roles of ROS overproduction and MAPK signaling pathways in the induction of unfolded protein response (UPR) and the expression of Phase II enzymes in response to 4-hydroxy-trans-2-nonenal (4-HNE) in a neuronal-like catecholaminergic PC12 cells. Our results showed that 4-H
NE triggered three canonical pathways of UPR, namely IRE1-XBP1, PERK-eIF2alpha-ATF4 and ATF6, and induced the expression of UPR-targeted genes, GRP78, CHOP, TRB3, PUMA, and GADD34, as well as Phase II enzymes, HO-1 and GCLC. 4-HNE also induced apoptosis, intracellular calcium accumulation, caspase-3 activation, and G0/G1 cell cycle arrest, which was correlated with the increased expression of GADD45alpha. The addition of tiron, a cellular permeable superoxide scavenger, scavenged 4-HNE-mediated ROS formation, but did not alleviate cytotoxicity, or the expression of UPR-targeted genes or Phase II enzymes, indicating that ROS overproduction per se did not play a major role in 4-HNE-caused deleterious effects. HO-1 expression was attenuated by Nrf2 siRNA and chemical chaperone 4-phenylbutyrate (4-PBA), suggesting HO-1 expression was regulated by Nrf2-ARE, which may work downstream of ER stress. 4-HNE treatment promptly induced ERK, JNK and p38 MAPK activation. Addition of p38 MAPK specific inhibitor SB203580 attenuated HO-1 upregulation, but enhanced expression of CHOP, PUMA and TRB3, and cytotoxicity. These results indicate that 4-HNE-induced transient p38 MAPK activation may serve as an upstream negative regulator of ER stress and confer adaptive cytoprotection against 4-HNE-mediated cell injury.
Ramm S, etal., Toxicology. 2015 May 4;331:100-11. doi: 10.1016/j.tox.2015.03.004. Epub 2015 Mar 13.
Increasing experimental and clinical evidence suggest a contribution of non-drug related risk factors (e.g., underlying disease, bacterial/viral infection) to idiosyncratic drug reactions (IDR). Our previous work showed that co-treatment with bacterial endotoxin
(LPS) and therapeutic doses of diclofenac (Dcl), an analgesic associated with drug idiosyncrasy in patients, induced severe hepatotoxicity in rats. Here, we used an integrated discovery to targeted LC-MS proteomics approach to identify mechanistically relevant liver and plasma proteins modulated by LPS/Dcl treatment, potentially applicable as early markers for IDRs. Based on pre-screening results and their role in liver toxicity, 47 liver and 15 plasma proteins were selected for targeted LC-MS analysis. LPS alone significantly changed the levels of 19 and 3 of these proteins, respectively. T-kininogen-1, previously suggested as a marker of drug-induced liver injury, was markedly elevated in plasma after repeated Dcl treatment in the absence of hepatotoxicity, possibly indicating clinically silent stress. Dcl both alone and in combination with LPS, caused up-regulation of the ATP synthase subunits (ATP5J, ATPA, and ATPB), suggesting that Dcl may sensitize cells against additional stress factors, such as LPS through generation of mitochondrial stress. Additionally, depletion of plasma fibrinogen was observed in the co-treatment group, consistent with an increased hepatic fibrin deposition and suspected contribution of the hemostatic system to IDRs. In contrast, several proteins previously suggested as liver biomarkers, such as clusterin, did not correlate with liver injury in this model. Taken together, these analyses revealed proteomic changes in a rat model of LPS/Dcl co-administration that could offer mechanistic insight and may serve as biomarkers or safety alert for a drug's potential to cause IDRs.
Ronn M, etal., Toxicology. 2013 Jan 7;303:125-32. doi: 10.1016/j.tox.2012.09.013. Epub 2012 Nov 8.
BACKGROUND: Prenatal exposure to bisphenol A (BPA) has been shown to induce obesity in rodents. To evaluate if exposure also later in life could induce obesity or liver damage we investigated these hypothesises in an experimental rat model. METHODS: From five to fifteen weeks of age, female Fischer
344 rats were exposed to BPA via drinking water (0.025, 0.25 or 2.5 mg BPA/L) containing 5% fructose. Two control groups were given either water or 5% fructose solution. Individual weight of the rats was determined once a week. At termination magnetic resonance imaging was used to assess adipose tissue amount and distribution, and liver fat content. After sacrifice the left perirenal fat pad and the liver were dissected and weighed. Apolipoprotein A-I in plasma was analyzed by western blot. RESULTS: No significant effects on body weight or the weight of the dissected fad pad were seen in rats exposed to BPA, and MRI showed no differences in total or visceral adipose tissue volumes between the groups. However, MRI showed that liver fat content was significantly higher in BPA-exposed rats than in fructose controls (p=0.04). BPA exposure also increased the apolipoprotein A-I levels in plasma (p<0.0001). CONCLUSION: We found no evidence that BPA exposure affects fat mass in juvenile fructose-fed rats. However, the finding that BPA in combination with fructose induced fat infiltration in the liver at dosages close to the current tolerable daily intake (TDI) might be of concern given the widespread use of this compound in our environment.
Ganaie MA, etal., Environ Toxicol. 2019 May;34(5):610-625. doi: 10.1002/tox.22727. Epub 2019 Feb 5.
Colorectal cancer is one of the most common cancers worldwide. Development of naturally occurring inexpensive and safe alternatives can be effective in suppressing colon related proliferations. Zingerone (4-[4-hydroxy-3-methylphenyl] butan-2-one), a polyphenolic alkanone of ginger, has massive pharm
acological properties and thus can be used as promising candidate against various ailments. In the current study, we aimed at demonstrating the protective effect of zingerone against experimental colon carcinogenesis and elucidating its possible mechanism by studying inflammatory and Nrf-2 signaling cascade. Four groups of animals (I-IV) were made with six animals each. Group I (control) was given normal saline orally. Group II was given 1,2-dimethylhydrazine (DMH) at the dose rate of 20 mg/kg body weight. Group III and IV were treated with DMH at the dose rate of 20 mg/kg body weight and also received oral treatment of zingerone at a dose rate of 50 and 100 mg/kg body weight, respectively, for first 5 weeks and animals were euthanized after 16 weeks. Our results reveal that DMH treated rats exhibited elevated ROS and MDA levels, increased activity of cytochrome P450 2E1 and serum marker enzyme carcinoembreyonic antigen (CEA), increased no of aberrant crypts of foci (ACF), and elevated expression of inflammatory and proliferative proteins. Nrf-2 was downregulated by DMH treatment. Treatment with zingerone to DMH treated rats, resulted in alterations in the activity of the cytochrome P450 2E1 and CEA. In addition, immunostaining of NF-kB-p65, COX-2, iNOS, and PCNA, Ki-67 was suppressed by zingerone. Furthermore, zingerone administration also attenuated the level of IL-6 and TNF-α and it also helps in preserving mucous layer. Thus, zingerone could be considered as a good chemopreventive agent in experimental model of colon carcinogenesis. Further studies are required to study other pathways involved in colon carcinogenesis and their modulation buy zingerone.
Wu DM, etal., Toxicology. 2016 Jan 18;340:43-52. doi: 10.1016/j.tox.2016.01.002. Epub 2016 Jan 14.
Prenatal nicotine exposure is a risk factor for intrauterine growth retardation (IUGR). Steroid hormones synthesized from cholesterol in the fetal adrenal play an important role in the fetal development. The aim of this study is to investigate the effects of prenatal nicotine exposure on steroidogen
esis in fetal rat adrenals from the perspective of cholesterol supply and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were administered 1.0mg/kg nicotine subcutaneously twice a day from gestational day (GD) 7 to GD17. The results showed that prenatal nicotine exposure increased IUGR rates. Histological changes, decreased steroid hormone concentrations and decreased cholesterol supply were observed in nicotine-treated fetal adrenals. In the gene expression array, the expression of genes regulating ketone metabolic process decreased in nicotine-treated fetal adrenals. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that acetoacetyl-CoA synthetase (AACS), the enzyme utilizing ketones for cholesterol supply, may play an important role in nicotine-induced cholesterol supply deficiency. Moreover, the decreased expression of AACS and increased DNA methylation in the proximal promoter of AACS in the fetal adrenal was verified by real-time reverse-transcription PCR (RT-PCR) and bisulfite sequencing PCR (BSP), respectively. In conclusion, prenatal nicotine exposure can cause DNA hypermethylation of the AACS promoter in the rat fetal adrenal. These changes may result in decreased AACS expression and cholesterol supply, which inhibits steroidogenesis in the fetal adrenal.
Liu M, etal., Environ Toxicol. 2022 Oct;37(10):2419-2433. doi: 10.1002/tox.23607. Epub 2022 Jun 28.
Phthalates may interfere with the biosynthesis of steroid hormones in the adrenal cortex. Bis (2-butoxyethyl) phthalate (BBOP) is a phthalate containing oxygen atoms in the alcohol moiety. In this study, 35-day-old male Sprague-Dawley rats were daily gavaged wit
h BBOP (0, 10, 100, 250, and 500 mg/kg body weight) for 21 days. BBOP did not affect the weight of body and adrenal glands. BBOP significantly reduced serum corticosterone levels at 250 and 500 mg/kg, and lowered aldosterone level at 500 mg/kg without affecting adrenocorticotropic hormone. BBOP did not alter the thickness of the adrenal cortex. BBOP significantly down-regulated the expression of steroidogenesis-related genes (Scarb1, Star, Cyp11a1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a1, and Nr4a2) and proteins, and antioxidant enzymes (Sod1, Sod2, Gpx1, and Cat) and their proteins, while up-regulating the expression of Mc2r and Agtr1a at various doses. BBOP reduced the phosphorylation of AKT1, AKT2, and ERK1/2, as well as the levels of SIRT1 and PGC1α without affecting the phosphorylation of AMPK. BBOP significantly induced the production of reactive oxygen species and apoptosis rate in H295R cells at 100 μM and higher after 24 h of treatment. In conclusion, male rats exposed to BBOP in puberty have significant reduction of steroid biosynthesis with a potential mechanism that is involved in the decrease in the phosphorylation of AKT1, AKT2, ERK1/2, as well as SIRT1 and PGC1α and increase in ROS.
Lead (Pb(2+)) is a naturally occurring systemic toxicant heavy metal that affects several organs in the body including the kidneys, liver, and central nervous system. However, Pb(2+)-induced cardiotoxicity has never been inv
estigated yet and the exact mechanism of Pb(2+) associated cardiotoxicity has not been studied. The current study was designed to investigate the potential effect of Pb(2+) to induce cardiotoxicity in vivo and in vitro rat model and to explore the molecular mechanisms and the role of aryl hydrocarbon receptor (AhR) and regulated gene, cytochrome P4501A1 (CYP1A1), in Pb(2+)-mediated cardiotoxicity. For these purposes, Wistar albino rats were treated with Pb(2+) (25, 50 and 100mg/kg, i.p.) for three days and the effects on physiological and histopathological parameters of cardiotoxicity were determined. At the in vitro level, rat cardiomyocyte H9c2 cell lines were incubated with increasing concentration of Pb(2+) (25, 50, and 100 muM) and the expression of hypertrophic genes, alpha- and beta-myosin heavy chain (alpha-MHC and beta-MHC), brain Natriuretic Peptide (BNP), and CYP1A1 were determined at the mRNA and protein levels using real-time PCR and Western blot analysis, respectively. The results showed that Pb(2+) significantly induced cardiotoxicity and heart failure as evidenced by increase cardiac enzymes, lactate dehydrogenase and creatine kinase and changes in histopathology in vivo. In addition, Pb(2+) treatment induced beta-MHC and BNP whereas inhibited alpha-MHC mRNA and protein levels in vivo in a dose-dependent manner. In contrast, at the in vitro level, Pb(2+) treatment induced both beta-MHC and alpha-MHC mRNA levels in time- and dose-dependent manner. Importantly, these changes were accompanied with a proportional increase in the expression of CYP1A1 mRNA and protein expression levels, suggesting a role for the CYP1A1 in cardiotoxicity. The direct evidence for the involvement of CYP1A1 in the induction of cardiotoxicity by Pb(2+) was evidenced by the ability of AhR antagonist, resveratrol, to significantly inhibit the Pb(2+)-modulated effect on beta-MHC and alpha-MHC mRNAs. It was concluded that acute lead exposure induced cardiotoxicity through AhR/CYP1A1-mediated mechanism.
A new system for lineage ablation is based on transgenic expression of a diphtheria toxin receptor (DTR) in mouse cells and application of diphtheria toxin (DT). To streamline this approach, we generated Cre-inducible DTR tr
ansgenic mice (iDTR) in which Cre-mediated excision of a STOP cassette renders cells sensitive to DT. We tested the iDTR strain by crossing to the T cell- and B cell-specific CD4-Cre and CD19-Cre strains, respectively, and observed efficient ablation of T and B cells after exposure to DT. In MOGi-Cre/iDTR double transgenic mice expressing Cre recombinase in oligodendrocytes, we observed myelin loss after intraperitoneal DT injections. Thus, DT crosses the blood-brain barrier and promotes cell ablation in the central nervous system. Notably, we show that the developing DT-specific antibody response is weak and not neutralizing, and thus does not impede the efficacy of DT. Our results validate the use of iDTR mice as a tool for cell ablation in vivo.
Acetaminophen (APAP) is a commonly used and effective analgesic and antipyretic agent. However, some patients encounter hepatotoxicity after repeated APAP dosing at therapeutic doses. In the present study, we focused on the nutritional state as one of the risk f
actors of APAP-induced chronic hepatotoxicity in humans and investigated the contribution of undernourishment to susceptibility to APAP-induced chronic hepatotoxicity using an animal model mimicking undernourished patients. Rats were divided into 2 groups: the ad libitum fed (ALF) and the restricted fed (RF) rats and were assigned to 3 groups (n = 8/group) for each feeding condition. The animals were given APAP at 0, 300 and 500mg/kg for 99 days under each feeding condition. Plasma and urinary glutathione-related metabolites and liver function parameters were measured during the dosing period and hepatic glutathione levels were measured at the end of the dosing period. In the APAP-treated ALF rats hepatic glutathione levels were increased and hepatic function parameters were not changed, but in the APAP-treated RF rats hepatic glutathione levels were decreased at 500mg/kg and hepatic function parameters were increased at 300 and 500mg/kg. Moreover the urinary endogenous metabolite profile after long-term treatment with APAP in the ALF and RF rats was similar to that in human non-responders and responders to APAP-induced chronic hepatotoxicity, respectively. In conclusion, the RF rats were more sensitive to APAP-induced chronic hepatotoxicity than the ALF rats and were considered to be a useful model to estimate the contribution of the nutritional state of patients to APAP-induced chronic hepatotoxicity.
Alterations in dihydropyrimidine dehydrogenase gene (DPYD) coding for the key enzyme (DPD) of fluoropyrimidines (FPs) catabolism contribute to the development of serious FPs-related toxicity. We performed mutation analysis of DPYD based on cDNA sequencing in 7
6 predominantly colorectal cancer patients treated by FPs with early development of high (grade 3-4) hematological and/or gastrointestinal toxicity. Six previously described [85T>C (C29R), 496A>G (M166V), 775A>G (K259E), 1601G>A (S534N), 1627A>G (I543V), IVS14+1G>A, 2194G>A (V732I)] and two novel [187A>G (K63E) and 1050 G>A (R357H)] non-synonymous DPYD variants were found in 56/76 (73.7%) high-toxicity patients. Subsequently, these alterations were analyzed in 48 patients with excellent long-term tolerance of FPs and in 243 controls and were detected in 37/48 (77.1%) and 166/243 (68.3%) cases, respectively. Analysis of these alterations as risk factors for development of toxicity in pooled FPs-treated population demonstrated that C29R negatively correlated with overall gastrointestinal toxicity (OR = 0.48; 95%CI 0.23-1.0) and M166V in women protected against overall hematological toxicity and neutropenia (both OR = 0.26; 95%CI 0.07-0.89), whereas IVS14+1G>A (found in five high-toxicity patients only) increased risk of mucositis in overall population (OR = 7.0; 95%CI 1.1-44.53), and thrombocytopenia in women (OR = 10.8; 95%CI 1.24-93.98). Moreover, we identified a strong association of V732I with leucopenia (OR = 8.17; 95%CI 2.44 - 27.31) and neutropenia (OR=2.78; 95% CI 1.03-7.51). Our data enabled characterization of "high risk" haplotypes (carriers of IVS14+1G>A or V732 lacking M166V) representing small (22% female and 11% male patients), population in high risk of serious hematological toxicity development, and in patients with "lower risk" that unlikely develop serious hematological toxicity [carriers of M166V without IVS14+1G>A and V732I in females (32% women), and non-carriers of C29R, M166V, IVS14+1G>A, and V732I in males (46% men)]. Our results indicate that genotyping of several DPYD variants may lead to stratification of patients with respect to the risk of serious hematological toxicity development during FPs treatment.
El Hidan MA, etal., Toxicon. 2016 Mar 1;111:22-30. doi: 10.1016/j.toxicon.2015.12.010. Epub 2015 Dec 22.
Central effects of scorpion venom toxins have been neglected, due both to the common belief that scorpion venoms act by targeting peripheral organs and also to the misunderstanding that these peptides do not cross the brain-blood barrier (BBB). Determining wheth
er scorpion neurotoxicity is restricted to peripheral actions or whether a central mechanism may be partly responsible for systemic manifestations could be crucial in clinical therapy trends. The present study therefore aims to assess histopathological damages in some organs (heart, kidney, liver, and lungs) and the related biochemical impairments, together with a neurobehavioral investigation following an intracerebroventricular (i.c.v) micro-injection of Hottentotta gentili (Scorpiones, Buthidae) venom (0.47 µg/kg). I.c.v. injection of venom produced focal fragmentation of myocardial fibers, while lungs showed rupture of the alveolar structure. Concurrently, there was a significant rise in the serum enzymes levels of ASAT, ALAT, CPK and LDH. Meanwhile, we observed behavioral alterations such as a hypoactivity, and in addition the venom seems to have a marked anxiogenic-like effect. The present investigation has brought new experimental evidence of a peripheral impact of central administration of H. gentili venom, such impact was manifested by physiological and behavioral disturbances, the last of these appearing to reflect profound neuro-modulatory action of H. gentili venom.
Jiang JT, etal., Toxicology. 2011 Dec 18;290(2-3):322-6. doi: 10.1016/j.tox.2011.10.008. Epub 2011 Oct 18.
The objectives of this study were to investigate the dysplasia, histological malformations, and genetic abnormalities in male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Here we report novel findings concerning developmental abnormalities resulting from prenatal exposure to DBP
, which leads to significant anorectal malformations (ARMs) in male rat offspring. The incidence of ARMs was 39.5% in male offspring and all abnormal pups were complicated with secondary megacolon. General images, histological analysis and anatomy examination confirmed the malformation. The development abnormalities such as decreased bodyweight (BW) and anogenital distance (AGD), shortened body lengths (with tail removed), as well as increased abdominal circumference were observed at different developmental stages of ARMs in male rat. The developmental abnormalities in both solid organs (brain, heart, liver, spleen, lung and kidney) and reproductive organs (testes and epididymis) of abnormal pubs on PND35 were also investigated. In addition, the serum testosterone (T) level of ARMs in male rats on PND1 was significantly lower than that of controls with accompanying reduced expression of androgen receptor (AR), sonic hedgehog (Shh) and bone morphogenetic protein 4 (Bmp4) mRNA from tissues of the terminal rectum. These results conclusively demonstrate for the first time that in utero exposure to DBP leads to an increased likelihood for the development of ARMs and subsequent complicating megacolon in male rat offspring.
Schwab M, etal., J Clin Oncol. 2008 May 1;26(13):2131-8. doi: 10.1200/JCO.2006.10.4182. Epub 2008 Feb 25.
PURPOSE: To assess the predictive value of polymorphisms in dihydropyrimidine dehydrogenase (DPYD ), thymidylate synthase (TYMS ), and methylene tetrahydrofolate reductase (MTHFR ) and of nongenetic factors for severe leukopenia, diarrhea, and mucositis related to fluorouracil (FU) treatment. PATIEN
TS AND METHODS: A multicenter prospective clinical trial included 683 patients with cancer treated with FU monotherapy. Toxicity was documented according to World Health Organization grades. DPYD, TYMS, and MTHFR genotypes were determined, and DPYD was resequenced in patients with severe toxicity. RESULTS: Grade 3 to 4 toxicity occurred in 16.1% of patients. The sensitivity of DPYD*2A genotyping for overall toxicity was 5.5% (95%CI, 0.02 to 0.11), with a positive predictive value of 0.46 (95% CI, 0.19 to 0.75; P = .01). Inclusion of additional DPYD variants improved prediction only marginally. Analysis according to toxicity type revealed significant association of DPYD with mucositis and leukopenia, whereas TYMS was associated with diarrhea. Genotype, female sex, mode of FU administration, and modulation by folinic acid were identified as independent risk factors by multivariable analysis. A previously unrecognized significant interaction was found between sex and DPYD, which resulted in an odds ratio for toxicity of 41.8 for male patients (95% CI, 9.2 to 190; P < .0001) but only 1.33 (95% CI, 0.34 to 5.2) in female patients. Homozygosity for the TYMS enhancer region double repeat allele increased risk for toxicity 1.6-fold (95% CI, 1.08 to 2.22; P = .02). CONCLUSION: DPYD, TYMS, and MTHFR play a limited role for FU related toxicity but a pronounced DPYD gene/sex-interaction increases prediction rate for male patients. Toxicity risk assessment should include sex, mode of administration, and folinic acid as additional predictive factors.
Tsai PC, etal., Toxicon. 2016 Mar 1;111:108-20. doi: 10.1016/j.toxicon.2016.01.051. Epub 2016 Jan 14.
Breast cancer is a highly malignant carcinoma and most deaths of breast cancer are caused by metastasis. The epithelial-to-mesenchymal transition (EMT) has emerged as a pivotal event in the development of the invasive and metastatic potentials of cancer progression. Epidermal growth factor (EGF) and
its receptor, EGFR, play roles in cancer metastasis. CTX III, a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity; however, the effect of CTX III on the EMT of cancer cells remains elusive. CTX III treatment resulted in morphological changes from elongated and spindle shape to rounded and epithelial-like shape, induced upregulation of E-cadherin and concurrent downregulation of N-cadherin and Vimentin protein levels, corresponding to observed decreases in cell migration and invasion. CTX III treatment also decreased the expression of Snail and Twist in EGF-induced MDA-MB-231 cells. Concurrently, CTX III efficiently inhibited the EGFR phosphorylation and downstream activation of phosphatidylinositol 3-kinase (PI3K)/Akt and ERK1/2. The EGFR specific inhibitor AG1478 significantly suppressed ERK1/2 and Akt phosphorylation, cell migration and invasion, as well as the expressional changes associated with EMT markers in EGF-induced MDA-MB-231 cells. CTX III inhibitory effect on EGF-evoked invasion of MDA-MB-231 cells is mediated through suppressing EGF/EGFR activation and EMT process.
Won JS and Suh HW, Brain Res Mol Brain Res. 2001 Mar 31;88(1-2):83-93.
In rat astrocytes, incubation with cholera toxin (CTX; 0.1 microg/ml) for 8 h increased proenkephalin (proENK) mRNA level (10-fold), which was further increased by dexamethasone (DEX; 1 microM) (2.2-fold as much as CTX alone). Although pertussis tox
t-weight:700;'>toxin (PTX; 0.1 microg/ml) did not affect the basal proENK mRNA level, DEX significantly increased proENK mRNA level in PTX-treated cells (6-fold). The inhibition of protein synthesis by cycloheximide (CHX; 15 microM) also increased proENK mRNA level in PTX-treated cells (5.2-fold), but not in CTX-stimulated cells. The treatment with CTX, but not PTX, increased c-Fos and Fra-2 protein levels as well as AP-1, CRE, or ENKCRE-2 DNA binding activity, but neither toxin affected Fra-1, c-Jun, JunB, and JunD protein levels. CHX significantly attenuated CTX-induced increase of c-Fos or Fra-2 protein level and AP-1, CRE, or ENKCRE-2 DNA binding activity, although CHX alone did not affect the basal AP-1, CRE, and ENKCRE-2 DNA binding activities. Phosphorylated CREB level was increased by both CTX and PTX, although the magnitude of phosphorylation of CREB by PTX was much less than that by CTX. In addition, CHX further or persistently increased PTX- or CTX-induced phosphorylated CREB levels in parallel with increases in proENK mRNA. However, DEX did not alter the basal or stimulated phosphorylated-CREB level. These results suggest that the elevation of phosphorylation of CREB rather than AP-1 level may be involved in CTX-induced and CHX-dependent-PTX-induced increase of proENK mRNA level. In addition, AP-1 expression or CREB phosphorylation appears not to be involved the potentiative action of DEX on proENK mRNA expression in CTX- and PTX-treated astrocytes.
Duranton F, etal., J Am Soc Nephrol. 2012 Jul;23(7):1258-70. doi: 10.1681/ASN.2011121175. Epub 2012 May 24.
An updated review of the existing knowledge regarding uremic toxins facilitates the design of experimental studies. We performed a literature search and found 621 articles about uremic toxicity published after a 2003 review
of this topic. Eighty-seven records provided serum or blood measurements of one or more solutes in patients with CKD. These records described 32 previously known uremic toxins and 56 newly reported solutes. The articles most frequently reported concentrations of β2-microglobulin, indoxyl sulfate, homocysteine, uric acid, and parathyroid hormone. We found most solutes (59%) in only one report. Compared with previous results, more recent articles reported higher uremic concentrations of many solutes, including carboxymethyllysine, cystatin C, and parathyroid hormone. However, five solutes had uremic concentrations less than 10% of the originally reported values. Furthermore, the uremic concentrations of four solutes did not exceed their respective normal concentrations, although they had been previously described as uremic retention solutes. In summary, this review extends the classification of uremic retention solutes and their normal and uremic concentrations, and it should aid the design of experiments to study the biologic effects of these solutes in CKD.
Fish consumption is the most important source of human exposure to methylmercury (MeHg). Since fish is also a rich source of n-3 polyunsaturated fatty acids, this study was conducted to examine the effects of dietary fats on MeHg-induced acute toxicity in rats.
Weanling male Sprague Dawley rats were administered semi-purified casein-based isocaloric diet containing soy oil, seal oil, docosahexaenoic acid (DHA), fish oil, or lard for 28 days. Rats were then gavaged with 0, 1, or 3mgMeHg/kg body weight (BW) per day and fed the same diet for 14 consecutive days. On 43rd day of the experiment, rats were sacrificed and blood samples were collected and analyzed for hematology. Liver and spleen were removed, fixed, and examined for pathological changes. Blood, feces, liver, and brain were analyzed for total mercury and/or MeHg contents. Serum samples were analyzed for clinical markers of hepatic injury and immunoglobulin. Total mercury contents in all tissues measured increased with dose. Mercury excretion in feces increased with dose and duration of MeHg treatment. Both diets and MeHg showed significant effects and interacted significantly on many of the toxicological endpoints measured. Many of the effects of MeHg were diet-dependent. For example, in the rats fed the lard diet, 3mg MeHg/kg BW significantly increased relative liver and spleen weight as compared with vehicle control; whereas in rats fed the fish oil, soy oil, seal oil, or DHA, this effect of MeHg was less obvious or absent, suggesting a protective effect of these diets. MeHg at 3mg/kg BW significantly decreased serum albumin level in all except DHA dietary groups, implying a protection by the DHA diet on this parameter. Only in the lard dietary group, did 3mg MeHg/kg BW significantly increase serum bilirubin level, indicating an enhancing effect of this diet on MeHg toxicity. MeHg suppressed the adaptive immune system and stimulated the innate immune system in rats in a diet-dependent fashion. The seal oil diet provided more resistance, while the fish oil diet rendered greater sensitivity to these effects of MeHg on the immune system. These results imply significant modulating effects of dietary fats on MeHg toxicity which may translate into more severe or protective clinical outcomes. Therefore, dietary fats are important factors to be considered in the risk assessment of MeHg exposure.
Perfluorododecanoic acid (PFDoA), a synthetic perfluorinated chemical, has been detected in environmental matrices, wildlife, and human serum. Its potential health risk for humans and animals has raised public concern. However, the effects of chronic PFDoA exposure on male reproduction remain unknow
n. The aim of this study was to determine the effects of chronic PFDoA exposure (110 days) on testosterone biosynthesis and the expression of genes related to steroidogenesis in male rats. In this study, we examined the serum levels of sex hormones, growth hormone, and insulin in male rats. Testicular morphology and the expression of key genes and proteins in testosterone biosynthesis were also analyzed. Markedly decreased serum testosterone levels were recorded after 110 days of PFDoA exposure at 0.2 and 0.5mg PFDoA/kg/d, and cast-off cells were observed in some seminiferous tubules in testes exposed to 0.5mg PFDoA/kg/d. PFDoA exposure resulted in significantly decreased protein levels of steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc), along with significantly reduced mRNA levels of insulin-like growth factor I (IGF-I), insulin-like growth factor I receptor (IGF-IR), and interleukin 1alpha (IL-1alpha) in rat testes at 0.2 and 0.5mg/kg/d. In addition, PFDoA exposure also affected the expression of some genes in the hypothalamo-neurohypophyseal system. However, PFDoA did not affect the expression of 5alpha-reductase, 3alpha-hydroxysteroid dehydrogenase, or aromatase in testis and liver. These findings demonstrate that chronic PFDoA exposure disrupts testicular steroidogenesis and expression of related genes in male rats. Multiple factors may be involved in the inhibition of testosterone by PFDoA.
Formaldehyde is a ubiquitous toxic organic compound recently classified as a carcinogen by the International Agency for Research on Cancer and one of the major factors causing sick building syndrome. In this study, we have investigated the effects of formaldehyd
e on mRNA expression in rat lung tissues by applying genomics. Rats were exposed to ambient air and two different concentrations of formaldehyde (0, 5, 10 ppm) for 2 weeks at 6 h/day and 5 days/week in an inhalation chamber. Malondialdehyde (MDA) assay and carbonyl spectrometric assay were conducted to determine lipid peroxidation and protein oxidation levels and Comet assays were used for genotoxicity evaluation. Level of MDA, carbonyl insertion and DNA damage in the lungs of rats exposed to FA were found to be dose dependently increased. Gene expression was evaluated by using a bio-array hybridization analysis. A total of 21 (2 up- and 19 down-regulated) genes were identified as biomarkers for formaldehyde effects. Several differentiated gene groups were found. Genes involved in apoptosis, immunity, metabolism, signal transduction, transportation, coagulation and oncogenesis were found to be up- and down-regulated. Among these genes, the mRNA expressions of cytochrome P450, hydroxymethylbilane synthase, glutathione reductase, carbonic anhydrase 2, natriuretic peptide receptor 3, lysosomal associated protein transmembrane 5, regulator of G-protein signaling 3, olfactomedin related ER localized protein, and poly (ADP-ribose) polymerase-1 were confirmed by quantitative RT-PCR analysis. In summary, the MDA lipid peroxidation and the carbonyl protein oxidation assays showed that cytotoxic effects increased with increasing formaldehyde levels. Genomic analysis showed that 21 genes were up- or down-regulated. Of these genes, nine were confirmed by quantitative RT-PCR and could be potential biomarkers for human diseases associated with formaldehyde exposure.
The tumor-promoting effects of oxfendazole (OX), a benzimidazole anthelmintic, were investigated using a medium-term rat hepatocarcinogenesis model. Six-week-old male F344 rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) and were given a powdered diet containing 0 or 500 ppm
OX for 6 weeks from 2 weeks after DEN treatment. All animals were subjected to two-thirds partial hepatectomy 1 week after OX treatment. The numbers and areas of glutathione S-transferase placental form (GST-P)-positive foci were significantly increased in the livers of rats treated with OX, with concomitantly increased cell proliferation, compared with those in the livers of the DEN alone group. Quantitative real-time RT-PCR analysis revealed that OX induced not only mRNA expression of phase I enzymes Cyp1a1, Cyp1a2, but also Nrf2-regulated phase II enzymes such as Gpx2, Nqo1, Yc2, Akr7a3 and Gstm1, presumably due to an adaptive response against OX-induced oxidative stress. Reactive oxygen species production increased in microsomes isolated from the livers of OX-treated rats. Furthermore, OX enhanced oxidative DNA damage (as assessed by 8-hydroxydeoxyguanosine; 8-OHdG) and lipid peroxidation (as assessed by thiobarbituric acid-reactive substances; TBARS). These results suggest that administration of OX at a high dose and for a long term enhances oxidative stress responses, which may contribute to its tumor-promoting potential in rats.
Dibromoacetic acid (DBAA), a by-product formed during disinfection of drinking water, alters spermatogenesis in rats through defective spermiation. The mechanism underlying this toxicity is not fully understood. In this study, gene expression data generated with
microarrays from testes were used to generate a mechanistic understanding of DBAA-induced testicular toxicity. Testes were collected from male Sprague-Dawley rats dosed orally for 1 and 4 days with DBAA at 250 mg/kg/day. At both time points, DBAA administration induced delayed spermiation in Stage X tubules and regulated the expression of a small number of genes, including a mild but consistent downregulation of cytochrome P450c17alpha (CYP17) mRNA, an enzyme expressed by Leydig cells and essential for the production of testicular androgens. Downregulation of CYP17 was confirmed at the protein level and its biological significance was substantiated by demonstrating reduced testicular testosterone levels in DBAA-dosed rats. Furthermore, testosterone production by human chorionic gonadotrophin (hCG)-stimulated rat primary Leydig cells was reduced following treatment with 100 muM DBAA. Collectively, these results indicate that DBAA can directly target rat Leydig cells and downregulate testicular CYP17 expression with a resulting decreased testicular testosterone production. This disruption of testicular steroidogenesis is likely to contribute to the mechanism of failed spermiation observed in rats following exposure to DBAA.
Angiotensin II (Ang II) receptor blocker (ARB) suppresses the progression of kidney disease. However, there is limited information regarding the nephroprotective effect of ARB in daunorubicin (DNR)-induced nephrotoxicity in rats. We examined the alteration of th
e renal Ang II and endothelin-1 (ET-1) receptor expression and the action of telmisartan, an ARB, on DNR-induced nephrotoxicity. Sprague-Dawley rats were treated with a cumulative dose of 9mg/kg DNR (i.v.). Telmisartan was administered orally every day for 6 weeks. DNR rats showed nephrotoxicity as evidenced by worsening renal function, which was evaluated by measuring protein in urine, levels of urea and creatinine in serum, lipid profiles, malondialdehyde level, and the glutathione peroxidase activity in kidney tissue. These changes were reversed by treatment with telmisartan, which resulted in significant improvement in renal function. Furthermore, telmisartan increased nephrin protein expression, and down-regulated renal expression of Ang II and its receptor Ang II type I. Renal protein expressions of ET-1 and its receptor ET-receptor type A were increased in DNR rats, and treatment with telmisartan attenuated these increased expressions. Telmisartan mediated a further increase in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma). In addition, the expressions of cyclooxygenase-2 and cellular adhesion molecules were increased in DNR rats, which were attenuated by telmisartan. In conclusion, telmisartan has a protective effect on DNR-induced nephrotoxicity through Ang II and ET-1, with the alteration of their receptor expressions, which is associated with its anti-inflammatory and anti-oxidant effects at least in part through PPAR-gamma agonistic actions.
The glutathione S-transferases (GST) play important roles in the detoxification of microcystins (MCs). For better understanding of the responses of GST isforms to MCs exposure, informations about the effects of MCs on GSTs are necessary. In this experiment, we c
loned the full length cDNA of 14 GST isoforms (GST alpha, kappa, mu, omega, pi, theta, zeta, and microsomal GST) from Wistar rat. The mRNA abundance of each rat GST isoform in the liver, kidney, and testis was analyzed by real time quantitative PCR. Multiple GST isoforms were constitutively expressed in all examined organs, but some isoforms were expressed at higher level in one organ than in others. The relative changes of the mRNA abundance in the liver, kidney, and testis of Wiatar rat i.v. injected with crude MCs extract at dose of 1LD(50) were also analyzed. Generally, the expression of most GSTs in the liver and testis was suppressed while that in kidney was induced after being injected with MCs. It is suggested that the transcription of GST isoforms varied in different ways within an organ and between organs of Wistar rat exposed to MCs. (c) 2009 Wiley Periodicals, Inc. Environ Toxicol, 2009.
Wy-14,643 (WY), a peroxisome proliferator-activated receptor-alpha agonist, and piperonyl butoxide (PBO), a pesticide synergist, induce oxidative stress and promote hepatocarcinogenesis in the liver of rodents. These chemicals belong to a class of non-genotox
style='font-weight:700;'>toxic carcinogens, but DNA damage secondary to the oxidative stress resulting from reactive oxygen species generation is suspected in rodents given these chemicals. To examine whether WY or PBO have DNA-damaging potential in livers of rats subjected to repeated oral administration for 14 days, the in vivo liver comet assay was performed in partially hepatectomized rats, and the expression of some DNA-repair genes was examined. Then, to examine whether they have genotoxic potential, the in vivo liver initiation assay was performed in rats. In the comet assay, positive results were obtained at 3 h after the last treatment of WY, and some DNA-repair genes such as Apex1, Mlh1, Xrcc5, and Gadd45 were up-regulated in the liver. In the liver initiation assay, negative results were obtained for both WY and PBO. The results of the present study suggest that WY, but not PBO, causes some DNA damage in livers of rats, but such DNA damage was repaired by the increased activity of some DNA repair genes and may not lead to a DNA mutation.
The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains larg
ely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromatin immunoprecipitation assays. In line with this, over-expression of Tox3 increased Nestin promoter activity, which was cooperatively enhanced by treatment with the stem cell self-renewal promoting Notch ligand Jagged and repressed by pharmacological inhibition of Notch signaling. Knockdown of Tox3 in the subventricular zone of E12.5 mouse embryos by in utero electroporation of Tox3 shRNA revealed a reduced Nestin expression and decreased proliferation at E14 and a reduced migration to the cortical plate in E16 embryos in electroporated cells. Together, these results argue for a role of Tox3 in the development of the nervous system.
Oxidative stress has increasingly been demonstrated as playing a key role in the biological response induced by nanoparticles (NPs). The acellular cytochrome c oxidation assay has been proposed to determine the intrinsic oxidant-generating capacity of NPs. Yet, there is a need to improve this metho
d to allow a rapid screening to classify NPs in terms of toxicity. We adapted the cytochrome c assay to take into account NP interference, to improve its sensitivity and to develop a high-throughput method. The intrinsic oxidative ability of a panel of NPs (carbon black, Mn2O3, Cu, Ag, BaSO4, CeO2, TiO2 and ZnO) was measured with this enhanced test and compared to other acellular redox assays. To assess whether their oxidative potential correlates with cellular responses, we studied the effect of insoluble NPs on the human bronchial epithelial cell line NCI-H292 by measuring the cytotoxicity (WST-1 assay), pro-inflammatory response (IL-8 cytokine production and expression) and antioxidant defense induction (SOD2 and HO-1 expression). The adapted cytochrome c assay had a greatly increased sensitivity allowing the ranking of NPs in terms of their oxidative potential by using the developed high-throughput technique. Besides, a high oxidative potential revealed to be predictive for toxic effects as Mn2O3 NPs induced a strong oxidation of cytochrome c and a dose-dependent cytotoxicity, pro-inflammatory response and antioxidant enzyme expression. BaSO4, which presented no intrinsic oxidative potential, had no cellular effects. Nevertheless, CeO2 and TiO2 NPs demonstrated no acellular oxidant-generating capacity but induced moderate cellular responses. In conclusion, the novel cytochrome c oxidation assay could be used for high-throughput screening of the intrinsic oxidative potential of NPs. However, acellular redox assays may not be sufficient to discriminate among low-toxicity NPs, and additional tests are thus needed.
Male Sprague-Dawley rats were treated for 3 weeks with (1) regular tap drinking water plus subcutaneous (s.c.) saline (0.5 ml/kg) injections three times/week, (2) pyridostigmine bromide (PB) in drinking water (80 mg/L) plus s.c. saline injections three times/week, (3) regular tap drinking water plus
s.c. sarin (0.5 x LD(50)) injections three times/week, or (4) PB in drinking water plus s.c. sarin injections three times/week. Repeated doses of sarin, in the presence or absence of PB, were devoid of acute toxicity during the three-week treatment period. Two, 4, and 16 weeks post-treatment, animals were given an intravenous pulse injection of choline labeled with 4 deuterium atoms (D4Ch) followed, after 1 min, by microwave fixation of the brain in vivo. Tissue levels of endogenous acetylcholine (D0ACh), endogenous choline (D0Ch), D4Ch, and ACh synthesized from D4Ch (D4ACh) were measured by gas-chromatography mass-spectrometry in hippocampus, infundibulum, mesencephalon, neocortex, piriform cortex, and striatum. Ch uptake from blood and ACh turnover were estimated from D4Ch and D4ACh concentrations in brain tissue, respectively. Statistically significant differences among brain regions were found for D0Ch, D4Ch, D0ACh and D4ACh at 2, 4 and 16 weeks post-treatment. However, differences in the values of these parameters between control and drug treatments were found only for D0ACh and D0Ch at 2 and 4 weeks, but not at 16 weeks post-treatment. In conclusion, the results from these experiments do not support a delayed or persistent alteration in cholinergic function after exposure to low doses of PB and/or sarin.
Matrix metalloproteinases (MMPs) play an important role in alcoholic liver disease. In this study, we evaluated the relationship between pro MMP-9 (pMMP-9) and oxidative stress in plasma of rat exposed to chronic alcohol consumption. Twenty four rats were divided into four groups. Rats in the contro
l group (n = 6) were subjected to physiologic saline by intragastric (i.g.) route. Group Ethanol (n = 6) was given 1 ml of 80% ethanol (v/v) in distilled water through i.g. route. Group Vitamin E (Vit E), (n = 6) was given vitamin E (100 mg kg(-1) day(-1)) by intra peritonealy. Group Vitamin E + Ethanol (n = 6) was given vitamin E 2 h before the administration of ethanol. At the end of 4 weeks, blood samples were taken and plasma malondialdehyde (MDA), protein carbonyls (PCs), aspartate aminotransferase (AST), tumor necrosis factor-alpha (TNF-alpha) and pMMP-9 levels were measured. Chronic ethanol administration increased the AST, MDA, PCs, TNF-alpha and pMMP-9 levels when compared to those in control group (p < 0.05, p < 0.01, p < 0.01, p < 0.05, p < 0.05, respectively). Vitamin E treatment was found to decrease lipid peroxidation and protein oxidation (p < 0.01, p < 0.01, respectively). Also TNF-alpha and pMMP-9 levels returned to normal by vitamin E treatment. Within all subjects, there was positive correlation between pMMP-9 levels and MDA, PCs levels (p = 0.045, r = 0.454; p = 0.004, r = 0.574, respectively). We conclude that since antioxidant supplementation decreases the alcohol-induced pMMP-9 levels, oxidative stress could be one of the mediators of the generation of MMP-9.
OBJECTIVES: Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra S. Moore of the Menispermaceae, possesses anti-inflammatory activity. We examined the effect of tetrandrine on interleukin-1beta (IL-1beta)-provoked inflammatory response in mesangial cells. MATERIALS A
ND METHODS: Primary rat mesangial cells (PRMCs) were treated with IL-1beta to induce inflammation to resemble glomerulonephritis. Cell viability, morphology and NO production were evaluated. Western blotting was applied for expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS), extracellular signal-regulated kinase (ERK) and NF-kappaB-related molecules. Electrophoretic mobility shift assay was performed to examine the DNA-binding activity of NF-kappaB. RESULTS: TET, at concentrations up to 10mug/ml, had no significant effect on viability of PRMCs. At non-toxic concentrations, TET inhibited expression of phosphorylated ERK as well as phosphorylated IKK, enhanced degradation of IkappaBalpha and reduced the DNA-binding activity of NF-kappaB in IL-1beta-primed PRMCs, suggesting an inhibitory effect on ERK/NF-kappaB signaling. TET attenuated the IL-1beta-provoked expression of iNOS and release of NO. Moreover, both the protein expression and gelatinase activity of MMP-9, but not MMP-2, were markedly suppressed by TET. SIGNIFICANCE: TET down-regulated ERK/NF-kappaB signaling and inhibited the expression of inflammatory mediators NO and MMP-9. Since these mediators appear to activate mesangial cells, TET may play an important role in prevention of glomerulonephritis.
The somatostatin analog octreotide was administered to male and female Sprague-Dawley rats by subcutaneous injection for thirteen weeks at 0 (saline control), 0 (placebo control [mannitol and lactic acid; pH 4.2]), 1.25 mg/kg/day and 2.5 mg/kg/day to explore its potential effect on cutaneous vascula
r morphology. The placebo caused an increase in the incidence of intimal hyperplasia compared to saline controls in female rats; octreotide increased the incidence and severity of intimal hyperplasia in males and females. Intimal hyperplasia consisted of increased numbers of cells located between the endothelial cell layer and the internal elastic lamina. Severity was based on the degree of compromise of the vascular lumen (regardless of vessel size and number), with severely affected vessels having no visible lumen. Intimal hyperplasia in rats treated with octreotide was considered to be an unexpected and adverse finding, given that this compound and other somatostatin analogs have been investigated as reducers of intimal proliferation or restenosis after angioplasty in humans and that no such lesion has been reported in the literature for this class of compound to date. The induction of intimal hyperplasia by the placebo is also a notable finding; this may be because of the low pH of the formulation.
A variety of pharmaceutical compounds causes hemolytic anemia as a significant adverse effect and this toxicity restricts the clinical utility of these drugs. In this study, we applied microarray technology to investigate hepatic gene expression changes associat
ed with drug-induced hemolytic anemia, and to identify potential biomarker genes for this hematotoxicity. We treated female Sprague-Dawley rats with two hemolytic anemia-inducing compounds: phenylhydrazine and phenacetin. Hepatic gene expression profiles were obtained using a whole genome oligonucleotide microarray with pooled RNA samples from individual rats within each dose group, and analyzed in comparison with hepatic histopathology, hematology and blood chemistry data. We identified a small subset of genes that were commonly deregulated in all of the severe hemolytic conditions, some of which were considered to be involved in hepatic events characteristic of hemolytic anemia, such as hemoglobin biosynthesis, heme metabolism and phagocytosis. Among them we selected six up-regulated genes as putative biomarkers, and their expression changes from microarray measurements were confirmed by quantitative real-time PCR using RNAs from individual animals. They were Alas2, beta-glo, Eraf, Hmox1, Lgals3, and Rhced. Expression patterns of all of these genes showed high negative and positive correlation against erythrocyte counts and total bilirubin levels in circulation, respectively, suggesting that these genes may be the potential biomarkers for hemolytic anemia. These findings indicate that drug-induced hemolytic anemia may be detected based on hepatic changes in the expression of a subset of genes that are mechanistically linked to the hematotoxicity.
The study aim was to investigate the relationship of chronic ethanol-induced inflammation leading to vascular endothelial injury and elevation of blood pressure (BP) in a rat model. Male Fisher rats were divided into two groups of six animals each and treated as follows: (1) Control (5% sucrose, ora
lly) daily for 12 weeks and (2) 20% ethanol (4 g kg(-1), orally) daily for 12 weeks. The mean arterial blood pressure was recorded every week. The animals were anesthetized with pentobarbital after 12 weeks; thoracic aorta were isolated and analyzed for aortic reactivity response, inflammatory mediators, oxidant/antioxidant enzyme protein expression and endothelial nitric oxide-generating system. The results show that the mean BP was significantly elevated 12 weeks after ethanol ingestion. The increased BP was related to increased aortic inflammation (tumor necrosis factor [TNF]-alpha; nitric oxide synthase [iNOS], COX-2 and MCP-1 protein expression) and elevated angiotensin II levels in alcohol-treated group compared to control. Aortic Nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity, membrane and cytosolic subunits p22(pho) (x) and p47(pho) (x) expression and Mn-SOD activity and protein expression significantly increased, whereas nitric oxide (NO), endothelial NO synthase (eNOS), vascular endothelial growth factor (VEGF)-A and CuZn-SOD activity and protein expression significantly decreased in alcohol-treated group compared to control. The acetylcholine-mediated vasorelaxation response was depressed in the aorta of ethanol-treated rats compared to control. In conclusion, chronic ethanol-induced elevation in BP is related to increased aortic inflammation, elevated angiotensin II levels, induction of NADPH oxidase causing endothelial injury, depletion of CuZn-SOD, down-regulation of endothelial NO generating system and impaired vascular relaxation in rats.
Hepatic transcriptome and proteome responses against glutathione depletion were investigated by Affymetrix GeneChip Microarray and 2-dimensional gel electrophoresis (2D-DIGE), followed by MALDI-TOF-MS analysis and utilizing a glutathione-depleted rat model treated with diethyl maleate (DEM). Hepatic
glutathione content decreased to 1.29 mumol/g liver (25.5% compared to control) after DEM treatment, and there were no apparent hepatotoxic signs estimated by blood chemistry examinations. A total of 247 and 213 annotated gene probe sets exhibited greater than twofold up- and down-regulation compared with controls, respectively. The up-regulated gene list contained a number of glutathione depletion-responsive genes reported previously, such as Trib3, Srxn1, Myc, Asns, Igfbp1, Txnrd1, or Hmox1, suggesting that these genes are robust mRNA biomarkers for evaluating hepatic glutathione depletion. In the 2D-DIGE analysis, proteins for a total of 361 spots were identified by MALDI-TOF-MS analysis. Of the identified proteins, 5 and 14 proteins showed up- and down-regulation, respectively. Some proteins exhibited differential expression in the protein level but not in the mRNA level, including L-FABP, MAWDBP, aldo-keto reductase family 1 member A1, catalase and ATP synthase subunit beta, suggesting that these proteins would be potential protein biomarkers for evaluating glutathione depletion. Moreover, up-regulation of FABP1 protein along with up-regulation of PPARalpha-regulated gene transcripts (i.e., Acot2 and Acot4) is indicative of PPARalpha activation, which may contribute to hepatocellular protection against glutathione depletion-induced oxidative stress. The up-regulation of L-FABP1 was detected by proteome data but not by transcriptome data, demonstrating the advantage of utilizing transcriptomics and proteomics combination to investigate glutathione depletion-induced molecular dynamics.
To clarify whether oxidative stress is involved in the development of hepatocellular preneoplastic foci induced by fenofibrate (FF), a peroxisome proliferator-activated receptor alpha agonist, male F344/N rats were fed a diet containing 6,000, 3,000, or 0 ppm of FF for 13 weeks after N-diethylnitros
amine initiation. Two-third partial hepatectomy was performed 1 week after the FF treatment. Histopathologically, the number of hepatocellular altered foci significantly increased in the FF-treated groups with a concomitant increase in the number of hepatocytes positive for anti-Ki-67 antibody, but the number and area of glutathione S-transferase placental form (GST-P)-positive foci decreased in these groups, as compared to those in the controls. Microarray analysis or quantitative real-time reverse transcription-polymerase chine reaction demonstrated the significant up-regulations of Aco and Cyp4a1 (genes related to lipid metabolism); Gpx2, Yc2, Cat, Cyp2b15, and Ugt1a6 (metabolic oxidative stress-related genes); Apex1, Mgmt, Xrcc5, Nbn, and Gadd45a (DNA repair-related genes); and Ccnd1 (cell cycle-related genes) in the FF-treated groups, and the significant down-regulations of Cyp1a2, Gsta2, Gstm2, and Gstm3 (phase I or II metabolism-related genes); Mlh1 and Top1 (DNA repair-related genes); and Cdkn1a, Cdkn1b, Chek2, and Gadd45b (cell cycle/apoptosis-related genes) in these rats. FF-treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver, but not superoxide dismutase in the liver. In addition, 8-OHdG level in liver DNA, lipofuscin deposition in hepatocytes, and in vitro reactive oxygen species production in microsomes significantly increased due to FF treatment. These results suggest that oxidative stress is involved in the development of FF-induced hepatocellular preneoplastic foci in rats.
Osteonectin gene expression in relation to metallothionein mRNA expression was investigated in various tissues from Cd-treated rats. After a single 50 micromol/kg subcutaneous injection of CdCl2, Cd predominantly accumulated in the liver and metallothionein gene expression significantly increased co
ncomitantly with Cd accumulation, but no alteration of osteonectin gene expression was observed. In the kidney and lung, both metallothionein and osteonectin mRNA increased significantly but the elevation of metallothionein mRNA levels (1 h after Cd administration) preceded that of osteonectin (3 h after administration). A significant elevation of osteonectin mRNA levels was also observed in the testis after 3 h, but that of metallothionein mRNA occurred after 6 h. Not only accumulation of Cd but also increments in both osteonectin and metallothionein mRNA were minimal in the brain, but a significant increase in gene expression was observed after 1 h for osteonectin and after 3 h for metallothionein. Since, except in the testis, metallothionein gene expression preceded osteonectin gene expression, the induced metallothionein might transpose Cd and thereby affect its levels immediately, thus reducing the levels of Cd available for accumulation in other tissues. Hence, the osteonectin-Cd interaction might be secondary to the metallothionein-Cd interaction. However, the fact that osteonectin mRNA was predominantly induced by Cd administration in the target tissues of Cd toxicity, such as the lung, kidney and testis, suggests the possible involvement of osteonectin in Cd intoxication/detoxication mechanisms.
To determine the threshold dose of piperonyl butoxide (PBO) that induces hepatocellular tumor-promoting effects, reactive oxygen species (ROS) generation, and drug-metabolizing enzymes that protect against ROS generation, partial hepatectomized rats were fed die
ts containing 0, 0.015, 0.03, 0.06, 0.125, 0.25, or 0.5% PBO after an i.p. injection of N-diethylnitrosamine (DEN) to initiate hepatocarcinogenesis. Histopathologically, Glutathione S-transferase placental form (GST-P)-positive foci were significantly increased in a dose-dependent manner in rats given 0.25% PBO or higher. The formation of microsomal ROS in the liver was significantly increased in 0.25 and 0.5% PBO. Real-time RT-PCR showed that the expression of the CYP1A1, UDPGTr-2, and Mrp3 genes was significantly upregulated in rats given 0.03% PBO or higher. These results suggest that 0.25% is the threshold dose of PBO that induces ROS-mediated hepatocarcinogenesis in rats, although the CYP1A1 gene that is related to ROS generation and the UDPGTr-2 and Mrp3 genes that are involved in protection against ROS were induced in the livers of rats even at a PBO dose of 0.03%.
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was introduced in the 1950s as a broad spectrum herbicide, and remains one of the most widely used herbicides in the United States. Several studies have suggested that atrazine modifies steroidogenesis and may disrupt reproductive function
and development in a variety of species. A primary concern has been whether atrazine increases the synthesis of estrogens, perhaps by enhancing aromatase gene expression and activity. In this study, the effect of atrazine was compared in cultures using primary granulosa cells and H295R adrenal cortical carcinoma cells. Atrazine (10muM), but not its metabolite, 2-chloro-4, 6-diamino-1,2,5-triazine (DACT), significantly increased estradiol production and aromatase activity in granulosa cell cultures only when measured during a 1-hour interval following 24hours of exposure. In H295R cells, atrazine (10muM) increased estradiol and estrone production. Importantly, atrazine (10muM) increased progesterone production from both cell types suggesting a broader effect of atrazine on steroidogenesis.
Asthma is characterized by pulmonary cellular infiltration, vascular exudation and airway hyperresponsiveness. Several drugs that modify central nervous system (CNS) activity can modulate the course of asthma. Amphetamine (AMPH) is a highly abused drug that presents potent stimulating effects on the
CNS and has been shown to induce behavioral, biochemical and immunological effects. The purpose of this study was to investigate the effects of AMPH on pulmonary cellular influx, vascular permeability and airway reactivity. AMPH effects on adhesion molecule expression, IL-10 and IL-4 release and mast cell degranulation were also studied. Male Wistar rats were sensitized with ovalbumin (OVA) plus alum via subcutaneous injection. One week later, the rats received another injection of OVA-alum (booster). Two weeks after this booster, the rats were subjected to AMPH treatment 12hours prior to the OVA airway challenge. In rats treated with AMPH, the OVA challenge reduced cell recruitment into the lung, the vascular permeability and the cellular expression of ICAM-1 and Mac-1. Additionally, elevated levels of IL-10 and IL-4 were found in samples of lung explants from allergic rats. AMPH treatment, in comparison, increased IL-10 levels but reduced those of IL-4 in the lung explants. Moreover, the tracheal responsiveness to methacholine (MCh), as well as to an in vitro OVA challenge, was reduced by AMPH treatment, and levels of PCA titers were not modified by the drug. Our findings suggest that single AMPH treatment down-regulates several parameters of lung inflammation, such as cellular migration, vascular permeability and tracheal responsiveness. These results also indicate that AMPH actions on allergic lung inflammation include endothelium-leukocyte interaction mechanisms, cytokine release and mast cell degranulation.
The interaction of extracellular matrix with cells plays a key role in the regulation of cell adhesion, migration, proliferation as well as differentiation. Transformed cells express a different profile of adhesion molecules, which may mediate metastasis under specific matrix microenvironment. We he
re found that ROS 17/2.8 osteosarcoma cells and osteoblasts have different expression of alpha5 integrin, executing different fibronectin fibrillogenesis. As compared with ROS 17/2.8 cells, osteoblasts have higher expression of fibronectin, collagen, alpha5, beta1, alpha2 integrins and focal adhesion kinase as examined by immunostaining and flow cytometry. Crovidisin, a PIII snake venom metalloproteinase (SVMP) purified from venom of Crotalus viridis, exhibits collagen-binding activity and matrix metalloproteinase activity. Crovidisin selectively caused the detachment of ROS 17/2.8 osteosarcoma cells but not of primary cultured osteoblasts. On the other hand, triflavin, an RGD-dependent disintegrin purified from venom of Trimeresurus flavoviridis, did not cause the detachment of both osteoblasts and ROS 17/2.8 cells. Although ROS 17/2.8 cells detached from substratum after crovidisin treatment for 24 h, the loss of mitochondrial membrane potential was not observed unless a prolonged treatment for longer than 36 h. These results suggest that cultured primary rat osteoblasts and ROS 17/2.8 osteosarcoma cells possess different expression of integrins and matrix environment, and ROS 17/2.8 is much more susceptible to be detached by crovidisin. The matrix degradation by crovidisin may be responsible for the preferential detachment of ROS 17/2.8 osteosarcoma cells.
Cycloheximide (CHX)-induced liver injury in rats has been characterized by hepatocellular apoptosis and necrosis. We previously reported that Kupffer cell inactivation causes a reduction of IL-10 production, resulting in the exacerbation of CHX-induced liver injury. In this study, we directly evalua
te the role of IL-10 in liver injury by a pretreatment with anti-IL-10 neutralizing antibody (IL-10Ab). Rats were given goat IgG or IL-10Ab before being treated with CHX (CHX group or IL-10Ab/CHX group). In the CHX group, the CHX treatment markedly induced hepatic mRNA and serum protein levels of IL-10. The up-regulation of IL-10 was significantly suppressed in the IL-10Ab/CHX group. Blocking IL-10 in the IL-10Ab/CHX group led to greater increases in hepatic mRNA and serum levels of proinflammatory cytokines, such as TNF-alpha and IL-6. The IL-10Ab/CHX group developed more severe hepatocellular apoptosis, neutrophil transmigration, and necrotic change of hepatocytes compared with the CHX group. The caspase activities and mRNA levels of Cc120, LOX-1, and E-selectin in the livers were significantly higher in the IL-10Ab/CHX group than the CHX group. These results demonstrate that IL-10 plays an important role in counteracting the effect of proinflammatory cytokines, such as a TNF signaling cascade, and in attenuating the CHX-induced liver injury.
Prenatal exposure to LPS(lipopolysaccharide) results in renal damage in offspring rats, but the mechanism is unknown. The present study was to explore the role of angiotensin II and inflammation in the development of renal damage induced by prenatal exposure to LPS. The pregnant rats were randomly
divided into two groups, i.e., control group, LPS group. The rats in the two groups were administered intraperitoneally with vehicle or 0.79mg/kg LPS on 8th, 10th and 12th day during gestation. The mRNA expression of angiotensinogen, renin, AT(1)-R, AT(2)-R, TNF-alpha and IL-6 in embryos were assessed. Renal Ang II-positive cells, monocytes/macrophages, lymphocytes, collagen I and TUNEL-positive cells were identified by immunohistochemical staining in newborn and 7-week-old offspring rats. The number of glomeruli and creatinine clearance rate were determined in offspring at 7 weeks of age. The results showed that prenatal LPS decreased AT(2)-R mRNA expression but increased TNF-alpha and IL-6 mRNA expression in embryos. Prenatal LPS decreased renal angiotensin II-positive cells in newborn offspring rats, while these increased in 7-week-old offspring rats. Prenatal LPS decreased glomerular number and creatinine clearance rate but increased renal infiltrating monocytes/macrophages and lymphocytes at 7 weeks of age. Prenatal LPS also increased TUNEL-positive cells and collagen I expressions in newborn rats and 7-week-old offspring rats. CONCLUSION: Alteration of embryonic AT(2)-R and inflammatory cytokines gene expression induced by prenatal exposure to lipopolysaccharide affects renal development.
In the present study, we examined the expression of CYP2S1 mRNA and protein in tissues from male and female rats and investigated aryl hydrocarbon receptor (AhR)-mediated regulation. CYP2S1 mRNA was detected by RT-PCR in all rat tissues examined, except for the adrenal gland, and no sex-dependent di
fferences were observed. To study the regulation of CYP2S1 mRNA expression by AhR agonists, rats were treated with 3-methylcholanthrene (3-MC; 25mg/kg/dayx3 days) or with a single intraperitoneal injection of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at various dosages (0, 1, 5, 10, 50, 100mug/kg). CYP2S1 mRNA levels were increased in lung, stomach, jejunum and ileum following treatment with 3-MC and in lung, liver and kidney tissues following treatment with TCDD. Induction of CYP2S1 mRNA was greater with TCDD than 3-MC treatment and was more pronounced in lung than other tissues. Antiserum raised against a peptide corresponding to the C-terminus of CYP2S1 was used to measure relative CYP2S1 protein expression by immunoblot analysis. An immunoreactive CYP2S1 protein band with an approximate molecular weight of 50kDa was detected in microsomes of rat lung, stomach and kidney, but not other tissues. Unlike CYP2S1 mRNA, CYP2S1 protein levels were not increased after treatment with 3-MC or the highest dosage of TCDD, indicating that CYP2S1 protein expression was less sensitive than mRNA expression to AhR-mediated regulation. Our study is the first to characterize CYP2S1 mRNA and protein expression in rats, and from the results obtained, we conclude that AhR is involved in the transcriptional regulation of CYP2S1 in rats.
The aim of the current study was to elucidate the effect of Kupffer cells inhibition on hepatic injury induced by chronic cholestasis. Sprague-Dawley rats underwent bile duct ligation (BDL) or sham operation and were treated with either saline solution or gadolinium chloride (GdCl(3), a specific Kup
ffer cell inhibitor, 20 mg/kg i.p. daily). Serum and liver samples were collected after 28 days. Direct and total bilirubin concentrations and serum enzyme activities of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transpeptidase (GGT) increased following BDL (p < 0.01). On the contrary to bilirubin concentrations and AST activity, GdCl(3) partially prevented the elevation in ALP, ALT and GGT enzyme activities (p < 0.05). GdCl(3) alleviated lipid peroxidation (reflected by malondialdehyde [MDA] concentration) and increased the activities of antioxidant enzymes (i.e. catalase and glutathione peroxidase) in liver samples after BDL (p < 0.05). Fibrosis, ductular proliferation and portal inflammation were also scored in liver samples. Among morphological changes appeared following BDL (i.e. marked fibrosis, portal inflammation and ductular proliferation); only ductular proliferation was not alleviated by GdCl(3). Therefore, Kupffer cells inhibition has beneficial effects against the development of hepatic injury induced by chronic cholestasis.
The present work aims to evaluate the protective and ameliorative effects of two plant-derived proteins obtained from the seeds of Cajanus cajan and Caesalpinia gilliesii (Leguminosae) against the toxic effects of acetaminophen in kidney after chronic dose thro
ugh determination of certain biochemical markers including total urea, creatinine, and kidney marker enzyme, that is, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In addition histopathological examination of intoxicated and treated kidney with both proteins was performed. The present results show a significant increase in serum total urea and creatinine, while significant decrease in GAPDH. Improvement in all biochemical parameters studied was demonstrated, which was documented by the amelioration signs in rats kidney architecture. Thus, both plant protein extracts can counteract the nephrotoxic process, minimize damage to the kidney, delay disease progression, and reduce its complications.
The discovery that two common APOL1 alleles were strongly associated with nondiabetic kidney diseases in African descent populations led to hope for improved diagnosis and treatment. Unfortunately, we still do not have a clear understanding of the biological function played by APOL1 in podocytes or
other kidney cells, nor how the renal risk alleles initiate the development of nephropathies. Important clues for APOL1 function may be gleaned from the natural defense mechanism of APOL1 against trypanosome infections and from similar proteins (e.g., diphtheria toxin, mammalian Bcl-2 family members). This review provides an update on the biological functions for circulating (trypanosome resistance) and intracellular (emerging role for autophagy) APOL1. Further, we introduce a multimer model for APOL1 in kidney cells that reconciles the gain-of-function variants with the recessive inheritance pattern of APOL1 renal risk alleles.
Diallyl trisulfide (DAT)-rich garlic oil was fed to Sprague-Dawley rats and the effects of this DAT-rich garlic oil on bleeding time, clotting time and anticoagulation factors were examined. Garlic oil supplement at 5 or 50mg garlic oil/kg bodyweight significantly prolonged bleeding time and thrombi
n time, and enhanced anticoagulation factor activity, such as antithrombin III and protein C (P<0.05). These results suggested that the anticoagulant action of DAT-rich garlic oil was due to inhibition and/or inactivation of thrombin. In addition, DAT-rich garlic oil benefits blood anticoagulation factors, which might further prevent the development of thrombus formation. However, the intake of garlic oil at high dose significantly increased plasma fibrinogen concentration (P<0.05), and affected the levels of several hematological parameters such as erythrocyte count, hemoglobin and platelets (P<0.05). The adverse effect of high doses of garlic oil might further influence the hemostatic balance. Therefore, the concentration of DAT-rich garlic oil should be carefully considered in its application. Supplementation of garlic oil at 5mg/kg bodyweight has anticoagulation effect in this animal study.
Choline is an essential nutrient that seems to be involved in a wide variety of metabolic reactions and functions in both humans and rodents. Various pathophysiological states have been linked to choline deprivation (CD). The aim of the present study was to determine the effect of CD upon biochemica
l, histological and metabolic alterations induced by drugs that affect hepatic functional integrity and various drug metabolizing systems via distinct mechanisms. For this purpose, paracetamol (ACET) or phenobarbital (PB) were administered to male Wistar rats that were fed with standard rodent chow (normally fed, NF) or underwent dietary CD. The administration of ACET increased the serum aspartate aminotransferase levels in NF rats, while CD restricted this increase. On the other hand, ACET suppressed alkaline phosphatase levels only in CD rats. Moreover, CD prevented the PB-induced increase of the mitotic activity of hepatocytes. The administration of ACET down-regulated CYP1A2 and CYP2B1 expression in CD rats, while up-regulating them in NF rats. The administration of PB suppressed CYP1A2 apoprotein levels in CD rats, whereas the drug had no effect on NF rats. The PB-induced up-regulation of CYP2B, CYP2E1 and CYP1A1 isozymes was markedly higher in CD than in NF rats. In addition, PB increased glutathione-S-transferase activity only in CD rats. Hepatic glutathione content (GSH) was suppressed by ACET in NF rats, whereas the drug increased GSH in CD rats. Our data suggest that CD has a significant impact on the hepatic metabolic functions, and in particular on those related to drug metabolism. Thus, CD may modify drug effectiveness and toxicity, as well as drug-drug interactions, particularly those related to ACET and PB. Copyright (c) 2008 John Wiley & Sons, Ltd.
Lead nitrate induces hepatocyte proliferation and subsequent apoptosis in rat livers. Iron is a constituent of heme and is also required for cell proliferation. In this study, the expression of ferritin light-chain (FTL), the major iron storage protein, was investigated in rat livers after a single
intravenous injection of lead nitrate. Western blotting and immunohistochemistry revealed that FTL was increased in hepatocytes around the central veins and strongly expressed in nonparenchymal cells. Some FTL-positive nonparenchymal cells were identified as Kupffer cells that were positive for CD68. FTL-positive Kupffer cells occupied about 60% of CD68-positive cells in the periportal and perivenous areas. The relationships between FTL expression and apoptosis induction or the engulfment of apoptotic cells were examined. TUNEL-positive cells were increased in the treatment group, and enhanced expression of milk fat globule EGF-like 8 was demonstrated in some Kupffer cells and hepatocytes, indicating enhanced apoptosis induction and phagocytosis of apoptotic cells. FTL-positive Kupffer cells were not detected without lead nitrate treatment or in rat livers treated with clofibrate, which induces hepatocyte proliferation but not apoptosis. These results suggest that FTL expression in Kupffer cells after lead treatment is dependent on phagocytosis of apoptotic cells.
Histone acetylase (HAT) p300 plays an important role in the regulation of cardiac gene expression. During cardiac development, bone morphogenetic protein (BMP)-2 induces the expression of cardiac transcription factors. However, the underlying molecular mechanism(s) is not clear. In the present stud
y, we tested the hypothesis that p300-mediated histone acetylation was essential for the regulation of cardiac transcription factors by BMP2. Cultured rat H9c2 embryonic cardiac myocytes (H9c2 cells) were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without curcumin, a specific p300-HAT inhibitor. Quantitative real-time RT-PCR analysis showed that curcumin substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and MEF2C, but not Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that curcumin inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and MEF2C, but not of Tbx5. In addition, curcumin selectively suppressed AdBMP2-induced expression of HAT p300, but not HAT GCN5 in H9c2 cells. The data indicated that inhibition of histone H3 acetylation with curcumin diminished BMP2-induced expression of GATA4 and MEF2C, suggesting that p300-mediated histone acetylation was essential for the regulation of GATA4 and MEF2C by BMP2 in H9c2 cells.
Satija NK and Vij AG, Indian J Physiol Pharmacol. 1995 Oct;39(4):377-82.
The study was aimed to assess the protective efficacy of zinc against hemo and hematotoxicity induced by lead. Two groups of 8 rats each, were administered lead acetate 20 mg/kg bw (ip) for 3 days. One group in addition was injected 5 mg/kg bw (ip) zinc acetate
for next three days. A third group of 8 rats was given three injections of normal saline and served as control. All the animals were sacrificed on eighth day and assessed for hematological changes, heme synthesizing pathway enzymes, hepatic drug metabolizing status and sulfhydryl levels in blood and liver. Lead administration resulted in decreased hemoglobin, increased reticulocytosis, depression of delta aminolevulinic acid dehydratase (ALAD) and uroporphyrinogen I synthetase (UPS) activity in blood and liver. In vitro metabolism of drugs aminopyrine, aniline and p-nitroanisole by liver homogenate and in vivo metabolism of pentabarbitone was also reduced in lead exposed rate. Zinc treated rats showed improved hematological profile and activated ALAD and UPS activity, recovery of N-demethylation of aminopyrine and O-demethylation of p-nitroanisole and partial restoration of free thiol levels in blood and liver thereby indicating that zinc could confer protection against lead toxicity.
Effects of synthesized glucocorticoid, dexamethasone (DEX, dose = 1.0 mg/kg body weight/day for 10 days) on the expressions of beta-adrenoceptor (AR) and glucocorticoid receptor (GR) were studied in fast-twitch (extensor digitorum longus (EDL)) and slow-twitch fiber-rich (soleus(SOL)) muscles of rat
s. DEX decreased the expression of beta-AR mRNA in SOL muscle without changing that in EDL muscle. The expression of beta-AR protein in EDL and SOL muscles was not affected by DEX. DEX-induced decreased action of the expression of GR mRNA was much greater in SOL muscle than in EDL muscle. However, there were no differences in the expression of GR protein in EDL and SOL muscles. DEX also decreased mRNA expression of cAMP response element binding protein (CREB, transcription factor of beta-AR mRNA) in SOL muscle, whereas increased that in EDL muscle. Further, DEX tended to increase mRNA expressions of post-transcription factors of beta-AR mRNA in EDL muscle without changing those in SOL muscle. These results demonstrated that the expressions of beta-AR and GR are regulated at mRNA levels but not protein levels by DEX. Further, these results also suggest that DEX-induced decrease in the expression of beta-AR mRNA in slow-twitch fiber-rich SOL muscle is associated with the transcriptional regulations.
The consumption of a high-fat diet (HFD) is considered a risk factor for obesity development. Nonetheless, a causal role of dietary fat has never been documented, because of inadequate animal models. In our study, one group of rats was fed with standard rat diet, while other group of rats fed with h
igh-fat diet for 4 weeks. After 4 weeks of feeding, the hemodynamic parameters in the rats fed with HFD were significantly increased as compared with control rats. Rats fed with HFD had elevated levels of serum lipids, insulin, leptin, glucose and apolipoprotein B. Lipid peroxides and caspase-3 levels were increased while serum apolipoprotein A1 and antioxidant enzymes levels in heart tissues were decreased in HFD-induced obesity in rats as compared to normal healthy control rats fed on standard rat pellet diet. This model of diet-induced obesity will be a useful tool for studying the mechanisms by which dietary fat induces the obesity in humans.
Diesel exhaust particles (DEP) induce pulmonary diseases including asthma and chronic bronchitis. Comprehensive evaluation is required to know the effects of pollutants including DEP on these and other lung diseases. Alveolar macrophages (AM) and epithelial cells are important cellular targets for p
ollutants such as DEP in the lung. Alveolar macrophages encounter and phagocytose DEP in the alveolar space, and their biological responses have been implicated in DEP-induced pulmonary diseases. Expression profiles of genes induced by DEP in AM will lead to better understanding of the mechanisms involved in pulmonary diseases. To characterize the effect of the DEP extract on AM systematically, we analyzed the gene expression in AM exposed to DEP extract using the Atlas Rat Toxicology Array II. The finding in cDNA microarray was further confirmed by Northern blot analysis. AM were exposed to 10 microg/ml of DEP extract for 6 h in order to elucidate early response to DEP extract in AM. Early response to DEP extract in AM may affect the alteration of gene expression in subsequent responses so that it is important to identify the alteration in early response. In this study, the transcription of 6 genes in the cDNA microarray was significantly elevated by exposure of the AM to DEP extract. These genes were heme oxygenase (HO)-1 and -2, thioredoxin peroxidase 2 (TDPX-2), glutathione S-transferase P subunit (GST-P), NAD(P)H dehydrogenase, and proliferating cell nuclear antigen (PCNA). The antioxidative enzymes such as HO, TDPX-2, GST-P, and NAD(P)H dehydrogenase may play a role in the pulmonary defense against oxidative stress caused by various pollutants including DEP. PCNA may have contributed to the repair of DNA damage and to cell proliferation caused by exposure to these pollutants. Our results suggest that cDNA microarray analysis is a useful tool to investigate the biological responses to pulmonary toxicants.
Didecyldimethylammonium chloride (DDAC) is used worldwide as a germicide, in antiseptics, and as a wood preservative, and can cause adverse pulmonary disease in humans. However, the pulmonary toxicity of DDAC has not yet been thoroughly investigated. Mice were i
ntratracheally instilled with DDAC to the lung and the bronchoalveolar lavage (BAL) fluid and lung tissues were collected to assess dose- and time-related pulmonary injury. Exposure to 1500mug/kg of DDAC caused severe morbidity with pulmonary congestive oedema. When the BAL fluid from survivors was examined on day 3 after treatment, exposure to 150mug/kg of DDAC caused weakly induced inflammation, and exposure to 15mug/kg did not cause any visible effects. Next, we observed pulmonary changes that occurred up to day 20 after 150mug/kg of DDAC exposure. Pulmonary inflammation peaked on day 7 and was confirmed by expression of interleukin-6, monocyte chemotactic protein-1, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and regulated upon activation, normal T-cell expressed and secreted in the BAL fluid; these changes were accompanied by altered gene expression of their chemokine (C-C motif) receptor (Ccr) 1, Ccr2, Ccr3, and Ccr5. Cytotoxicity evoked by DDAC was related to the inflammatory changes and was confirmed by an in vitro study using isolated mouse lung fibroblasts. The inflammatory phase was accompanied or followed by pulmonary remodeling, i.e., fibrosis, which was evident in the mRNA expression of type I procollagen. These results suggest that administering DDAC by intratracheal instillation causes pulmonary injury in mice, and occupational exposure to DDAC might be a potential hazard to human health.
Dioxins like 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) impair male reproductive system by increasing the generation of reactive oxygen species (ROS). Glucocorticoids have been found to suppress male reproductive function and also influence TCDD pathway. As stress is characterized by an increase in
the level and activity of glucocorticoids, the present experiments were conducted to evaluate the effect of restraint stress on TCDD-induced testicular and epididymal toxicity. Adult male Wistar rats were subjected to either restraint stress (5 hours/day) or TCDD treatment (100 ng/kg b.w./day) or both for 15 days. Restraint stress or TCDD treatment raised the serum level of corticosterone and suppressed the testicular level of steroidogenic acute regulatory (StAR) protein and serum level of testosterone significantly. In the testis and epididymis, restraint stress or TCDD treatment raised the levels of lipid peroxidation and hydrogen peroxide and suppressed the activities of antioxidant enzymes significantly. In rats subjected to both restraint stress and TCDD treatment, a significant increase in the serum level of corticosterone and a significant decrease in the testicular level of StAR protein and serum level of testosterone were observed as compared to rats treated with TCDD alone. A significant increase in the levels of lipid peroxidation and hydrogen peroxide and a significant decrease in the activities of antioxidant enzymes were observed in the testis and epididymis of rats subjected to both restraint stress and TCDD treatment as compared to TCDD alone treated rats. Thus, restraint stress potentiates the adverse effects of TCDD on male reproductive organs.
Chemical carcinogens induce both benign and malignant mammary gland tumors in female Sprague-Dawley rats. To identify gene expression profiles associated with malignancy, cDNA microarray analysis was used to compare gene expression profiles in rat mammary gland carcinomas, adenomas, and normal mamma
ry gland. Tumors were induced with various chemical carcinogens including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 7-12-dimethylbenz[a]anthracene (DMBA), N-nitrosomethylurea (NMU), and 4-aminobiphenyl. The global gene expression profiles in carcinomas and adenomas were distinguishable by hierarchical clustering and multi-dimensional scaling analyses. Permutation analysis revealed 110 clones statistically differentially expressed between benign and malignant tumors (p < 0.0005). Carcinomas showed relatively high expression of several genes associated with mammary epithelial cell growth and proliferation (e.g., cyclin D1, PDGFalpha) and relatively low expression of differentiation marker genes (e.g., beta -casein, whey acidic protein, transferrin). Other categories of genes showing differential expression between carcinomas and adenomas were associated with protein homeostasis, cytoskeleton, extracellular matrix, and cell metabolism (fatty acid metabolism, oxidative phosphorylation, and glycolysis). Major gene families implicated in malignancy by over-expression in carcinomas included the annexins (annexin A1 and A4) and Stat family of transcription factors (Stat3 and Stat5a). The elevated expression of the prolactin receptor in carcinomas concomitant with several components of the mitogenic prolactin signaling pathway implicated prolactin/prolactin receptor/Stat5a/cyclin D1 in rat mammary gland malignancy.
The aim of this study was to investigate the early effects of cephaloridine (CPH) on glutathione-dependent phase II detoxification in the rat proximal tubular cell and to find an in vitro alternative to the in vivo model. The in vivo study was conducted in three
groups of rats which received CPH at doses of 250, 500 or 750 mg/kg per day for 3 days, while another group received 500 mg/kg as a single dose. For the in vitro study, rat renal proximal tubular cultured cells were exposed to CPH at concentrations of 0.3, 0.6, 1, 1.7 mM for 24, 48 and 72 h. Glutathione-dependent detoxification was evaluated in vivo and in vitro on the basis of total intracellular glutathione (GSH), glutathione S-transferase (GST) and glutathione peroxidase (GPX). Glutathione reductase (GRED) and GST mRNA levels were also determined. Results of in vivo and in vitro models were comparable in terms of the early increase of GSH, GST and GRED. This increase had a bell-shaped dose-response with a maximum at 500 mg/kg in vivo and 1 mM in vitro. Beyond these doses, GSH and its dependent enzyme levels decreased, associated with cytotoxicity in vitro and renal insufficiency in vivo. The increased GST activity was associated with an increased level of GST7 in vivo and a markedly increased level of GST1-2 in vitro. We concluded that the in vitro model can be used as an alternative to animal experimentation to study glutathione-dependent detoxication. Low cytotoxic doses of CPH induced an early increase of glutathione phase II-dependent detoxification enzymes.
Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a
dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca(2+) concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.
The present study aimed to establish candidate biomarker genes for the early detection of nephrotoxicity in mice, with a particular focus on nephrotoxicity caused by polyene macrolides. Comprehensive gene expression changes
were evaluated using microarrays in a mouse model in which acute nephrotoxicity was induced by amphotericin B deoxycholate, trade name Fungizone. The upregulated genes identified through microarray analysis of kidney tissue of Fungizone-treated mice included several genes that have been reported as nephrotoxicity biomarkers in rats, and 14 genes were selected as candidate nephrotoxicity biomarkers. The usefulness of these genes as nephrotoxicity biomarkers in mice was evaluated further through expression profiling under several experimental conditions using real time RT-PCR. Expression of genes encoding kidney injury molecule 1, lipocalin 2, tissue inhibitor of metalloproteinase 1, and secreted phosphoprotein 1 was highly upregulated by Fungizone, nystatin, natamycin, amphotericin B methyl ester, and liposomal amphotericin B, and their area under the ROC curve values were more than 0.95. These genes were more sensitive at detecting nephrotoxicity than traditional clinical chemistry and histopathology parameters. This study provides novel evidence that these nephrotoxicity biomarker genes identified are translatable to mice, and that they are useful for early and sensitive detection of nephrotoxicity.
Parathyroid hormone related peptide (PTHrP) was discovered as a causative factor of humoral hypercalcemia of malignancy (HHM). We examined PTHrP and its receptor (PTHR1) expression patterns in odontogenic cells in normal and HHM model rat incisors. Nontreated nude rats serving as the normal control
and HHM model rats produced by implantation of PTHrP-expressing tumor (LC-6) cells were prepared. HHM rats fractured its incisor, and histopathologically, restrict population of odontoblasts showed findings classified as "shortening of high columnar odontoblasts" and "dentin niche." The incisors were immunostained against PTHrP and PTHR1. In normal rats, PTHrP and PTHR1 colocalized in ameloblasts, cementoblasts, and odontoblastic cells from mesenchymal cells to columnar odontoblasts. In high columnar odontoblasts, PTHrP solely expressed. In the HHM animals, although the expression patterns were identical to those of the normal rats in normal area, the shortened high columnar odontoblasts maintained PTHR1 expression and dentin niche comprising odontoblastic cells expressed both proteins. In the HHM model, the protein expression patterns changed in the odontoblastic cells with histological anomalies, and thus direct relations between the anomalies and PTHrP/PTHR1 axis are suggested.
Phospholipase A(2)-activating protein (PLAA) has been implicated in the production of prostaglandins (e.g. PGE(2)) via activation of phospholipases in various stimulated cell types. Human PLAA, with 738 amino acid (aa) residues, contains a region of 38% homology (aa 503-538) with the 26-aa long meli
ttin peptide, a major component of bee venom and a reported regulator of phospholipase A(2) and phospholipase D activity. To learn more about the role of PLAA in the production of eicosanoids and other inflammatory mediators, we synthesized a murine PLAA peptide (36-aa long) having homology to melittin, as well as to human and rat PLAA. The PLAA peptide and melittin increased the expression of genes encoding the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) and cyclooxygenase-2 (COX-2), which is involved in PGE(2) production. We determined that the C-terminal region of the PLAA peptide (aa 515-538) was essential, since truncation of the C-terminal end of the PLAA peptide significantly reduced expression of genes encoding TNFalpha and COX-2 in macrophages. We concluded that PLAA could be important in the regulation of the inflammatory response because of its stimulatory effects on eicosanoid and cytokine synthesis. Consequently, control of plaa gene expression could be a target for the development of new drugs to control the inflammatory response.
The study aimed to investigate the effect of the oral administration for 15 days of either Echinacea (E) or genuphil (a composite of chondroitin sulphate, glucosamine and methyl sulfonyl methane [GCM]) nutraceutical supplements on female rat model of acute or chronic arthritis induced by bacterial
outer membrane protein (OMP) from faecal flora of healthy and rheumatic humans. Anti-cyclic citrullinated peptide (anti-CCP2), C-reactive protein (CRP) and rheumatoid factor (RF) values increased (p < 0.05) in both arthritic groups as compared to normal values. The rheumatic markers anti-CCP2, CRP and RF values decreased significantly in E- and GCM-treated groups compared to arthritic none-treated acute or chronic groups. The results of RF values of GCM-treated groups in acute and chronic models decreased exhibiting no statistical difference compared with the normal value. Histological examinations of the hind paw sections revealed moderate inflammation, oedema and mild proliferation of synovial cells in acute arthritic rats and more damage to cartilage and bone with severe inflammation in chronic ones. Echinacea acute treated group showed edema with proliferated synovial membrane and partial damage in cartilage and bone. While in the E-chronic treated group, rough edge with destructed cartilage and bone existed. However, the acute GCM group revealed mild cartilage damage. But the chronic GCM group showed mild synovial cells proliferation and revealed no inflammation with mild cartilage damage edge. Results demonstrated the OMP arthropathic property and through promising light on arthritis treatment using E- or GCM, with the advantage of GMC results over that of E-. The composite GCM is needed for further studies over the dose and duration to assess its preventive effects against the bacterial OMP arthrogenicity.
Quaile MP, etal., Toxicol Appl Pharmacol. 2010 Mar 15;243(3):340-7. doi: 10.1016/j.taap.2009.11.026. Epub 2010 Jan 13.
Metformin is a first-line drug for the treatment of type 2 diabetes (T2D) and is often prescribed in combination with other drugs to control a patient's blood glucose level and achieve their HbA1c goal. New treatment options for T2D will likely include fixed dose combinations with metformin, which
may require preclinical combination toxicology studies. To date, there are few published reports evaluating the toxicity of metformin alone to aid in the design of these studies. Therefore, to understand the toxicity of metformin alone, Crl:CD(SD) rats were administered metformin at 0, 200, 600, 900 or 1200 mg/kg/day by oral gavage for 13 weeks. Administration of > or =900 mg/kg/day resulted in moribundity/mortality and clinical signs of toxicity. Other adverse findings included increased incidence of minimal necrosis with minimal to slight inflammation of the parotid salivary gland for males given 1200 mg/kg/day, body weight loss and clinical signs in rats given > or =600 mg/kg/day. Metformin was also associated with evidence of minimal metabolic acidosis (increased serum lactate and beta-hydroxybutyric acid and decreased serum bicarbonate and urine pH) at doses > or =600 mg/kg/day. There were no significant sex differences in mean AUC(0-24) or C(max) nor were there significant differences in mean AUC(0-24) or C(max) following repeated dosing compared to a single dose. The no observable adverse effect level (NOAEL) was 200 mg/kg/day (mean AUC(0-24)=41.1 microg h/mL; mean C(max)=10.3 microg/mL based on gender average week 13 values). These effects should be taken into consideration when assessing potential toxicities of metformin in fixed dose combinations.
Niemi M Clin Pharmacol Ther. 2010 Jan;87(1):130-3. Epub 2009 Nov 4.
Polymorphisms in transporter genes can have profound effects on statin pharmacokinetics. In particular, a common genetic variant of organic anion-transporting polypeptide 1B1 reduces the hepatic uptake of many statins, increasing the risk of statin-induced myopathy. Similarly, genetically impaired a
denosine triphosphate (ATP)-binding cassette G2 transporter efflux activity results in a marked increase in systemic exposure to various statins. Importantly, the effects of these genetic polymorphisms differ depending on the specific statin that is used. This provides a rational basis for the individualization of lipid-lowering therapy.
Arias-Loza PA, etal., Toxicol Pathol. 2009 Oct 19.
Elevated mineralocorticoid levels and female sex hormones have been shown to confer opposing effects on renal injury, but their combined effects are still unknown. Objective: Identify the function of estrogens and of different synthetic progestins on aldosterone salt-mediated renal disease. Methods:
The role of 17beta-estradiol, medroxyprogesterone acetate (MPA), and drospirenone during renal injury was studied in Wistar rats subjected to uni-nephrectomy plus aldosterone salt treatment. Results: Aldo-salt treatment of intact, ovariectomized, and estradiol-treated female rats resulted in remnant kidney hypertrophy without structural damage. Co-treatment with MPA, but not with drospirenone, increased kidney hypertrophy, fluid turnover, sodium retention, and potassium excretion. Medroxyprogesterone acetate also caused glomerular, vascular, tubular, and interstitial lesions that were accompanied by increased blood pressure and enhanced NADPH oxidase (p67phox) and sodium channel (alpha-ENaC) expression. Drospirenone, a progestin with anti-mineralocorticoid function, and spironolactone prevented kidney hypertrophy, hypertension, and sodium retention. Drospirenone and spironolactone also increased renal angiotensin II type 2 receptor expression and relieved aldosterone-induced suppression of serum angiotensin II levels. Conclusion: The choice of specific synthetic progestins has profound implications on the development of kidney injury and renal gene expression under conditions of elevated aldosterone serum levels and salt intake.
Dabidi Roshan V, etal., Int J Toxicol. 2011 Mar 4.
We have investigated the cardioprotective effects of exercise training and/or curcumin on lead acetate-induced myocardial damage. Forty rats were randomly divided into 5 groups: (1) lead acetate, (2) curcumin, (3) endurance training, (4) training + curcumin, (5) sham groups. The rats in groups 3 and
4 experienced the treadmill running of 15 to 22 m/min for 25 to 64 minutes, 5 times a week for 8 weeks. Groups 1 to 4 received lead acetate (20 mg/kg), the sham group received curcumin solvent (ethyl oleat), and the curcumin and training + curcumin groups received curcumin solution (30 mg/kg) intraperitoneally. Lead administration resulted in significant increases in high-sensitivity C-reactive protein (hs-CRP), creatine kinase-MB (CK-MB), malondialdehyde (MDA), and low-density lipoprotein (LDL), and significantly decreased glutathione peroxidase (GPx), Total Antioxidant Capacity (TAC), and high-density lipoprotein (HDL) levels. Treadmill running and\or curcumin supplementation resulted in a significant decrease in hs-CRP, CK-MB, MDA, and LDL levels and significantly increased GPx, TAC, and HDL levels. These results suggest a lifestyle-induced cardioprotective potential in ameliorating lead-induced cardiotoxicity.
Cho HY, etal., Toxicol Sci. 1999 Sep;51(1):135-45.
Rats repeatedly exposed to high ambient concentrations of ozone develop mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE). The present study was designed to determine the temporal relationships of ozone-induced inflammatory and epithelial responses and their correlation with su
bsequent MCM in the NTE of rats. Male F344/N rats were exposed to 0.5 ppm ozone, 8 h/day for 1, 2, or 3 days. Two h prior to sacrifice, all the rats were injected intraperitoneally with 5'-bromo-2-deoxyuridine (BrdU) to label epithelial cells undergoing DNA synthesis. Rats exposed to ozone for 1 or 2 days were killed 2 h after the exposure. Rats exposed to ozone for 3 days were killed 2 h or 1, 2, or 4 days after the exposure. Control rats were killed after a 7-day exposure to filtered air. One nasal passage from the anterior nasal cavity of each rat was fixed and processed for light microscopy to morphometrically determine the numeric densities of epithelial cells, neutrophils, and mucous cells, and the amount of intraepithelial mucosubstances in the NTE. The maxilloturbinate from the other nasal passage was processed for analysis of an airway mucin-specific gene (i.e., rMuc-5AC mRNA). Acute ozone exposure induced a rapid increase in rMuc-5AC mRNA levels prior to the onset of MCM, and the increased levels of rMuc-5AC mRNA persisted with MCM. Neutrophilic inflammation coincided with epithelial DNA synthesis and upregulation of rMuc-5AC, but was resolved when MCM first appeared in the NTE. The results of the present study suggest that upregulation of mucin mRNA by acute ozone exposure may be associated with the concurrent neutrophilic inflammation and epithelial hyperplasia in the NTE. Ozone-induced MCM may be dependent on these important pre-metaplastic responses (i.e., mucin mRNA upregulation, neutrophilic inflammation, and epithelial proliferation).
Neal R, etal., Toxicology. 2005 Aug 15;212(1):1-9.
Epidemiological data supports lead exposure as a risk factor for cataract development. Previous studies which demonstrated oxidative imbalances in the lens following in vivo Pb(2+) exposure support the idea that lead exposure can alter the lens biochemical homeostasis which may ultimately lead to lo
ss of lens clarity with time. alpha-Crystallin, a major lens structural protein and molecular chaperone, undergoes various post-translational modifications upon aging which may contribute to decreased chaperone function and contribute to loss of lens clarity. This study evaluated the impact of 5 weeks of oral Pb(2+) exposure (peripheral Pb(2+) level approximately 30 microg/dL) on the alphaA-crystallin protein profile of the lens from Fisher 344 rats. Decreases in relative protein spot intensity of more acidic forms of alphaA- and betaA(4)-crystallin and of truncated forms of alphaA-crystallin were noted. This data indicates that changes in post-translational processing of crystallins do occur in vivo following short courses of clinically relevant Pb(2+)-exposure. In addition, organ culture of lenses from 4.5-month-old rats in 5 microM Pb(2+) resulted in opacities, demonstrating that lead is toxic to the lens and can induce a loss of lens clarity.
The amount of reduced glutathione in transplantable hepatomas and in a primary DEN-induced hepatoma is lower than in normal liver. In all tumors examined, the glutathione decrease is not due to an increase of oxidized glutathione. In this paper the in vitro activities of two enzymes involved in glut
athione synthesis, gamma-glutamylcysteine synthetase and glutathione synthetase, are studied in normal adult rat liver, in regenerating rat liver and in highly anaplastic Yoshida AH-130 hepatoma cells. The activity of these enzymes was determined in the postmicrosomal supernatant fraction as nmoles of [U-14C]-glutamate incorporated into product per mg of soluble protein. In Yoshida AH-130 hepatoma, the gamma-glutamylcysteine synthetase and glutathione synthetase activities are lower in respect to normal liver. This is in agreement with the low glutathione content observed in the hepatoma cells. On the other hand, in regenerating liver, there are minimal differences in comparison with normal liver.
Nelson MA, etal., Toxicology. 1990 Oct;64(1):47-57.
The expression of c-myc and c-H-ras in hyperplastic nodules and hepatocellular carcinomas induced in male B6C3F1 mice after chronic administration of dichloroacetate (DCA) and trichloroacetate (TCA) was studied using in situ hybridization. Expression of c-myc and c-H-ras mRNA was increased in both n
odules and carcinomas relative to surrounding tissue and tissues obtained from control animals. Myc expression was similar in hyperplastic nodules and carcinomas induced by DCA, but was significantly higher in TCA-induced carcinomas than in hyperplastic nodules and carcinomas produced by DCA. In carcinomas from animals whose TCA treatment was suspended at 37 weeks, c-myc expression remained high relative to control and surrounding liver tissue at 52 weeks. In contrast, the expression of c-H-ras was consistently elevated in carcinomas from both treatments relative to hyperplastic nodules and non-tumor tissue. Within carcinomas from both treatments, focal areas could be located which expressed even higher levels of c-myc. This heterogeneity was not observed in carcinomas hybridized to c-H-ras-probes. These data suggest that elevated expression of c-H-ras and c-myc might play an important role in the development of hepatic tumors in B6C3F1 mice. Elevated expression of c-H-ras was closely associated with malignancy. Increased c-myc expression does not seem necessary for progression to the malignant state. On the other hand, the increased expression of c-myc appears related to the earlier progression of TCA-induced tumors to the malignant state.
Sheweita SA Toxicology 2003 Sep 30;191(2-3):133-42.
Drug-metabolizing enzymes play a great role in the bioactivation and also detoxification of zenobiotics and carcinogens such as N-nitrosamines and polycyclic aromatic hydrocarbons (PAHs). Therefore, the present study was undertaken to investigate the effect of n
arcotic drugs such as cannabis (hashish) and diacetylmorphine (heroin) on the activity of N-nitrosodimethylamine N-demethylase I [NDMA-dI], arylhydrocarbon [benzo(a)pyerne] hydroxylase [AHH], cytochrome P450 (CYP), cytochrome b(5), NADPH-cytochrome c reductase, glutathione-S-transferase, and levels of glutathione and thiobarbituric acid-reactive substances (TBARS). In addition, the present study showed the influence of hashish and heroin after single (24 h) and repeated-dose treatments (4 consecutive days) on the expression of cytochrome P450 2E1 (CYP 2E1) and cytochrome P450 2C6 (CYP 2C6). The expression of CYP 2E1 was slightly induced after single-dose and markedly induced after repeated dose-treatments of mice with hashish (10 mg kg(-1) body weight). Contrarily, heroin markedly induced the expression of CYP 2C6 after single-dose and potentially reduced this expression after repeated-dose treatments. It is believed that N-nitrosamines are activated principally by CYP 2E1 and in support of this, the activity of NDMA-dI was found to be increased after single- and repeated-dose treatments of mice with hashish by 23 and 41%, respectively. In addition, single- and repeated-dose treatments of mice with hashish increased: (1) the total hepatic content of CYP by 112 and 206%, respectively; (2) AHH activity by 110 and 165%, respectively; (3) NADPH-cytochrome c reductase activity by 21 and 98%, respectively; (4) and glutathione level by 81 and 173%, respectively. Also, single-dose treatments of mice with heroin increased the total hepatic content of CYP, AHH, NADPH-cytochrome c reductase, and glutathione level by 126, 72, 39, 205%, respectively. However, repeated dose-treatments of mice with heroin did not change such activities except cytochrome c reductase activity increased by 20%. Interestingly, the level of free radicals, TBARS, was potentially decreased after single or repeated-dose treatments with either hashish or heroin. It is clear from this study that the effects of hashish are different from those of heroin on the above mentioned enzymes particularly after repeated dose treatments. It is concluded that hashish induced the expression of CYP 2E1 and other carcinogen-metabolizing enzymes activities, and this induction could potentiate the deleterious effects of N-nitrosamines and aromatic hydrocarbons, e.g. benzo(a)pyrene, upon the liver and probably other organs. Such alterations may also change the therapeutic actions of other drugs, which are primarily metabolized by the P450 system, when administered to peoples using hashish or heroin.
Tomita M, etal., Arch Toxicol 2002 Sep;76(9):530-7.
Increased formation of reactive oxygen species is a cause of paraquat (PQ)-induced injury and also provides a link between the signaling pathways and transcriptional events that regulate the expression of a large number of genes. However, the molecular mechanisms involved in PQ-induced injury remain
unclear. To investigate the changes in gene expression at the onset of PQ injury, we used the differential display-polymerase chain reaction (PCR) method. Rats were treated intraperitoneally with 20 mg/kg PQ, and after 3 h the lungs were immediately excised. Samples of mRNA from normal and treated rats were used to prepare radiolabeled cDNAs, which were electrophoresed. Then the transcription levels were compared. We isolated 26 fragments of cDNA that were potentially affected by PQ, and determined their nucleotide sequences. Six clones of interest were selected and analyzed further. The reverse transcript-PCR based on their sequence information confirmed the differential expression for five clones: four clones were up-regulated and one was down-regulated. We were particularly interested in two genes that had homology with the known gene: TATA box-binding protein-associated factor, RNA polymerase II, B, 150 kDa (TAFIIB), and a candidate gene for lipodystrophy, Lpin2. Both genes were significantly up-regulated within 3 h of PQ intake and the stimulation continued during our 24-h observation period. In addition, up-regulation of Lpin2 was observed in the lungs, but not in the liver and kidneys. In situ hybridization using lung sections showed that the expression of both genes was strongly visualized in Clara cells and in alveolar macrophages. These findings suggest a stimulation of transcription levels and changes in lipid metabolism in Clara cells and in macrophages in the lungs, which result in their playing a crucial role at the onset of PQ-driven pulmonary injury.
Qamar W and Sultana S, Hum Exp Toxicol. 2010 Jun 9.
The present study was designed to evaluate the protective effects of Juglans regia kernel extract against cigarette smoke extract (CSE)-induced lung toxicities in Wistar rats. Prophylactic treatment of methanolic extract of J. regia kernel at the doses of 50 mg/
kg b.wt. and 100 mg/kg b.wt was given by gavage to Wistar rats for 1 week prior to CSE exposure. Female Wistar rats were administered with single dose (1.3 mL/kg b.wt.) of CSE through intratracheal instillation. Lung injury markers lactate dehydrogenase (LDH) activity, total cell count, total protein and reduced glutathione (GSH) in bronchoalveolar lavage fluid (BALF) were evaluated. Glutathione reductase (GR), xanthine oxidase (XO) and catalase activities were measured in lung tissue. J. regia extract significantly decreased the levels of LDH, total cell count, total protein and increased the GSH level in BALF, it also significantly restored the levels of GR, catalase and reduced the XO activity in lung tissue. Total polyphenolic content of J. regia kernel extract was found to be 96 +/- 0.81 mg gallic acid equivalent (GAE)/g dry weight of extract. In DPPH (2,2-Diphenyl-1-Picrylhydrazyl) assay, the extract shows high free radical scavenging potential. On the basis of these results, protective role of J. regia extract against CSE-induced acute lung toxicity in Wistar rats is suggested.
Miyazaki M, etal., J Toxicol Sci. 2010;35(1):131-5.
To investigate peroxisomal proliferator-activated receptor alpha (PPARalpha) signal responses in heart muscle, we performed LC-MS/MS-based proteomics analysis of heart muscle from rats given fenofibrate or clofibrate. Fenofibrate increased the expression of ACAA2, DECR1, and ECH1 consistent with act
ivation of PPARalpha. Fenofibrate and clofibrate reduced the expression of 10 and 12 proteins, respectively with the expression of ACSL1, SLC25A4, A1BG, HADHA, ATP2A2, BDH1, ETFDH, HADHB, and CPT2 being reduced in common with both of fibrate-treated groups. The approach adopted in this study provides an efficient method for monitoring global changes in protein expression.
AIM: In order to identify genetic variants associated with taxanes toxicity, a panel with 47 SNPs in 20 genes involved in taxane pathways was designed. PATIENTS & METHODS: Genomic DNA of 113 breast cancer patients was analyzed (70 taking docetaxel, 43 taking pac
litaxel). RESULTS: Two SNPs associated with docetaxel toxicity were identified: CYP3A4*1B with infusion-related reactions; and ERCC1 Gln504Lys with mucositis (p=0.01). Regarding paclitaxel toxicity: CYP2C8 HapC and CYP2C8 rs1934951 were associated with anemia; and ERCC1 Gln504Lys with neuropathy (p=0.01). CONCLUSION: Genes involved in DNA repair mechanisms and reactive oxygen species levels influence taxane toxicity in cancer patients treated with chemotherapy schemes not containing platinum. These findings could lead to better treatment selection for breast cancer patients.
It has recently been demonstrated that purified NAD(P)H:quinone oxidoreductase 1 (NQO1) is able to scavenge superoxide (O2(.-)) though the rate of reaction of O2(.-) with NQO1 is much lower than the rate of enzymatic dismutation catalyzed by superoxide dismutase (SOD). This study was undertaken to d
etermine if the endogenously expressed NQO1 in cardiovascular cells could scavenge O2(.-). We observed that NQO1 was highly expressed in cardiovascular cells, including rat aortic smooth muscle A10 and cardiac H9c2 cells, as well as normal human aortic smooth muscle and endothelial cells. NQO1, but not SOD in the cardiovascular cells was highly inducible by 3H-1,2-dithiole-3-thione (D3T). Cytosols from H9c2 and human aortic smooth muscle cells (HASMCs) were isolated to determine the O2(.-) scavenging ability of the endogenously expressed NQO1 by using pyrogallol autooxidation assay. We showed that cytosols from the above cells inhibited pyrogallol autooxidation in an NADPH or NADH-dependent manner. The NADH/NADPH-dependent inhibition of pyrogallol autooxidation by the cytosols was completely abolished by the NQO1-specific inhibitor, ES936, suggesting that the endogenously expressed NQO1 could scavenge O2(.-). In the presence of NADH/NADPH, cytosols from D3T-treated cells showed increased ability to scavenge O2(.-) as compared to cytosols from untreated cells. This increased ability to scavenge O2(.-) was also completely reversed by ES936. 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide spin-trapping experiments using potassium superoxide as a O2(.-) generator further confirmed the ability of NQO1 from HASMCs to scavenge O2(.-). The spin-trapping experiments also showed that induction of NQO1 by D3T in HASMCs augmented the O2(.-) scavenging ability. Taken together, these results demonstrate that the highly expressed and inducible endogenous NQO1 in cardiovascular cells may act as a potential O2(.-) scavenger.
To determine the threshold dose of beta-Naphthoflavone (BNF) that induces hepatocellular tumor promoting effects, reactive oxygen species (ROS) generation and thiobarbituric acid-reactive substance (TBARS) formation, and drug-metabolizing enzymes that protect against ROS generation, two-stage liver
carcinogenesis model was used. Partial hepatectomized rats (n = 11 to 12) were fed diets containing 0, 0.03, 0.06, 0.125 or 0.25% BNF for 6 weeks after an intraperitoneal injection of N-diethylnitrosamine (DEN) to initiate hepatocarcinogenesis. Histopathologically, glutathione S-transferase placental form (GST-P)-positive foci significantly increased in rats given 0.25% BNF. No marked changes in ROS production and TBARS contents were observed between the BNF treated and DEN alone groups. Real-time RT-PCR showed that the expression of Cyp1a1, Cyp1a2, Cyp1b1 and Nqo1 significantly increased in the groups given 0.03% BNF or more, but Ugt1a6, Akr7a3 and Gstm1 significantly increased in the groups given 0.125% BNF or more. Gpx2 and Yc2 significantly increased in the groups given 0.06% BNF or more and 0.25% BNF, respectively. Inflammation-related genes such as Ccl2, Mmp12, Serpine1 and Cox-2 significantly increased in the 0.25% BNF group. In immunohistochemistry, the number of cyclooxygenase-2 (COX-2)-positive cells increased in rats given 0.25% BNF. These results suggest that 0.25% BNF is the threshold dose for liver tumor promotion, and the fact that inflammation-related genes and COX-2 protein increased in the 0.25% BNF group strongly suggests that inflammation is involved in the liver tumor promoting effect of BNF in rats.
Bader M Annu Rev Pharmacol Toxicol. 2010;50:439-65.
The renin-angiotensin-aldosterone system is one of the most important systems in cardiovascular control and in the pathogenesis of cardiovascular diseases. Therefore, it is already a very successful drug target for the therapy of these diseases. However, angiotensins are generated not only in the pl
asma but also locally in tissues from precursors and substrates either locally expressed or imported from the circulation. In most areas of the brain, only locally generated angiotensins can exert effects on their receptors owing to the blood-brain barrier. Other tissue renin-angiotensin-aldosterone systems are found in cardiovascular organs such as kidney, heart, and vessels and play important roles in the function of these organs and in the deleterious actions of hypertension and diabetes on these tissues. Novel components with mostly opposite actions to the classical renin-angiotensin-aldosterone systems have been described and need functional characterization to evaluate their suitability as novel drug targets.
To examine the transcriptional responses of rat kidney cells continuously exposed to cadmium, we performed DNA microarray analysis. Cadmium increased levels of expression of 27 genes, including genes for Mt1, Mt2, GSTa3 and B2m and reduced those of 4 genes.
The mechanism by which a single administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces food and water intake is unclear. We examined whether such a food and water intake-reducing single administration of TCDD induced changes in corticotropin-releasing factor (CRF), arginine vasopressin
(AVP), and proopiomelanocortin (POMC) expression in rat brain. To observe time-dependent changes in these neuropeptides, male Sprague-Dawley rats were given TCDD (50 microg/kg) and terminated 1, 2, 4, or 7 days later. In addition, to observe dose-dependent changes in feeding and neuropeptides, rats were also given a range of TCDD doses (12.5, 25, or 50 microg/kg) and terminated 14 days later. TCDD suppressed food and water intake over 14 days in a dose-dependent manner. TCDD treatment also increased CRF and POMC mRNA levels in the hypothalamic paraventricular nucleus (PVN) and arcuate nucleus, respectively, in a dose- and time-dependent manner. These increases were related to decreased food intake following TCDD administration. TCDD treatment increased AVP and CRF mRNA levels in the PVN, and these increases were related to decreased water intake. Interestingly, the increases in CRF, AVP and POMC expression were observed 7 to 14 days after TCDD administration. These results suggest that a single administration of TCDD induced long-lasting increases in CRF, AVP, and POMC mRNA levels in the hypothalamus and that these changes are related to reduced food and water intake 7 to 14 days after TCDD administration.
Jin Y and Penning TM, Annu Rev Pharmacol Toxicol. 2007;47:263-92.
Aldo-keto reductases (AKRs) are soluble NAD(P)(H) oxidoreductases that primarily reduce aldehydes and ketones to primary and secondary alcohols, respectively. The ten known human AKR enzymes can turnover a vast range of substrates, including drugs, carcinogens, and reactive aldehydes. They play cen
tral roles in the metabolism of these agents, and this can lead to either their bioactivation or detoxication. AKRs are Phase I drug metabolizing enzymes for a variety of carbonyl-containing drugs and are implicated in cancer chemotherapeutic drug resistance. They are involved in tobacco-carcinogenesis because they activate polycyclic aromatic trans-dihydrodiols to yield reactive and redox active o-quinones, but they also catalyze the detoxication of nicotine derived nitrosamino ketones. They also detoxify reactive aldehydes formed from exogenous toxicants, e.g., aflatoxin, endogenous toxicants, and those formed from the breakdown of lipid peroxides. AKRs are stress-regulated genes and play a central role in the cellular response to osmotic, electrophilic, and oxidative stress.
Ozone (O(3)) is a significant component of atmospheric air pollution and produces detrimental effects in the lung. Although the mechanism of O(3)-induced lung inflammation and injury is unclear, the increased release of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) by lung cel
ls following O(3) exposure may shed some light on this subject. To investigate the role of TNF-alpha in the O(3)-induced pulmonary insult, we intraperitoneally injected rats with either rabbit preimmune serum or rabbit antirat TNF-alpha 1 h prior to O(3) exposure. Approximately 12 h after the end of O(3) exposure the animals were sacrificed, the lungs lavaged, and tissue samples collected for expression of cytokine genes relevant to inflammation. The bronchoalveolar lavage fluid (BALF) was analyzed for albumin as a marker of pulmonary epithelial permeability changes and for fibronectin for its role in lung injury and repair. The lavage cells were collected, counted, and identified to quantitate the inflammatory response. Ozone exposure resulted in a significant increase in BALF albumin and fibronectin as compared to air-exposed controls and a significant increase in BALF polymorphonuclear leukocytes (PMNs). Antibody treatment produced a significant decrease in BALF albumin and PMNs as compared to O(3)-exposed rats given preimmune serum. Antibody treatment did not affect the BALF fibronectin concentration or the total cell count in the BAL. Tissue analysis for gene arrays revealed an activation of IL-1alpha, IL-6, and IL-10 in animals exposed to O(3). The gene expression was downregulated in animals treated with anti-TNF-alpha antibody prior to O(3) exposure. The results suggest a central role for TNF-alpha in the mechanistic pathways critical to lung inflammation. The significance of TNF-alpha in the inflammation and epithelial injury produced by ozone exposure reflects its overall contribution through modulation of other cytokines.
Apoptosis controls erythroid homeostasis by balancing survival and death of erythroid cells. The mitochondrial pathway of apoptosis involves regulation of apoptotic events caused by the Bcl-2 family proteins, including the anti-apoptotic and pro-apoptotic members. However, little has been reported o
n the role of the anti-apoptotic Bcl-2 family members in rat late-stage erythroblasts that are no longer erythropoietin (EPO)-dependent. In the present study, to investigate this we analyzed changes in apoptosis-related factors that occurred in vitro. EPO stimulation resulted in reduced apoptotic cell death of the late-stage erythroblasts accompanied by decreased caspase-3 and caspase-9 activities, which is indicative of the induction of apoptosis through the mitochondrial pathway. Analysis of mRNA expression of the Bcl-2 family proteins demonstrated that EPO stimulation up-regulated the Bcl-xL mRNA, resulting in decreases in the mRNA ratios of Bak, Bax, and Bad to Bcl-xL. Also, the mRNA ratios of Bak and Noxa to Mcl-1 were decreased, mainly due to up-regulation of Mcl-1 mRNA. These results showed a close association between reduced apoptotic cell death and increased mRNA levels of Bcl-xL and Mcl-1 in the presence of EPO. Thus, the present study suggests that Bcl-xL may be an important anti-apoptotic factor of rat late-stage erythroblasts as has been reported in murine erythroblasts. Moreover, the results also indicate the possibility that Mcl-1 may act on the rat late-stage erythroblasts as an anti-apoptotic factor.
Takahashi Y, etal., J Toxicol Sci. 2012;37(3):663-6.
Dental amalgam is a source of exposure to elemental mercury vapor in the general population. The aim of this study was to elucidate the effect of elemental mercury vapor exposure from dental amalgam restorations on gene expression profiles. Out of 26,962 rat genes, mercury vapor was found to increa
se the expression of 1 gene (Atp1b3) and decrease the expression of 1 gene (Tap1) in the cerebrum, increase the expression of 1 gene (Dnaja2) in the cerebellum, increase the expression of 2 genes (Actb and Timm23) and decrease the expression of 1 gene (Spink3) in the liver, increase the expression of 2 genes (RT1-Bb and Mgat5) and decrease the expression of 6 genes (Tnfaip8, Rara, Slc2a4, Wdr12, Pias4 and Timm13) in the kidney.
We investigated the effects of ethinyl estradiol (5 mg/kg body wt daily for 5 days, orally) and/or iron sorbitol (50 mg/kg body wt daily for 5 days, i.m.) on bile flow, bile salt independent fraction (BSIF), hepatic delta-aminolevulinate synthase (ALA-S) and uroporphyrinogen decarboxylase (URO-D) in
female rats. Ethinyl estradiol administration was associated with a significant decrease of bile flow and BSIF and an increase in URO-D activity in comparison to control values. Iron alone did not modify biliary parameters, but significantly increased the activity of ALA-S. Combined treatment with ethinyl estradiol plus iron partially corrected the reduction of BSIF and restored the activity of ALA-S and URO-D to control levels. Thus iron appears to exert a partially protective effect against ethinyl estradiol-induced cholestasis. No porphyrinogenic effect was observed.
Large eosinophilic cytoplasmic inclusions (ECIs) are occasionally seen in untreated rat Clara cells. Following inhalation exposure to a corticosteroid, the number of ECIs was increased. This is the first histopathological description of rat ECIs and attempted characterization by immunohistochemistry
, in situ hybridization, and electron microscopy. ECIs were strongly positive for surfactant protein D (SP-D) and weakly positive for Clara cell specific protein (CCSP). Clara cell cytoplasm was positive for CCSP mRNA regardless of ECIs, but not within ECIs. Corticosteroid treatment and ECI presence did not affect the immunohistochemistry and in situ hybridization staining intensities. Electron microscopy revealed large intracytoplasmic granules with an irregular limiting membrane. The ECI number was microscopically quantified in rats from three-, six-, and twenty-four-month studies. The mean ECI counts in treated rats increased from three- to fifty-four-fold with a positive dose-related trend, when compared with vehicle controls. Although the mechanism is unclear, SP-D and to a lesser extent CCSP accumulate in the ECIs. As human bronchial epithelium does not appear to contain structures analogous to the ECI, it is suggested that the observation of an increased number of ECIs in the treated rats is not likely to be relevant for human clinical risk assessment.
Mu X, etal., J Biochem Mol Toxicol. 2006;20(1):7-17.
The androgen receptor (AR) is expressed in the fetal testis; however, the role of AR in fetal testicular development is poorly understood. Disrupted AR activity and subsequent gene expression alterations may disturb developmental programming of the fetal testis and result in testicular abnormalitie
s later in life. The present study was performed to examine global gene expression patterns in rat fetal testis following in utero exposure to various AR antagonists. Pregnant Sprague-Dawley rats were treated with flutamide (50 mg/kg/day), linuron (50 mg/kg/day), vinclozolin (200 mg/kg/day), p,p'-DDE (100 mg/kg/day) or corn oil vehicle by gavage daily from gestation day (GD) 12-19. Testes were isolated on GD 19, and AR immunostaining, histology, and global changes in gene expression were determined. There were no alterations in the pattern or expression level of AR and no apparent histological changes in the fetal testes in any treatment group. Microarray analysis using Dunnett's test with multiple testing correction revealed no significant gene expression alterations following exposure to flutamide, linuron, vinclozolin, and p,p'-DDE. A less stringent analysis yielded some chemical specific effects on gene expression, and these effects were further evaluated by real-time RT-PCR. Vinclozolin treatment reduced the expression of several genes involved in cholesterol biosynthesis, though the testosterone levels were unchanged in the fetal testes in any treatment group. In flutamide, linuron, and p,p'-DDE treatment groups, the expression of hemoglobin Y, beta-like embryonic chain (Hbb-y) was reduced. Myomesin 2 (Myom2) expression was increased following linuron treatment. Given the lack of a common set of genes and the absence of overt histopathology, we conclude that the fetal testis is not a major target for AR activity at this stage of development although some cell-type specific gene expression changes cannot be ruled out.
Cho YM, etal., J Toxicol Sci. 2009 Oct;34(4):407-12.
We recently demonstrated the incidence and multiplicity of N-methyl-N-nitrosourea (MNU)-induced mammary tumors to be increased by administration of acrylamide (AA) in post-initiation in rats. In the present study, to clarify the mechanisms of enhancement, H-ras gene mutations in mammary tumors induc
ed in MNU-initiated rats with or without subsequent AA administration were investigated. Frequencies of mutations in codon 12 from GGA to GAA were significantly (p < 0.05) higher in rats with AA administration (82%, 23 out of 28 tumors) as compared to those without AA (50%, 9 out of 18 tumors), but the latency and volume of H-ras mutation-harboring tumors were similar to those of the mutation-lacking tumors. No mutations in codons 13 or 61 were detected in either treatment groups. The results thus indicate that H-ras gene mutations in codon 12 play a pivotal role in initiation of carcinogenesis and it appears possible that AA administration may selectively co-stimulate and/or maintain initiated cells via other genomic or non-genomic events in MNU-treated rats.
TGF-beta, and its type 1 (ALK5) receptor, are critical to the pathogenesis of fibrosis. In toxicologic studies of 4 or more days in 10-week-old Sprague-Dawley rats, using an ALK5 inhibitor (GW788388), expansion of hypertrophic and proliferation zones of femoral
physes were noted. Subphyseal hyperostosis, chondrocyte hypertrophy/hyperplasia, and increased matrix were present. Physeal zones were laser microdissected from ALK5 inhibitor-treated and control rats sacrificed after 3 days of treatment. Transcripts for TGF-beta1, TGF-beta2, ALK5, IHH, VEGF, BMP-7, IGF-1, bFGF, and PTHrP were amplified by real-time PCR. IGF and IHH increased in all physis zones with treatment, but were most prominent in prehypertrophic zones. TGF-beta2, bFGF and BMP7 expression increased in proliferative, pre-and hypertrophic zones. PTHrP expression was elevated in proliferative zones but decreased in hypertrophic zones. VEGF expression was increased after treatment in pre- and hypertrophic zones. ALK5 expression was elevated in prehypertrophic zones. Zymography demonstrated gelatinolytic activity was reduced after treatment. Apoptotic markers (TUNEL and caspase-3) were decreased in hypertrophic zones. Proliferation assessed by Topoisomerase II and Ki67 was increased in multiple zones. Movat stains demonstrated that proteoglycan deposition was altered. Physeal changes occurred at doses well above those resulting in fibrosis. Interactions of factors is important in producing the physeal dysplasia phenotype.
Tokumoto M, etal., J Toxicol Sci. 2013;38(6):815-20.
Ube2d ubiquitin-conjugating enzymes promote p53 ubiquitination and proteasomal degradation. We previously showed that cadmium induced p53-dependent apoptosis through the suppression of expression of Ube2d family genes (Ube2d1, Ube2d2, Ube2d3 and Ube2d4) in normal rat proximal tubular cells. Here we
examined the effects of inorganic arsenic and inorganic mercury, which induce apoptosis in proximal tubular cells, on cellular protein level of p53 and gene expression of Ube2d family. Inorganic arsenic induced apoptosis with p53 accumulation, and suppressed Ube2d1, Ube2d2 and Ube2d4 expression, but not Ube2d3. On the other hand, although apoptosis was induced in response to inorganic mercury in proximal tubular cells, protein level of p53 was not elevated by inorganic mercury. These results suggest that inorganic arsenic, but not inorganic mercury, may induce p53-dependent apoptotic pathways through downregulation of gene expression of Ube2d family in proximal tubular cells.
Omeprazole (OPZ), a proton pump inhibitor, is a cytochrome P450 (CYP) 1A1/2 inducer. Some CYP1A inducers are known to have liver tumor promoting effects in rats and the ability to enhance oxidative stress. In this study, we performed a two-stage liver carcinogenesis bioassay in rats to examine the t
umor promoting effect of OPZ (Experiment 1) and to clarify a possible mechanism of action (Experiment 2). In Experiment 1, male F344 rats were subjected to a two-third partial hepatectomy, and treated with 0, 138 or 276 mg/kg OPZ by oral gavage once a day for six weeks after an intraperitoneal injection of N-diethylnitrosamine (DEN). Liver weights significantly increased in the DEN+OPZ groups, and the number and area of glutathione S-transferase placental form (GST-P) positive foci significantly increased in the DEN+276 mg/kg OPZ group. In Experiment 2, the same experiment as Experiment 1 was performed, but the dosage of OPZ was 0 or 276 mg/kg. The number and area of GST-P positive foci as well as liver weights significantly increased in the DEN+276 mg/kg OPZ group. The number of proliferative cell nuclear antigen (PCNA)-positive cells also significantly increased in the same group. Real-time RT-PCR showed that the expression of AhR battery genes including Cyp1a1, Cyp1a2, Ugt1a6 and Nqo1, and Nrf2 battery genes including Gpx2, Yc2, Akr7a3, Aldh1a1 Me1 and Ggt1 were significantly upregulated in this group. However, the production of microsomal reactive oxygen species (ROS) and formation of thiobarbituric acid-reactive substances (TBARS) decreased, and 8-hydroxydeoxyguanosine (8-OHdG) content remained unchanged in this group. These results indicate that OPZ, CYP1A inducer, is a liver tumor promoter in rats, but oxidative stress is not involved in the liver tumor promoting effect of OPZ.
To assess the health risks associated with exposure to 2,3,7,8-tetrachlorodebenzo-p-dioxin (TCDD), we studied the effects of a relatively low dose of TCDD on the male reproductive system of rats, using the experimental protocol of T. A. Mably et al. (1992, Toxic
ol. Appl. Pharmacol. 114, 97-107, 108-117, 118-126), and searched for the most sensitive and reliable among several indices of TCDD toxicity. Pregnant Holtzman rats were given a single oral dose of 0, 12.5, 50, 200, or 800 ng TCDD/kg body weight on gestational day (GD) 15, and male offspring were sacrificed on postnatal day (PND) 49 or 120. GC-MS analysis of the abdominal fat tissue and testis clearly showed increased amounts of TCDD in these offspring. However, there was no TCDD effect on body weight of offspring. There were no changes on testicular or epididymal weights by TCDD administration, even at the 800-ng/kg dose in rats sacrificed on either PND 49 or 120. In addition, TCDD administration resulted in no changes in daily sperm production or sperm reserve at any of the doses used. However, the weight of the urogenital complex, including the ventral prostate, was significantly reduced at doses of 200 and 800 ng TCDD/kg in rats sacrificed on PND 120. Moreover, the anogenital distance (AGD) of male rats sacrificed on PND 120 showed a significant decrease in the groups receiving doses greater than 50 ng TCDD/kg. TCDD administration resulted in no apparent dose-dependent changes in levels of either serum testosterone or luteinizing hormone. Interestingly, reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that, in the ventral prostates of the PND 49 group, TCDD administration resulted in both a dose-dependent increase in 5alpha-reductase type 2 (5alphaR-II) mRNA level and a dose-dependent decrease in androgen receptor (AR) mRNA level. These results suggest that low-dose TCDD administration had a greater effect on the development of the external genital organs and ventral prostate than on development of the testis and other internal genital organs. Moreover, it is highly suggested that the decrease in the size of the ventral prostate by maternal TCDD exposure might be due to decreased responsiveness of the prostate to androgen due to an insufficient expression level of androgen receptor during puberty.
Watanabe A, etal., J Toxicol Sci. 2012;37(3):617-29.
Teriparatide, a therapeutic agent for osteoporosis, has been reported to increase the incidences of bone neoplasms such as osteosarcoma when administered subcutaneously to Fischer 344 (F344) rats for a long term, but its non-carcinogenic dose level following 2-year daily administration has not been
established. Here we report detailed studies on the carcinogenicity of teriparatide following long-term administration. When teriparatide was administered subcutaneously to male and female Sprague-Dawley (SD) rats daily for 2 years, the incidence of osteosarcoma was increased at 13.6 microg/kg/day. The non-carcinogenic dose level was 4.5 microg/kg/day for both males and females. The development of osteosarcoma in SD rats depends on the dose level of, and treatment duration with, teriparatide. Responses of the bones to teriparatide were similar between F344 and SD rats in many aspects. These results suggested that the carcinogenic potential of teriparatide in SD rats is essentially the same as in F344 rats.
de Plater GM, etal., Toxicon. 1998 Jun;36(6):847-57.
In this study we characterise the ability of a C-type natriuretic peptide from platypus (Ornithorhynchus anatinus) venom (ovCNP-39) to relax the rat uterus in vitro and we investigate the possibility that ovCNP-39 contributes to the acute effects of envenomation, which include oedema, pain and eryth
ema. We have found that both ovCNP-39 and the endogenous C-type natriuretic peptide, CNP-22, produce oedema in the rat paw and release histamine from rat peritoneal mast cells. Two synthetic peptides, ovCNP-39(1-17) and ovCNP-39(18-39), corresponding to the N- and C-termini, respectively, are equipotent histamine releasers, suggesting that ovCNP-39 and other natriuretic peptides do not act through conventional natriuretic peptide receptors on mast cells.
Indole-3-carbinol (I3C) has a liver tumor promoting activity in rats, and is also known as a cytochrome p450 1A (CYP1A) inducer. The generation of reactive oxygen species (ROS) resulting from CYP1A induction due to I3C, is probably involved in the tumor promotion. To clarify whether ROS generation
contributes to I3C's induction of hepatocellular altered foci, partially hepatectomized rats were fed a diet containing 0.5% of I3C for 8 weeks with or without 0.3% N-acetyl-L-cysteine (NAC), an antioxidant, in their drinking water after N-diethylnitrosamine (DEN) initiation. Immunohistochemical analysis showed that the glutathione-S-transferase placental form (GST-P) positive foci promoted by I3C were suppressed by the administration of NAC. The mRNAs of members of the phase II nuclear factor, erythroid derived 2, like 2 (Nrf2) gene batteries, whose promoter region is called as antioxidant response element (ARE), were down-regulated in the DEN-I3C-NAC group compared to the DEN-I3C group, but Cyp1a1 was not suppressed in the DEN-I3C-NAC group compared to the DEN-I3C group. There was no marked difference in production of microsomal ROS and genomic 8-hydroxy-2'-deoxygunosine (8-OHdG) as an oxidative DNA marker between the DEN-I3C-NAC and DEN-I3C groups, while mapkapk3 and Myc were decreased by the NAC treatment. These results indicate that oxidative stress plays an important role for I3C's tumor promotion, and NAC suppresses induction of hepatocellular altered foci with suppressed cytoplasmic oxidative stress.
Inhibitors of dihydroorotate dehydrogenase (DHO-DH), such as brequinar or leflunomide, have been intensively tested for their antitumour and immunomodulating effects. Polyporic acid (PA) from the mushroom Hapalopilus rutilans (H. r.) also is a DHO-DH inhibitor (50% inhibitory concn., IC50, 10(-4)-10
(-3) M). As three people had been poisoned following ingestion of H. r. we wanted to investigate the effects of PA in rats and in cell cultures. Rats given PA via probang (100-800 mg/ kg) within 24 h developed strongly reduced locomotor activity, depressed visual placing response and impaired wire manoeuvre. Laboratory investigation of blood revealed hepatorenal failure, metabolic acidosis as well as hypokalaemia and hypocalcaemia. All symptoms closely paralleled the effects seen in the poisoned people. Proliferation of cultured cells (including rat brain neurons and glia, fibroblasts, tumour cells) was depressed at 10(-4)-10(-3) M PA. We conclude that the intoxication of people poisoned with H. r. is due to the high content of the DHO-DH inhibitor PA.
Cocchi D, etal., Toxicol Appl Pharmacol. 2009 Mar 24.
Polychlorinated biphenyls (PCBs) are pollutants detected in animal tissues and breast milk. The experiments described in the present paper were aimed at evaluating whether the four PCB congeners most abundant in animal tissues (PCB-138, -153, -180 and -126), administered since fetal life till weanin
g, can induce long-term alterations of GH-axis activity and bone mass in the adult rat. We measured PCB accumulation in rat brain and liver, somatic growth, pituitary GH expression and plasma hormone concentrations at different ages. Finally, we studied hypothalamic somatostatin expression and bone structure in adulthood, following long-term PCB exposure. Dams were treated during pregnancy from GD15 to GD19 and during breast-feeding. A constant reduction of the growth rate in both male and female offspring from weaning to adulthood was observed in exposed animals. Long-lasting alterations on hypothalamic-pituitary GH axis were indeed observed in PCB-exposed rats in adulthood: increased somatostatin expression in hypothalamic periventricular nucleus (both males and females) and lateral arcuate nucleus (males, only) and decreased GH mRNA levels in the pituitary of male rats. Plasma IGF-1 levels were higher in PCB-exposed male and female animals as compared with controls at weaning and tended to be higher at PN60. Plasma testosterone and thyroid hormone concentrations were not significantly affected by exposure to PCBs. In adulthood, PCBs caused a significant reduction of bone mineral content and cortical bone thickness of tibiae in male rat joint to increased width of the epiphyseal cartilage disk. In conclusion, the developmental exposure to the four selected PCB compounds used in the present study induced far-reaching effects in the adult offspring, the male rats appearing more sensitive than females.
Secreted phospholipase A(2) of group IIA (sPLA(2)-IIA) has been involved in a variety of inflammatory diseases, including acute lung injury. However, the specific role of sPLA(2)-IIA in phosgene-induced acute lung injury remains unidentified. The aim of the present study was to investigate the corre
lation between sPLA(2)-IIA activity and the severity of phosgene-induced acute lung injury. Adult male rats were randomly exposed to either normal room air (control group) or a concentration of 400 ppm phosgene (phosgene-exposed group) for there are 5 phosgene-exposed groups altogether. For the time points of 1, 3, 6, 12 and 24 h post-exposure, one phosgene-exposed group was sacrificed at each time point. The severity of acute lung injury was assessed by Pa(O2)/F(IO2) ratio, wet-to-dry lung-weight ratio, and bronchoalveolar lavage (BAL) fluid protein concentration. sPLA(2)-IIA activity in BAL fluid markedly increased between 1 h and 12 h after phosgene exposure, and reached its highest level at 6 h. Moreover, the trend of this elevation correlated well with the severity of lung injury. These results indicate that sPLA(2)-IIA probably participates in phosgene-induced acute lung injury.
This study investigated the alterations that occur in auditory brainstem-evoked responses (ABRs) concurrent with changes in cochlear concentrations of glutathione (GSH), lipid peroxidation, and antioxidant enzyme activity in cisplatin-induced ototoxicity and in
dose-dependent otoprotection by an antioxidant lipoate. Male Wistar rats were divided into different groups and were treated as follows, with: (1) vehicle (saline) control; (2) cisplatin (16 mg/kg, i.p.); (3) lipoate (100 mg/kg, i.p.) plus saline; (4) cisplatin plus lipoate (25 mg/kg); (5) cisplatin plus lipoate (50 mg/kg), and (6) cisplatin plus lipoate (100 mg/kg). Post-treatment ABRs were evaluated after three days, the rats were sacrificed, and cochleae were harvested and analyzed. The cisplatin-injected rats showed ABR threshold elevations above the pre-treatment thresholds. Rats treated with lipoate plus cisplatin did not show significant elevation of hearing thresholds. Cisplatin administration resulted in a depletion of cochlear GSH concentration (69% of control), whereas, cisplatin-plus-lipoate treatment increased GSH concentration close to control value. Cisplatin-treated rats showed a decrease in cochlear superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) activities (57, 78, 59, and 58% of control, respectively), and an increase in malondialdehyde (MDA) concentration (196% of control). Cochlear SOD, CAT, GSH-Px, and GR activities and MDA concentrations were restored in the rats injected with cisplatin plus graded doses of lipoate than those with cisplatin alone. It is concluded that cisplatin-induced ototoxicity is related to impairment of the cochlear antioxidant defense system, and the dose-dependent otoprotection conferred by an antioxidant lipoate against cisplatin ototoxicity is associated with sparing of the cochlear antioxidant defense system.
Shimizu M, etal., Toxicol Sci. 1998 Oct;45(2):204-11.
Arsenic exposure is clearly linked to human cancer. In rodent cells, arsenic has been reported to induce aberrant gene expression, including activation of the proto-oncogene c-myc. Abnormal or altered expression of such oncogenes can be involved in the acquisition of a malignant phenotype. Although
its mechanism of action is unclear, arsenic is known to exert at least some of its toxic effects through interaction with sulfhydryl groups, and the non-protein sulfhydryl glutathione (GSH) appears to play an important role in detoxication of arsenic. Similarly, metallothionein (MT), a metal-binding protein with high sulfhydryl content, often functions in defense against metal-induced or oxidative cellular injury. Therefore, we examined the relationship among GSH, MT gene expression, and arsenic-induced toxicity or c-myc expression in cultured rat myoblast (L6) cells. In initial toxicity studies, arsenic was used in both the trivalent (arsenite) and pentavalent (arsenate) forms. The role of GSH was studied by pretreating cells with L-buthionine sulfoximine (BSO), which induces a marked depletion of GSH. In vitro exposure of L6 cells to BSO (1 to 25 microM) resulted in dose-dependent decreases in GSH. GSH depletion sensitized cells to both arsenite and arsenate. Zinc pretreatment, at levels which highly activated MT expression, had no effect on arsenite-induced cytotoxicity. Arsenite (1 microM) alone modestly increased c-myc expression from 1 to 4 h after treatment (maximum of 2.0-fold over control). After GSH depletion cells responded to arsenite exposure with much larger increases in c-myc transcription (3.2-fold over control). Zinc pretreatment had no reductive effect on arsenite-induced c-myc expression despite markedly activating the MT gene. Thus, it appears that the cellular levels of GSH, but not MT gene expression, play an important role in resistance to arsenic toxicity and aberrant gene activation. Moreover, depletion of GSH enhances arsenic-induced proto-oncogene activation, which might contribute to subsequent transformation.
Yoon BI, etal., Toxicology. 2004 Jan 15;195(1):19-29.
The pulmonary pathogenesis triggered by benzene exposure was studied. Since the role of the connexin 32 (Cx32) gap junction protein in mouse pulmonary pathogenesis has been suggested, in the present study, we explored a possible role of Cx32 in benzene-induced pulmonary pathogenesis using the wild-t
ype (WT) and Cx32 knockout (KO) mice. The mice were exposed to 300 ppm benzene by inhalation for 6 h per day, 5 days per week for a total of 26 weeks, and then sacrificed to evaluate the pneumotoxicity or allowed to live out their life span to evaluate the reversibility of the lesions and tumor incidence. Our results clearly revealed exacerbated pneumotoxicity in the benzene-exposed Cx32 KO mice, characterized by diffuse granulomatous interstitial pneumonia, markedly increased mucin secretion of bronchial/bronchiolar and alveolar epithelial cells, and hyperplastic alveolar epithelial cells positive for CYP2E1. But the results did not indicate any enhancement of pulmonary tumorigenesis in the Cx32 KO mice though the number of animals was small.
Hasebe M, etal., J Toxicol Sci. 2008 Oct;33(4):473-7.
Although thyroid hormones are crucial for cerebellar development, and several thyroid hormone-dependent genes are known to be correlated with morphological development of the cerebellum, the precise mechanisms of morphological cerebellar changes in hypothyroidism (HT) remain unknown. To investigate
these mechanisms in experimental rat HT induced by the anti-thyroid drug methimazole (MMI-HT rat), we carried out gene expression analysis (sonic hedgehog (Shh), reelin, and Bax) using quantitative real-time PCR. Histological examination revealed cerebellar abnormalities, including reductions in the thickness of the molecular layer and delayed disappearance of the external granular layer (EGL), as well as excess bulges or sublobules in the internal granular layer (IGL). At Postnatal Day (P) 6, Shh expression in MMI-HT rat was comparable to that in controls, thus suggesting that Shh expression was sufficient to form the lobes in the initial phase. However, Shh expression decreased in the later phases, as compared with age-matched controls. This demonstrated that stronger and sustained signaling is necessary for partitioning of the cardinal lobes into lobes and sublobes. Although reelin expression was not clearly different from that in controls, Bax expression decreased at P 15. The attrition of Bax at P 15 as well as Shh in the later phase may be related to irregularities in the IGL and the relatively large numbers of internal granular cells. Taken together, these results suggest that Shh expression is related to the morphological cerebellar changes in experimental hypothyroidism and that sustained signaling by Shh may play a key role in normal development, particularly lobulation, in the cerebellum.
Diesel exhaust is a public health concern and contributor to both ambient and occupational air pollution. As part of a general health assessment of multiple anthropogenic source emissions conducted by the National Environmental Respiratory Center (NERC), a series of health assays was conducted on ra
ts and mice exposed to environmentally relevant levels of diesel exhaust. This article summarizes the study design and exposures, and reports findings on several general indicators of toxicity and carcinogenic potential. Diesel exhaust was generated from a commonly used 2000 model 5.9-L, 6-cylinder turbo diesel engine operated on a variable-load heavy-duty test cycle burning national average certification fuel. Animals were exposed to clean air (control) or four dilutions of whole emissions based on particulate matter concentration (30, 100, 300, and 1000 microg/m(3)). Male and female F344 rats and A/J mice were exposed by whole-body inhalation 6 h/day, 7 days/wk, for either 1 wk or 6 mo. Exposures were characterized in detail. Effects of exposure on clinical observations, body and organ weights, serum chemistry, hematology, histopathology, bronchoalveolar lavage, and serum clotting factors were mild. Significant exposure-related effects occurring in both male and female rats included decreases in serum cholesterol and clotting Factor VII and slight increases in serum gamma-glutamyl transferase. Several other responses met screening criteria for significant exposure effects but were not consistent between genders or exposure times and were not corroborated by related parameters. Carcinogenic potential as determined by micronucleated reticulocyte counts and proliferation of adenomas in A/J mice were unaffected by 6 mo of exposure. Parallel studies demonstrated effects on cardiac function and resistance to viral infection; however, the results reported here show few and only modest health hazards from subchronic or shorter exposures to realistic concentrations of contemporary diesel emissions.
Jamieson SE, etal., Mem Inst Oswaldo Cruz. 2009 Mar;104(2):162-9.
Analysing human genetic variation provides a powerful tool in understanding risk factors for disease. Toxoplasma gondii acquired by the mother can be transmitted to the fetus. Infants with the most severe clinical signs in brain and eye are those infected earl
y in pregnancy when fetal immunity is least well developed. Genetic analysis could provide unique insight into events in utero that are otherwise difficult to determine. We tested the hypothesis that propensity for T. gondii to cause eye disease is associated with genes previously implicated in congenital or juvenile onset ocular disease. Using mother-child pairs from Europe (EMSCOT) and child/parent trios from North America (NCCCTS), we demonstrated that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4 previously associated with juvenile onset retinal dystrophies including Stargardt's disease. Polymorphisms at COL2A1 encoding type II collagen, previously associated with Stickler syndrome, associated only with ocular disease in congenital toxoplasmosis. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting, which provided an explanation for the patterns of inheritance observed. These genetic and epigenetic risk factors provide unique insight into molecular pathways in the pathogenesis of disease.
Xu C, etal., Toxicol Lett. 2010 Dec 15;199(3):323-32.
The aim of the present study was to determine the ovotoxicity of female Sprague-Dawley (SD) rats exposed to benzo[a]pyrene (B[a]P) and di-(2-ethylhexyl) phthalate (DEHP), either alone or in combination; the molecular mechanism and the combined effects were also
evaluated. Female rats were given intragastric administration of control (corn oil), B[a]P (5 and 10mg/kg), DEHP (300 and 600 mg/kg) and B[a]P+DEHP (at 5mg/kg and 300 mg/kg respectively, or at 10mg/kg and 600 mg/kg respectively) on alternate days for 60 days. Relative ovary weight, estrous cycle, 17beta-estradiol blood level, ovarian follicle populations, granulosa cell apoptosis, and gene and protein expression of P450Arom and PPAR were investigated. Our study demonstrated that the combination of B[a]P and DEHP exerts ovotoxicity in female rats and suppression of sex hormone secretion and homeostasis, which is associated with prolonged estrous cycles, decreases in ovarian follicle populations and granulosa cell apoptosis involving a PPAR-mediated signaling pathway of action of the two chemicals. In addition, based on qualitative assessment of the combined toxicity, no interaction effects were observed following combined B[a]P and DEHP administration.
Fan LQ, etal., Toxicology. 2004 Oct 15;203(1-3):41-8.
Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor alpha (PPARalpha). Exposure to PP results in down-regulation of CYP2C family members under control of growth hormone
and sex steroids including CYP2C11 and CYP2C12. We hypothesized that PP exposure would also lead to similar changes in CYP2C7, a retinoic acid and testosterone hydroxylase. CYP2C7 gene expression was dramatically down-regulated in the livers of rats treated for 13 weeks by WY-14,643 (WY; 500 ppm) or gemfibrozil (GEM; 8000 ppm). In the same tissues, exposure to WY and GEM and to a lesser extent di-n-butyl phthalate (20,000 ppm) led to decreases in CYP2C7 protein levels in both male and female rats. An examination of the time and dose dependence of CYP2C7 protein changes after PP exposure revealed that CYP2C7 was more sensitive to compound exposure compared to other CYP2C family members. Protein expression was decreased after 1, 5 and 13 weeks of PP treatment. CYP2C7 protein expression was completely abolished at 5 ppm WY, the lowest dose tested. GEM and DBP exhibited dose-dependent decreases in CYP2C7 protein expression, becoming significant at 1000 ppm or 5000 ppm and above, respectively. These results show that PP exposure leads to changes in CYP2C7 mRNA and protein levels. Thus, in addition to known effects on steroid metabolism, exposure to PP may alter retinoic acid metabolism.
A vast majority of pharmacological compounds and their metabolites are excreted via the urine, and within the complex structure of the kidney,the proximal tubules are a main target site of nephrotoxic compounds. We used the model nephrotox
00;'>toxicants mercuric chloride, 2-bromoethylamine hydrobromide, hexachlorobutadiene, mitomycin, amphotericin, and puromycin to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. Male Sprague-Dawley rats were dosed via intraperitoneal injection once daily for mercuric chloride and amphotericin (up to 7 doses), while a single dose was given for all other compounds. Animals were exposed to 2 different doses of these compounds and kidney tissues were collected on day 1, 3, and 7 postdosing. Gene expression profiles were generated from kidney RNA using 17K rat cDNA dual dye microarray and analyzed in conjunction with histopathology. Analysis of gene expression profiles showed that the profiles clustered based on similarities in the severity and type of pathology of individual animals. Further, the expression changes were indicative of tubular toxicity showing hallmarks of tubular degeneration/regeneration and necrosis. Use of gene expression data in predicting the type of nephrotoxicity was then tested with a support vector machine (SVM)-based approach. A SVM prediction module was trained using 120 profiles of total profiles divided into four classes based on the severity of pathology and clustering. Although mitomycin C and amphotericin B treatments did not cause toxicity, their expression profiles were included in the SVM prediction module to increase the sample size. Using this classifier, the SVM predicted the type of pathology of 28 test profiles with 100% selectivity and 82% sensitivity. These data indicate that valid predictions could be made based on gene expression changes from a small set of expression profiles. A set of potential biomarkers showing a time- and dose-response with respect to the progression of proximal tubular toxicity were identified. These include several transporters (Slc21a2, Slc15, Slc34a2), Kim 1, IGFbp-1, osteopontin, alpha-fibrinogen, and Gstalpha.
Gray T, etal., Toxicology. 2001 Mar 7;160(1-3):35-46.
The goal of our studies is to elucidate mechanisms that control and modulate mucous differentiation and mucin gene expression in the conducting airways. We used cultures of normal human tracheobronchial epithelial (NHTBE) cells that were shown to secrete two major airway mucins, namely MUC5AC and MU
C5B as well as several other secretory products. Mucous differentiation and expression of MUC2, MUC5AC, MUC5B and MUC7, but not MUCi, MUC4, and MUC8 mucin genes, were shown to be retinoic acid- (RA) or retinol-dependent. We found that RA control of mucin genes was mediated by the retinoid acid receptors RAR alpha and, to a lesser extent, by RAR gamma. Our studies also showed that other important bioregulators such as thyroid hormone (T3) and epidermal growth factor (EGF) modulate basal expression of mucin genes, interacting with RA in a concentration-dependent manner. T3, which binds to thyroid receptors (TRs) belonging to the same superfamily of steroid hormone nuclear receptors as the RARs, inhibits mucin gene expression, particularly MUC5AC. One possible mechanism of this T3 effect is downregulation of RAR proteins, which are critical for mucin gene expression. However, we also found that T3 inhibits MUC5AC transcription.EGF, which had previously been shown to stimulate mucin expression and mucin secretion in cultured rat tracheal epithelial (RTE) cells, inhibited mucin secretion in human bronchial epithelial cell cultures. This effect was EGF concentration- and time-dependent and was progressively abolished by increasing the RA concentration. Subsequent studies suggested that the inhibitory effects of high concentrations of EGF may result from selective reduction of MUC5AC expression. These studies thus point to potentially important species differences in the mechanisms regulating mucous production, and they also confirm previous findings indicating differential regulation of MUC5AC and MUC5B gene expression.
Honda A, etal., J Toxicol Sci. 2010 Apr;35(2):209-15.
We examined the sensitivity of metallothionein (MT)-III null mice to cadmium (Cd)-induced acute hepatotoxicity. MT-I/II null mice were also used to compare Cd toxicities between MT-III null mice and MT-I/II null mice. Male M
T-I/II null mice, MT-III null mice and wild-type mice were given s.c. injection of Cd (5-20 micromol/kg) and then the blood and liver were collected from each mouse under ether anesthesia at 2 days after the administration. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated by injection of Cd were significantly higher in the MT-I/II null mice than in the wild-type mice. In the MT-III null mice, ALT and AST activities were not elevated following the injection of Cd. Further, marked morphological changes such as necrosis of hepatocytes, severe hemorrhage and congestion were observed by injection of Cd in both MT-I/II null mice and wild-type mice, whereas the degree of injury was found to be more extensive in MT-I/II null mice. In contrast, only occasional damage was observed in the liver of MT-III null mice treated with the same dose of Cd. These morphological observations were consistent with the results of ALT and AST activities. In the present study, it was clearly found that MT-III null mice were resistant to Cd hepatotoxicity, although MT-I/II null mice were sensitive to its toxicity. MT-III may be an accelerative factor in Cd-induced acute hepatotoxicity.
Davis AP, etal., Nucleic Acids Res. 2013 Jan;41(Database issue):D1104-14. doi: 10.1093/nar/gks994. Epub 2012 Oct 23.
The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) provides information about interactions between environmental chemicals and gene products and their relationships to diseases. Chemical-gene, chemical-disease and gene-disease interactions manua
lly curated from the literature are integrated to generate expanded networks and predict many novel associations between different data types. CTD now contains over 15 million toxicogenomic relationships. To navigate this sea of data, we added several new features, including DiseaseComps (which finds comparable diseases that share toxicogenomic profiles), statistical scoring for inferred gene-disease and pathway-chemical relationships, filtering options for several tools to refine user analysis and our new Gene Set Enricher (which provides biological annotations that are enriched for gene sets). To improve data visualization, we added a Cytoscape Web view to our ChemComps feature, included color-coded interactions and created a 'slim list' for our MEDIC disease vocabulary (allowing diseases to be grouped for meta-analysis, visualization and better data management). CTD continues to promote interoperability with external databases by providing content and cross-links to their sites. Together, this wealth of expanded chemical-gene-disease data, combined with novel ways to analyze and view content, continues to help users generate testable hypotheses about the molecular mechanisms of environmental diseases.
Sajan MP, etal., Toxicol Lett. 1995 Oct;80(1-3):55-60.
Effects of aflatoxin B1 (AFB1) administration (7 mg/kg body weight, i.p.) on rat hepatic mitochondrial respiratory components have been examined. Succinoxidase and cytochrome oxidase activities were decreased in liver mitochondria isolated from rats 12-24 h afte
r AFB1 treatment. Both enzyme activities returned to normal levels after 48 h. Glutamate dehydrogenase and beta-hydroxybutyrate dehydrogenase activities did not show any alterations up to 24 h and thereafter increased at 48-72 h. Succinate dehydrogenase activity was impaired by 41% at 12 h and thereafter was found to be normal. The intramitochondrial cytochrome b content declined at 24-72 h, whereas cytochrome aa3 content was decreased maximally at 72 h after AFB1 administration. These observations on mitochondrial enzyme activities and cytochrome contents correlate well with our earlier observations made on hepatic mitochondrial respiratory rates after AFB1 treatment. The impairment of respiratory functions possibly results from membrane damage and selective modification of gene expression in mitochondria imparted by AFB1.
Hardie DG Annu Rev Pharmacol Toxicol. 2007;47:185-210.
The AMP-activated protein kinase (AMPK) system is a regulator of energy balance at both the cellular and whole-body levels that, once activated by low energy status, effects a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. It now appears to be the major target for t
wo existing classes of drug used to treat type 2 diabetes, i.e., the biguanides and thiazolidinediones. However, in both cases these activate AMPK indirectly, and an interesting question concerns whether a drug that directly activated AMPK would retain the therapeutic benefits of the existing drugs while eliminating unwanted side effects. AMPK activators also now have potential as anticancer drugs.
Semicarbazide-sensitive amine oxidase (SSAO) plays a role in the in vivo and in vitro toxicity of several environmental and endogenous amines. We investigated the role of SSAO as a component of cell culture medium (through addition of fetal calf serum (FCS)) com
pared to intracellular SSAO in the in vitro cytotoxicity of three amines and metabolites. Smooth muscle cells and beating cardiac myocytes were grown in 96-well plates and exposed to various concentrations and combinations of FCS in medium, amines (allylamine, AA; benzylamine, BZA; and methylamine, MA), and amine metabolites (aldehydes: acrolein, benzaldehyde, and formaldehyde; hydrogen peroxide, H2O2; ammonia, NH3). Amine and amine metabolite cytotoxicity was quantified by monitoring cell viability. SSAO activity was measured in FCS, cardiovascular cells, or rat plasma by a radioenzymatic assay using [14C]BZA. Our data show that AA and its aldehyde metabolite, acrolein, were the most toxic compounds to both cell types. However, AA toxicity was FCS-dependent in both cell types, while BZA, MA, and amine metabolite (i.e., aldehydes, H2O2, and NH3) cytotoxicity showed little FCS dependence. In these experiments, medium containing 10% FCS had a calculated amine metabolic capacity that was 30- to 50-fold that of the cultured smooth muscle cellular content in a single well of a 96-well plate. Our study demonstrates that SSAO in FCS contributes to amine metabolism and cytotoxicity to rat cardiovascular cells in vitro and how critical it is to evaluate serum for its role in mechanisms of amine toxicity in vitro and in vivo.
Satomi Y, etal., J Toxicol Sci. 2006 Oct;31(4):345-55.
Although paraquat (PQ) is known to induce pulmonary fibrosis, how it does so is not entirely clear. To elucidate the mechanisms involved, the profile of gene expression in the lung at three months after exposure to PQ (7 mg/kg, s.c., daily for eight administrations) was investigated in rats using a
DNA microarray. Changes in gene expression that were considered to reflect damage to the lung, a change in the balance of electrolytes and fluid, and alveolar remodeling were observed. The products of these genes were: CSF-1 receptor, which is a receptor of inflammatory cytokines that activates monocyte/macrophages; TGF-beta type II receptor, which is a receptor of TGF-betas involved in wound healing and fibrosis; a subunit of Na+/K(+)-ATPase, an amiloride-sensitive cation channel, and a subunit of the potassium channel, all of which regulate the alveolar fluid balance and play a role in clearing lung edema; the adenosine A2a receptor, which has a protective function in the lung and interacts with dopamine D1 and D2 receptors to regulate the function of amiloride-sensitive cation channels; cofilin, which is involved in the depolymerization and cleavage of actin filaments; LIM motif-containing protein kinase 1, which negatively regulates the activity of cofilin; SHPS-1, which regulates the integrin-mediated reorganization of the cytoskeleton; and sodium channel beta 2, which is involved in cell adhesion and migration. These results indicate that PQ-induced pulmonary fibrosis does not merely terminate as cicatrices three months after the discontinuation of PQ treatment, but that dynamic functional change continues in the lung.
Effects of pregnancy and lactation on warfarin-induced changes in blood coagulation-related parameters were examined in rats. Warfarin (0.5 mg/kg/day) was given orally to pregnant and non-pregnant rats for 3 days from gestation day (GD) 17 to 19 or to lactating and non-pregnant rats for 3 days from
post partum day (PPD) 10 to 12. Blood samples were collected from the rats on the day following the last administration (GD 20 or PPD 13) to measure prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), thrombotest (TBT), factor VII and X activities and anti-thrombin III concentration (ATIII). Administration of warfarin to non-pregnant rats resulted in significant prolongation of APTT and TBT and significant decreases in factor VII and X activities. On the other hand, similar but not significant changes were observed in pregnant rats and similar significant but less prominent changes were observed in lactating rats. The reduction of the anticoagulant effects of warfarin may partially be related to high plasma 17beta-estradiol concentration in pregnant rats and to high plasma prolactin concentration in lactating rats, respectively.
Kobayashi Y, etal., J Toxicol Sci. 2012;37(4):699-709.
In the present study, we isolated and determined the pharmacological characteristics of a novel gene encoding the zinc finger-like protein (ZfLp). The isolated cDNA consisted of 1,581 base pairs that encoded a 526-amino acid protein. The amino acid sequence of ZfLp is 96% identical to that of zinc f
inger protein 415 isoform 5 (ZNF415-5). Reverse-transcription (RT)-polymerase chain reaction (PCR) analysis revealed that the ZfLp mRNA is expressed in the breast, lung, stomach, small intestine colon and ovary, but not in the liver. When expressed in Xenopus laevis oocytes, ZfLp mediated the high affinity transport of [(3)H]paclitaxel (taxol) in a sodium-independent manner (K(m) = 336.7 +/- 190.0 nM). The uptake of [(3)H]paclitaxel (taxol) by ZfLp was trans-stimulated by glutarate and glutathione (GSH). A cis-inhibition experiment revealed that ZfLp-mediated transport of [(3)H]paclitaxel (taxol) is inhibited by several organic solutes specifically clotrimazole. Using several clotrimazole derivatives, we found that N-benzylimidazole would be a minimum unit for producing the inhibition of ZfLp-mediated drug uptake. Our results may provide insights into the novel role of soluble protein, such as ZNF, in the human body. Our results, therefore, would be expected to facilitate research on the novel role of ZNFs and on the discovery of novel drugs for targeting ZNF-related proteins such as ZfLp.
The studies presented here are aimed at understanding the expression of p53, HSP90alpha, and HSP90beta in gestation day (GD) 10 CD rat embryos. GD 10 rat embryos were exposed in vitro to 37 degrees C or 42 degrees C for 15 min, then cultured at 37 degrees C for 0.5, 1, 3, or 5 h. Immunohistochemistr
y was performed on formalin-fixed, paraffin embedded, sectioned embryos for p53, HSP90alpha, or HSP90beta expression. p53 expression was minimal in control embryos but was induced with heat exposure. Maximum expression of p53 was observed in rostral tissues, e.g., the optic vesicle, rostral neuroepithelium, and mature (rostral) somites 3 and 5 h after heat exposure. Expression of p53 in the caudal region, such as in mid and caudal neuroepithelium, immature (caudal) somites, and presomitic mesoderm, was moderate compared to rostral areas. No p53 expression was observed in the heart under any condition. The rostral-caudal gradient of p53 expression was not observed for HSP90alpha expression. HSP90alpha was induced in heat-exposed embryos beginning at 1 h, predominantly in neural tube and optic vesicle. Moderate but increased expression was observed in the somites of heat-exposed embryos at 3 and 5 h. Expression of p53 was primarily nuclear while HSP90alpha expression was mostly cytoplasmic. No clear association was observed between heat-induced HSP90alpha and p53 expression. HSP90beta was expressed extensively in control and heat-exposed embryos. Results indicate that heat induces p53 and HSP90alpha expression, but not HSP90beta expression, and that HSP90alpha induction is not likely to be involved in p53 regulation in mammalian embryos.
Indole-3-carbinol (I3C) and phenobarbital (PB) are cytochrome P450 (CYP) 1A and CYP2B inducers, respectively, and have liver tumor-promoting effects in rats. In this study, we investigated the modifying effects on tumor promotion by I3C and PB co-administration. Six-week-old male F344 rats received
a single intraperitoneal injection of N-diethylnitrosamine for initiation treatment. Two weeks after the initiation, rats were given no tumor-promoting agents (DEN alone), I3C (2,500 or 5,000 ppm in diet), PB (60 or 120 ppm in drinking water), or 2,500 ppm I3C + 60 ppm PB for 6 weeks. One week after the I3C/PB treatments, all animals underwent a two-thirds partial hepatectomy. The number and area of liver cell foci positive for glutathione S-transferase placental form (GST-P(+) foci) were not significantly fluctuated in the PB+I3C group in the isoadditive statistical model. On the contrary, the mRNA levels of Cyp2b1/2 and Nqo1 were suppressed and enhanced, respectively, in the PB+I3C group in the isoadditive model, but there was no enhancement in the microsomal reactive oxygen species (ROS) production, thiobarbituric acid-reactive substance levels, and Ki-67(+) cell ratio in this group. The results suggest that the co-administration of I3C and PB causes no modifying effects in liver tumor promotion in rats.
Oncu M, etal., Hum Exp Toxicol. 2002 Apr;21(4):223-30.
Nephrotoxicity induced by chlorpyrifos-ethyl (CE) and ameliorating effects of melatonin and vitamin E plus vitamin C were evaluated in rats exposed to CE. Experimental groups were as follows: control (C), CE treated (CE), vitamin E plus vitamin C treated (Vit),
melatonin treated (Mel), vitamin E plus vitamin C plus CE treated (Vit+CE), and melatonin plus CE treated (Mel+CE). The rats in the CE, Vit+CE and Mel+CE groups were administered orally with CE in two equal doses of 41 mg/kg body weight (0.25 LD50). Melatonin and vitamins E and C were administrated intramuscularly at the doses of 10, 150 and 200 mg/kg, respectively. The levels of thiobarbituric acid reactive substance (TBARS) and antioxidant potential (AOP), and the activities of glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) were studied in the homogenates of kidney tissue. There were no significant differences in the activities of SOD and CAT between the experimental groups. The level of TBARS increased significantly (P<0.05) while AOP decreased significantly (P<0.05) in the CE group compared with the C group. GSH-Px activity was significantly (P<0.05) lower in the CE group and higher in the melatonin group than the control group. Histopathological changes were found in the kidney tissue of rats treated with CE. These were infiltration in mononuclear cells at perivascular and peritubular areas, hydropic degenerations in tubule epithelium and glomerular sclerosis. The severity of the lesions was reduced by administration of vitamins and melatonin. These results suggest that CE increases lipid peroxidation and decreases AOP by increasing oxidative stress, and that high doses of melatonin and a combination of vitamin E plus vitamin C considerably reduce the toxic effect of CE on kidney tissue of rats.
Satomi Y, etal., J Toxicol Sci. 2007 Dec;32(5):529-53.
Although paraquat (PQ) is widely known to induce pulmonary fibrosis, the molecular mechanisms are poorly understood. Therefore, to bring a new dimension to the elucidation of the mechanisms, we conducted microarray experiments to investigate the expression profiles of 1,090 genes in the lungs during
the progressive phase of PQ-induced pulmonary fibrosis in rats. After several s.c. injections of PQ, rats were divided into a fibrogenic group and a non-fibrogenic group. Time-course gene expression analysis of the fibrogenic group showed altered gene regulation throughout the experimental period. The expression levels of many cell membrane channel, transporter, and receptor genes were substantially altered. These genes were classified into two categories: polyamine transporter- and electrolyte/fluid balance-related genes. Moreover, comparative analysis of the fibrogenic and the non-fibrogenic group revealed 36 genes with significantly different patterns of expression, including the pro-apoptotic gene Bad. This indicates that Bad is a key factor in apoptosis and that apoptosis provides a major turning point in PQ-induced pulmonary fibrosis. Notably, subtypes of transforming growth factor (TGF)-beta genes that are considered to play a pivotal role in fibrogenesis showed no differences in expression between the two groups, though TGF-beta3 was markedly induced in both groups. These results provide novel and extensive insights into the molecular mechanisms that lead to pulmonary fibrosis after exposure to PQ.
The aryl hydrocarbon receptor (AhR) regulates the toxicity of environmental contaminants such as 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD). As the physiological role of the AhR in the ovary is unknown, the purpose of this study was to test the hypothesis that
the AhR regulates the appearance and numbers of ovarian follicles. Ovaries were harvested from AhR-deficient (AhRKO) and wild-type mice on gestational day 18 (GD 18) and postnatal days (PND) 2-3, 8, 32-35, and 53. Complete serial sections of ovaries were evaluated histologically for the presence of germ cells and follicles. On GD 18, there was no difference in the number of germ cells per ovary between AhRKO and wild-type fetuses. However, by PND 2-3, AhRKO mice had significantly more fully formed primordial follicles (AhRKO = 38,440 +/- 3632 versus wild-type = 21,120 +/- 2688) and fewer single germ cells than wild-type mice (AhRKO = 12,696 +/- 1192 vs. wild-type = 18,160 +/- 720). On PND 8 and 32-35, there was no difference in the number of follicles between AhRKO and wild-type mice but by PND 53, AhRKO mice had significantly fewer antral follicles than wild-type (AhRKO = 3416 +/- 480 vs. wild-type = 6776 +/- 1024). Taken together, these results suggest that the AhR may play a role in the formation of primordial follicles and the regulation of antral follicle numbers.
A major health hazard to coal miners is development of emphysema following long-term exposure to coal dust. One mechanism underlying development of emphysema is the oxidation of critical methionine (Met) residues in antiproteolytic factor, alpha1-antitrypsin (A1AT) resulting in a protease-antiprotea
se imbalance in the lung. Several studies have documented an association between the incidence and severity of emphysema among miners and their exposure to crystalline silica (i.e., SiO(2)). However, what remains unclear is the role of other co-inhaled nonemphysematogenic nonoxidant inorganic constituent in disease pathogenesis. We hypothesize that in miners, inhaled trivalent chromium (Cr(3+), the only form of Cr in coal) may potentially affect lung A1AT activity in situ via Cr complexing with Met residues, and thereby exacerbate any SiO(2)-induced imbalance. To ascertain if Cr(3+) could, in fact, affect A1AT activity, in vitro studies were done to assess elastase inhibitory activity following A1AT incubation with soluble Cr(3+). In addition, to determine if Cr(3+) found in the lungs as detoxification products of inhaled hexavalent Cr (Cr(6+)) could affect A1AT in situ, lavages from the lungs of chromate-exposed rats were also analyzed for elastase inhibitory activity The in vitro results indicate that Cr(3+) ions clearly inhibited A1AT function, with an IC50 of 1.1 mM being estimated under the experimental conditions used. The in vivo results indicate that long-term inhalation (12 wk or longer) of chromate-bearing atmospheres also gave rise to significant (i.e., 50-70%) inhibition of the antielastase activity of A1AT. Together, these results clearly suggest that the Cr(3+) present in coal dusts could potentially act to inhibit A1AT activity in the lungs of miners and thereby promote the emphysematogenicity of SiO(2) or of other emphysematogens present as coconstituents in these dusts.
Alzheimer's disease (AD) is a currently incurable neurodegenerative disorder and is the most common form of dementia in people over the age of 65 years. The predominant genetic risk factor for AD is the epsilon4 allele encoding apolipoprotein E (ApoE4). The secreted glycoprotein Reelin enhances syn
aptic plasticity by binding to the multifunctional ApoE receptors apolipoprotein E receptor 2 (Apoer2) and very low density lipoprotein receptor (Vldlr). We have previously shown that the presence of ApoE4 renders neurons unresponsive to Reelin by impairing the recycling of the receptors, thereby decreasing its protective effects against amyloid beta (Abeta) oligomer-induced synaptic toxicity in vitro. We showed that when Reelin was knocked out in adult mice, these mice behaved normally without overt learning or memory deficits. However, they were strikingly sensitive to amyloid-induced synaptic suppression and had profound memory and learning disabilities with very low amounts of amyloid deposition. Our findings highlight the physiological importance of Reelin in protecting the brain against Abeta-induced synaptic dysfunction and memory impairment.
Gowdy KM, etal., Part Fibre Toxicol. 2010 Nov 22;7:34.
Numerous studies have shown that air pollutants, including diesel exhaust (DE), reduce host defenses, resulting in decreased resistance to respiratory infections. This study sought to determine if DE exposure could affect the severity of an ongoing influenza infection in mice, and examine if this co
uld be modulated with antioxidants. BALB/c mice were treated by oropharyngeal aspiration with 50 plaque forming units of influenza A/HongKong/8/68 and immediately exposed to air or 0.5 mg/m3 DE (4 hrs/day, 14 days). Mice were necropsied on days 1, 4, 8 and 14 post-infection and lungs were assessed for virus titers, lung inflammation, immune cytokine expression and pulmonary responsiveness (PR) to inhaled methacholine. Exposure to DE during the course of infection caused an increase in viral titers at days 4 and 8 post-infection, which was associated with increased neutrophils and protein in the BAL, and an early increase in PR. Increased virus load was not caused by decreased interferon levels, since IFN-beta levels were enhanced in these mice. Expression and production of IL-4 was significantly increased on day 1 and 4 p.i. while expression of the Th1 cytokines, IFN-gamma and IL-12p40 was decreased. Treatment with the antioxidant N-acetylcysteine did not affect diesel-enhanced virus titers but blocked the DE-induced changes in cytokine profiles and lung inflammation. We conclude that exposure to DE during an influenza infection polarizes the local immune responses to an IL-4 dominated profile in association with increased viral disease, and some aspects of this effect can be reversed with antioxidants.
Wilson CR, etal., Toxicology. 2003 Aug 1;189(3):191-8.
A comparative study of vitamin K(1) 2,3-epoxide reductase (VKOR) activity in vitro was conducted across species. The apparent kinetic constants K(m app), V(max), and Cl(int app) were determined in bovine, canine, equine, human, murine, ovine, porcine, and rat hepatic microsomes. In addition to these
enzyme kinetic constants, the IC(50) of warfarin for VKOR was determined in human, murine, porcine, and rat hepatic microsomes. Interspecies differences were observed when comparing the K(m app) (range, 2.41-6.46 microM), V(max) (range, 19.5-85.7 nmol/mg/min), and Cl(int app) (range, 8.2-18.4 ml/mg/min) values. Comparison of the IC(50) values of warfarin, across the four species tested, revealed a significant species difference between murine microsomes (0.17 microM) and rat microsomes (0.07 microM). Overall, this study indicates that there are interspecies differences regarding the in vitro reduction of vitamin K(1) 2,3-epoxide by the warfarin-sensitive enzyme vitamin K(1) 2,3-epoxide reductase. Significant differences between the IC(50) values of murine and rat microsomes suggest differences in the susceptibility of these species to warfarin.
Cheng J, etal., Toxicology 2003 May 3;187(2-3):139-48.
Manganese is known to impede the male reproductive function, however, the mechanisms through which the adverse effects are mediated are not clearly elucidated. In order to get insight into those mechanisms, the effects of manganese on the biosynthesis of testosterone by primary rat Leydig cells were
examined. Primary Leydig cells were exposed to various concentrations of manganese chloride for different periods of time. Dose and time-dependent reductions of human chorionic gonadotropin (hCG)-stimulated testosterone level were observed in the culture medium. The expression of Steroidogenic Acute Regulatory (StAR) protein and the activities of P450 side-chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzymes were also detected. The expression of StAR protein stimulated by hCG was suppressed by manganese chloride at all concentrations (0.01, 0.1, 1.0 mM) and time points (2, 4, 24, 48 h) tested. Progesterone productions treated with 22R-hydroxycholesterol or pregnenolone were reduced after treated by manganese chloride for 24 or 48 h, respectively. The manganese exposure effect on cell viability was significant at 1.0 and 1.5 mM at 24 h, while at 48 h it was significant at every concentration tested. The decreasing effect of manganese on mitochondrial membrane potential was significant at every concentration measured and every time point tested. These data suggest that manganese exposure for 2 and 4 h inhibited rat primary Leydig cell steroidogenesis by decreasing StAR protein expression while 24 and 48 h exposure of manganese chloride caused adverse effects on both StAR protein and P450scc and 3beta-HSD enzyme activity to reduce steroidogenesis. Manganese may also disrupt StAR expression and/or function secondary to mitochondrial dysfunction.
Richert L, etal., Toxicol Appl Pharmacol. 2008 Dec 10.
It is important to investigate the induction of cytochrome P450 (CYP) enzymes by drugs. The most relevant end point is enzyme activity; however, this requires many cells and is low throughput. We have compared the CYP1A, CYP2B and CYP3A induction response to eight inducers in rat and human hepatocyt
es using enzyme activities (CYP1A2 (ethoxyresorufin), 2B (benzoxyresorufin for rat and bupropion for human) and CYP3A (testosterone)) and Taqmantrade mark Low Density Array (TLDA) analysis. There was a good correlation between the induction of CYP1A2, CYP2B6 and CYP3A4 enzyme activities and mRNA expression in human hepatocytes. In contrast, BROD activities and mRNA expression in rat hepatocytes correlated poorly. However, bupropion hydroxylation correlated well with Cyp2b1 expression in rat hepatocytes. TLDA analysis of a panel of mRNAs encoding for CYPs, phase 2 enzymes, nuclear receptors and transporters revealed that the main genes induced by the 8 compounds tested were the CYPs. AhR ligands also induced UDP-glucuronosyltransferases and glutathione S-transferases in rat and human hepatocytes. The transporters, MDR1, MDR3 and OATPA were the only transporter genes significantly up-regulated in human hepatocytes. In rat hepatocytes Bsep, Mdr2, Mrp2, Mrp3 and Oatp2 were up-regulated. We could then show a good in vivo:in vitro correlation in the induction response of isolated rat hepatocytes and ex-vivo hepatic microsomes for the drug development candidate, EMD392949. In conclusion, application of TLDA methodology to investigate the potential of compounds to induce enzymes in rat and human hepatocytes increases the throughput and information gained from one assay, without reducing the predictive capacity.
Petrulis JR, etal., Environ Toxicol. 2001;16(2):177-84.
The ethoxyresorufin-O-deethylase (EROD) assay monitors the induction of the xenobiotic-metabolizing enzyme cytochrome P-450 (CYP) 1A1 and is a widely used biomarker for exposure of wildlife to substances that bind the aryl hydrocarbon (Ah) receptor. In this work the induction of EROD activity by sin
gle compounds and binary mixtures in primary rat hepatocytes was compared with the predictions of a kinetic model involving mixtures of inducers. The inducing agents were also examined for their ability to activate the Ah receptor to its DNA-binding form and for their ability to act as competitive inhibitors for CYP 1A1. Xenobiotics that failed to activate the Ah receptor did not induce EROD activity. Competitive inhibition for CYP 1A1 between the xenobiotic and 7-ethoxyresorufin caused EROD activity to fall at high xenobiotic concentrations. Competition for a limited number of Ah receptor sites depressed the EROD activity of a strong inducer such as 2,3,7,8-tetrachlorodibenzo-p-dioxin at high concentrations of a weak inducer. Application of the kinetic model to the example of a mixture of low concentrations of dibenzo-p-dioxins and much higher concentrations of polychlorinated biphenyls indicated that EROD assays often seriously underestimate the true potency of an environmental sample. Hence the EROD assay cannot be used for determining dioxin equivalent concentrations using the toxic equivalence factor approach.
Babu RJ, etal., Toxicol Lett. 2004 Nov 2;153(2):255-66.
Aliphatic hydrocarbons constitute a major portion of jet fuels, kerosene and other solvents. This study investigated the effects of dermal exposures of selected aliphatic hydrocarbons (nonane, dodecane and tetradecane) on the skin irritation (erythema), transepidermal waterloss (TEWL) and expression
of interleukin-1alpha (IL-1alpha), tumor necrosis factor (TNF-alpha) and monocyte chemoattractant protein-1 (MCP-1) in the skin and blood of hairless rats. Dermal exposures were carried out by occlusive application of chemicals (230 microl for 1 h, using Hill Top Chambers) for 1 h. The expression of IL-1alpha, TNF-alpha and MCP-1 was measured by enzyme immunoassay (EIA), and the regulatory proteins NFkappaB and IkappaBalpha were measured by Western blot analysis. The skin irritation and TEWL data indicate that the irritation was in the following decreasing order: nonane > dodecane > tetradecane. Likewise, nonane significantly increased the expression of IL-1alpha, TNF-alpha and MCP-1 in skin and blood as compared to control at different time points. Dodecane and tetradecane did not show any increase in the expression of IL-1alpha and MCP-1 as compared to control (P > 0.05), but the expression of TNF-alpha by dodecane and tetradecane was significantly higher than control at all time points. The release of cytokines by nonane exposure was further supported by activation of NFkappaB p65 and corresponding degradation of IkappaBalpha in the skin. In conclusion, this study demonstrates that the biophysical parameters (TEWL and erythema scores) were correlated to the biomarker expressions after dermal exposures with nonane but not with dodecane and tetradecane. Dodecane produced only mild irritation in response to experimental conditions of the present study and further did not show significant differences in IL-1alpha and MCP-1 levels in skin and blood. However, TNF-alpha was well expressed in response to all the chemicals. Tetradecane did not show any visible signs of skin irritation and also did not produce any significant difference in IL-1alpha and MCP-1 release profiles as compared with control. The expression of TNF-alpha in skin due to tetradecane support the fact that visually indistinguishable skin irritation reactions can induce significant changes in the biological marker profile.
Ueno E and Rosenberg P, Toxicon. 1995 Jun;33(6):747-62.
The phospholipase A2 neurotoxin, beta-bungarotoxin, presynaptically blocks acetylcholine release. Its mechanism of action is unknown; however, our previous studies suggest that it inhibits phosphorylation of synaptosomal pr
oteins, which might be expected to decrease neurotransmitter release. In our present study, we found that 1 nM beta-BuTX blocked phorbol ester-stimulated phosphorylation of GAP-43, MARCKS and synapsin I without affecting their basal phosphorylation. In contrast, a 1 nM concentration of the non-neurotoxic enzyme. Naja naja atra phospholipase A2 did not affect the phorbol ester-stimulated phosphorylation of these proteins but increased the basal phosphorylation of GAP-43 and MARCKS. Although it has been suggested that cytosolic calmodulin is increased by phosphorylation of the protein kinase C substrates, GAP-43 and MARCKS, we found no change in calmodulin levels by phorbol ester or beta-bungarotoxin. The stimulation of phosphorylation by Naja naja atra phospholipase A2 may be due to products liberated as a result of its phospholipase A2 activity. In contrast, the inhibition of phosphorylation by beta-bungarotoxin appears to be due to an action which may be unrelated its relatively weak phospholipase A2 activity. Inhibition of phosphorylation by beta-bungarotoxin is a possible mechanism by which it could block acetylcholine release. Furthermore, beta-bungarotoxin may be a useful tool to study the physiological role of phosphorylation of synaptosomal proteins in neurotransmitter release.
Lu CF, etal., Arch Environ Contam Toxicol. 2009 Apr 17.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent environmental contaminants that exist as complex mixtures in the environment, but the possible interactions of TCDD and PCBs have not been systematically investigated. The main objective of this study was
to investigate the combined nephrotoxic effects of TCDD and PCBs on rats and to reveal the potential interactions between TCDD and PCBs. Male Sprague-Dawley rats were intragastrically administered TCDD (10 mug/kg), PCBs (Aroclor 1254, 10 mg/kg), or the combination (10 mug/kg TCDD + 10 mg/kg Aroclor 1254). After 12 consecutive days of exposure, all treatments induced nephrotoxicity, as evidenced by significant increases in the levels of serum creatinine and blood urea nitrogen, changes of kidney histopathology, and significant renal oxidative stress. Most of these effects were more remarkable in the combined-exposure group. Furthermore, all treatments induced renal cytochrome P450 1A1 (CYP1A1) protein expression, and the induction was more conspicuous in the combined-exposure group. These findings suggested that the nephrotoxicity induced by TCDD and PCBs in the present study might be attributable to the high expression of CYP1A1. In addition, the result of the two-way analysis of variance revealed that the combined effects of TCDD and PCBs were complicated, being additive, synergistic, or antagonistic depending on the selection of toxicity end points under the present experimental condition. This study demonstrates that combined exposure to TCDD and PCBs induced significant nephrotoxicity in rats, and there were complicated interactions between the two pollutants on the nephrotoxicity.
Tenn CC, etal., Toxicol Lett. 2012 Jan 28;210(1):71-77.
The link between cell death and increased cyclooxygenases-2 (COX-2) activity has not been clearly established. In this study, we examined whether COX-2 activation contributed to the mechanism of neurotoxicity produced by an organophosphorous nerve agent in cult
ured rat cortical neurons. Exposure of neuronal cells to the nerve agent, VX resulted in an increase in COX enzyme activity in the culture media. A concentration dependent increase in the activity levels of COX-2 enzyme was observed while there was little to no effect on COX-1. In addition, COX-2 mRNA and protein levels increased several hours post-VX exposure. Pre-treatment of the cortical cells with the COX-2 selective inhibitor, NS 398 resulted in a decrease in both the enzyme activity and prostaglandin (PGE(2) and PGF(2alpha)) release, as well as in a reduction in cell death. These findings indicate that the increase in COX-2 activity may contribute to the mechanism of VX-induced neurotoxicity in cultured rat cortical neuron.
Shan KR, etal., Toxicology. 2004 Aug 5;200(2-3):169-77.
In order to reveal mechanisms of the decreased nicotinic acetylcholine receptors (nAChRs) resulted from fluoride toxicity, we treated PC12 cells by different concentrations of fluoride (0.1-100 ppm) for 48 h, and exposed rats to high doses of fluoride (30 and 10
0 ppm) in their drinking water for 7 months. The expression of nAChRs at mRNA and protein levels, neurotoxicity and oxidative stress were analyzed in the study. The results indicated that there were no significant changes at mRNA level of the nAChR alpha3, alpha7, beta2 subunits in PC12 cells, and alpha4, alpha7, beta2 subunits in rat brains between the groups with fluorosis and controls. A significant decline in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, and increased levels of protein oxidation and lipid peroxidation were observe in PC12 cells treated with high doses of fluoride or rat brains with chronic fluorosis. The decreases of nAChR alpha3 and alpha7 subunit proteins in PC12 cells resulted from fluoride toxicity were mostly prevented by a pretreatment with antioxidant. The results suggest that the deficit of nAChRs induced by fluoride toxicity occurs at the level of post-transcription of the receptor gene, in which a mechanism might be involved in the damage by oxidative stress.
In this study we evaluated the effect of diphenyl diselenide (PhSe)(2) on glycerol-induced acute renal failure in rats. Rats were pre-treated by gavage every day with (PhSe)(2 )(7.14 mg kg(-1)) for 7 days. On the eighth day, rats received an intramuscular injection of glycerol (8 mL kg(-1)). Twenty-
four hours afterwards, rats were euthanized and the levels of urea and creatinine were measured in plasma. Catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), delta-aminolevulinate dehydratase (delta-ALA-D) and Na(+), K(+)-ATPase activities and ascorbic acid levels were evaluated in renal homogenates. Histopathological evaluations were also performed. The results demonstrated that (PhSe)(2) was able to protect against the increase in urea and creatinine levels and histological alterations in kidney induced by glycerol. (PhSe)(2) protected against the inhibition in delta-ALA-D, CAT and GPx activities and the reduction in ascorbic acid levels induced by glycerol in kidneys of rats. In conclusion, the present results indicate that (PhSe)(2) was effective in protecting against acute renal failure induced by glycerol.
Tu CM Bull Environ Contam Toxicol 1977 Aug;18(2):190-9.
Seventeen Rhizobium japonicum cultures isolated from soybean nodules induced formation of nodules on taproots of soybean plants. All isolates reduced acetylene to ethylene to different extents in vitro. Paper disc assay indicated that two insecticides, lindane (gamma-1,2,3,4,5,6-hexachlorocyclohexan
e), chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate), and a fungicide, thiram (tetramethylthiuram disulphide) individually or in combination caused significant inhibition of the growth of R. japonicum No. 16. The effects of insecticide-fungicide seed treatments on the nitrogenase activity of soybean plants in nitrogen-fixing capacity, weights of leaves, stems, and nodules were determined. Thiram, singly or in combination with lindane and/or chlorpyrifos, significantly delayed growth of the plants and affected the activity of nitrogenase in the fixation of nitrogen 3 weeks after treatments. No drastic effect of any of the pesticide treatments on soybean plant growth was observed after 8 weeks.
Lu M, etal., Chem Res Toxicol. 2004 Dec;17(12):1733-42.
Four trivalent arsenic species, inorganic arsenite (iAs(III)), monomethylarsonous acid (MMA(III)), dimethylarsinous acid (DMA(III)), and phenylarsine oxide (PhAs(III)O), have shown increasing binding affinity with the hemoglobin (Hb) of rats and humans. The binding stoichiometry was consistent with
the number of reactive cysteine residues in the alpha and beta chains of Hb. Comparing the binding affinity of rat Hb and human Hb for the same trivalent arsenic species, rat Hb was 3-16 times stronger than human Hb as demonstrated by their apparent binding constants. Comparative experiments involving incubation of human and rat red blood cells (RBC) with iAs(III), MMA(III), and DMA(III) showed that 15-30-fold more arsenic species were bound to the Hb of rat RBC than that of human RBC. In vivo experiments using rats fed with an arsenic-supplemented diet showed that arsenic in RBC of the rats was predominantly found in the protein-bound form. Further characterization by nanoelectrospray mass spectrometry of the arsenic species in the RBC of these rats confirmed that most arsenic was bound to the alpha chain of Hb. Taken together, these results suggest that the stronger binding affinity of these arsenic species to rat Hb is responsible for the accumulation of arsenic in rat blood. The results provide a chemical basis to explain the previously observed intriguing difference in the retention of arsenic in the human and the rat. The techniques and approaches described can be applied to the studies of arsenic interactions with other functional proteins.
This study intended to determine the effects of various concentrations of fluoride (1, 10, 50 and 100 ppm) in drinking water for a period of 12 weeks on changes in haem biosynthesis pathway, oxidative stress and neurological variables supported by histopathological observations and fluoride in rats.
The data indicates significant alterations in the parameters related to haeme synthesis pathway like inhibition of blood delta-aminolevulinic acid dehydratase, delta-aminolevulinic acid synthetase, oxidative stress like depletion of glutathione (GSH) and increase in oxidized glutathione (GSSG) and thiobarbituric acid reactive substances. These changes were accompanied by depletion in GSH:GSSG ratio, whole brain biogenic amine levels and a dose-dependent increase in fluoride concentration. Interestingly and most significantly, these changes were more pronounced at lower concentrations of fluoride compared with higher fluoride dose. Biochemical changes were supported by the histological observations, which also revealed that at high concentrations of fluoride, toxic effects and damages to organs were more pronounced. These changes support our earlier findings regarding the role of decreased ionic mobility of fluoride ion at higher concentrations, leading to less pronounced toxicity.
Sopena YE, etal., Int J Toxicol. 2008 Nov;27(6):455-65.
These studies try to elucidate why isocoproporphyrin appears in hexachlorobenzene-poisoned rats' feces. Chronic exposure of hexachlorobenzene to rats produces an experimental model for human porphyria cutanea tarda. After 8 weeks of treatment, rats showed high porphyrin excreta and 50% inhibition of
liver uroporphyrinogen decarboxylase activity. Uroporphyrin plus heptacarboxylic porphyrin exceeded coproporphyrin in urine, whereas in feces, isocoproporphyrin, from abnormal pentacarboxylic porphyrinogen III oxidative decarboxylation by liver coproporphyrinogen oxidase, became the main porphyrin. Trypsin-treated mitochondria showed that the outer and inner membrane permeability barrier was highly conserved after hexachlorobenzene intoxication. In digitonin-treated hexachlorobenzene mitochondria, coproporphyrinogen oxidase was free in the mitochondrial intermembrane space, whereas in normal mitochondria, 30% to 50% remained anchored to the inner membrane. Hexachlorobenzene led to a decrease in respiratory control and ADP/O ratios (uncoupled mitochondria). Albumin restored oxidative phosphorylation, indicating no irreversible inner membrane damage. Normal and hexachlorobenzene mitochondria oscillatory studies exhibited similar damping factor values, showing that hexachlorobenzene had no significant effect on membrane fluidity and elasticity. Mitochondrial uncoupling could explain the free state of the enzyme within the intermembrane space. The free state of the enzyme makes it more flexible and would allow pentacarboxylic porphyrinogen III, whose levels are increased, to compete with coproporphyrinogen III and being transformed into dehydroisocoproporphyrinogen, the liver forerunner of fecal isocoproporphyrin.
Toll-like receptor 4 (TLR4) has been shown to play a role in cell signaling that results in neutrophilic inflammation in response to lipopolysaccharide and respiratory syncytial virus infection. TLR4 also interacts with CD14, which upon complex formation triggers TLR4-associated signaling pathways t
o produce a proinflammatory response. This mechanism results in the activation of NF-kappa B and subsequent inflammatory gene induction. In order to determine the effect of combustion source particle matter (PM), rich in zinc and nickel but with negligible endotoxin, on a possible activation of TLR4-mediated cell signaling and inflammation, we intratracheally (IT) instilled 3.3 mg/kg of PM into 12-w-old healthy male Wistar Kyoto (WKY) and susceptible spontaneously hypertensive (SH) rats. Inflammation, inflammatory-mediator gene expression, bronchoalveolar lavage fluid (BALF) protein and LDH, TLR4 and CD14 protein, and NF-kappa B activation in the lung were determined after 24 h. Dose-response data (0.0, 0.83, 3.33, and 8.3 mg/kg PM) for BALF LDH were obtained as a marker of lung cell injury in SH rats. BALF neutrophils, but not macrophages, were significantly increased in the PM-exposed WKY and SH rats. SH rats showed a greater PMN increase than WKY rats. Similarly, BALF protein and LDH levels were also increased following PM exposure but to a significantly greater extent in SH rats. Plasma fibrinogen was increased only in SH rats exposed to PM. The increased inflammation seen in PM-exposed SH rats was accompanied by a significant increase in TLR4 protein in the lung tissue, which was primarily localized in alveolar macrophages and epithelial cells. CD14 was also increased by PM exposure in both SH and WKY rats but was significantly greater in the SH rats. These increases were associated with greater translocation of NF-kappa B in the lungs of SH rather than WKY rats. This was accompanied by increased macrophage inhibitory protein (MIP)-2 mRNA expression at 24 h of exposure. These data suggest that the increased inflammation in the lungs of PM-exposed SH rats compared to WKY rats is accompanied by an increase in TLR4-mediated cell signaling. Thus, one of the mechanisms for greater susceptibility of SH rats to PM exposure may involve an increased activation of the TLR4 signaling pathway.
Ghanei M, etal., Inhal Toxicol. 2007 Aug;19(10):889-94.
We examined the role of two regimens of combination inhaler therapy on amount of reversibility of chronic lung complications in mustard gas exposed patients. In a phase III, prospective, randomized clinical trial, 105 participants received either combination form of fluticasone propionate and salmet
rol, 500/100 microg daily (group 1; n = 52) or beclomethasone, 1000 microg daily, and salbutamol inhaler, 800 microg daily (group 2; n = 53) for 12 wk. Pulmonary function test (PFT) indices and respiratory symptoms (including dyspnea, night awakening due to dyspnea and cough) were assessed at baseline and in each visit. Thirty-six patients in group 1 and 30 patients in group 2 completed study course. Both medication regimes increased pretreatment forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC%, and peak expiratory force (PEF) by the end of 12 wk. It seems that these improvements are more constant in group 1 than in group 2. Reversibility, that is, 10% increase of FEV1 in the second month was seen for 27% of patients in the group 1 and for 7% in the group 2. VAS scores have decreased in two groups during treatment period (p = .003) and after follow-up period it remained sustained in group 1 alone. Inhaled corticosteroids and long-acting beta 2-agonists are effective in treatment of patients with chronic bronchiolitis following exposure to sulfur mustard. However, a medium dose of fluticasone/salmeterol has the same effect on the airways reversibility, rather than a very high dose of beclomethasone with only the short-acting beta-agonist.
been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.
We investigated the overall protein expression profiles in the in vivo hepatotoxicity of rats induced by four well-recognized hepatotoxicants. Acetaminophen (APAP), amiodarone (AMD), tetracycline (TC) and carbon tetrachlorid
e (CTC) were administered to male rats by gavages and the liver at 24 hr post-dosing was applied to the proteomic experiment. Blood biochemistry and histopathology were examined to identify specific changes related to the compounds given. Protein expression in the liver was investigated by 2-dimensional gel electrophoresis (2DE), and spots showing a significantly different expression in treated versus control group were excised from gels and identified by Q-Tof mass spectrometer. They were well characterized based on their functions related to the mechanisms of toxicity of the compounds. Among them, we focused on the 8 proteins that were affected by all 4 compounds examined. Proteins related to oxidative stress response such as carbonic anhydrase III (CA3) and 60kDa heat shock protein (HSP60), and energy metabolism such as adenylate kinase 4 (AK4) were found. Moreover, hierarchical clustering analysis using 2D-gel spots information revealed the possibility to differentiate the groups based on their toxicity levels such as severity of liver damage. These results suggested that assessing the effects of hepatotoxicants on protein expression is worth trying to screen candidate compounds at the developmental stage of drugs.
Manganese is one of the ubiquitous environmental pollutants that can induce an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. The present study has been carried out to investigate the effect of Mn on the expression of N-methyl-d-aspartate
receptor (NR) subunit mRNAs and proteins in rat striatum when rats were in manganism. The rats were divided randomly into four groups of six males and six females each: control group (group 1) and 8, 40, and 200 micromol/kg Mn-treated groups (groups 2-4). The control group rats were subcutaneously (s.c.) injected with normal saline. Manganese-treated rats were s.c. injected with respectively 8, 40, and 200 micromol/kg of MnCl(2) . 6H(2)O in normal saline. The administration of MnCl(2) . 6H(2)O for 4 weeks significantly increased Mn concentration in the striatum. With the increase in administered MnCl(2) dosage, Glu concentration and cell apoptosis rate increased significantly. The relative intensity of NR2A mRNA decreased significantly in 8 micromol/kg Mn-treated rats. However, relative intensities of NR1 and NR2B mRNAs decreased significantly in 40 micromol/kg Mn-treated rats. Similarly, the relative intensity of NR2A protein showed a significant decrease in 40 micromol/kg Mn-treated rats whereas those of NR1 and NR2B decreased significantly in 200 micromol/kg Mn-treated rats. Therefore, the expression of NR2A mRNA and protein were much more sensitive to Mn than that of NR1 and NR2B. In conclusion, the results suggested that Mn induced nerve cell damage by increasing extracellular Glu level and altered expression of NR subunit mRNAs and proteins in rat striatum.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modu
lation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.
Ahmed HH, etal., Toxicol Mech Methods. 2014 Sep 4:1-10.
Abstract The possible molecular mechanisms of Nano-selenium (nano-se) in attenuating hepatocellular carcinoma (HCC) was investigated in this study. To achieve this target, the apoptotic/necrotic rate in hepatic cells was investigated morphologically by double staining with acridine orange/ethidium b
romide to address the type of cell death induced by nano-Se in HCC-bearing rats. To predict the oxidative stress and DNA damage, the generation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 2-deoxyguanosine (2-dG) was examined. Moreover, the expression of some HCC-related genes was investigated such as aldo-keto reductase 1B10 (Akr1b10), ING3 and Foxp1 genes. As well as the histopathological study of liver tissue sections was performed. The results obtained from this study revealed that (HCC+Nano Se) group shows the highest number of damaged cancerous cells. Furthermore, the necrotic/apoptotic rate was significantly higher in (nano-Se+HCC), (HCC+Doxo) and (HCC+Doxo+nano-se) compared to that in the untreated HCC group. Treatment of HCC group with nano-se decreased the ratio of 8-OHdG/2-dG generation significantly with respect to the untreated HCC group. The opposite was observed regarding the gene expression of AKr1b10 and ING3. The treatment of HCC group with nano-se elicited significant increase in the expression of Akr1b10 and ING3 genes compared with untreated HCC group. On the other hand, the expression of Foxp1 gene was significantly decreased in HCC group treated with nano-se in comparison with the untreated HCC group. The histopathological study provided a supportive evidence for the molecular genetics study. Our data shed light on the molecular mechanisms of nano-se in attenuating HCC in the experimental model.
Ito K, etal., Exp Toxicol Pathol. 2005 Apr;56(6):333-9.
The antibiotic nitrofurazone (NF) at a subtoxic dose has been shown to increase hepatocyte DNA synthesis with no preceding cell damage or necrosis. This was suppressed by concomitant administration of the antioxidant N-acetylcysteine (NAC), which suggests that f
ree radical production is involved in the process. In this study, male F344 rats were given a single oral subtoxic dose of NF to investigate the changes in genes implicated in hepatocyte proliferation between 1 and 20h postdose by real-time PCR. Some rats were also given NAC to examine the involvement of free radicals. There were transient and sequential increases in mRNA levels of c-myc and c-jun shortly after the administration, followed by tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-alpha (TGF-alpha), c-Ha-ras, and cyclin E. The increases were blocked by concomitant administration of NAC. In contrast, there were no NF-specific increases in c-fos, hepatocyte growth factor, epidermal growth factor or cyclin D1 mRNAs. These results indicate that the induction of hepatocyte proliferation by NF is triggered by free radicals, with a pathway involving increases in c-jun, c-myc, TNF-alpha, TGF-alpha, c-Ha-ras, and cyclin E. The results also indicate that NF-induced proliferation resembles that of other mitogens.
Steiner M, etal., Arch Toxicol. 2000 Jul;74(4-5):222-5.
Preliminary evidence suggests that genetic polymorphisms in certain enzymes involved in xenobiotic metabolism and chemical defense could modify a susceptibility to prostate cancer. In the present study, two recently described phenol sulphotransferase SULT1A1 alleles (SULT1A1*1, SULT1A1*2) were inves
tigated using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach. Genotyping was performed on DNA isolated from white blood cells from 134 patients with prostate cancer and 184 healthy control subjects. Both the prostate cancer patients and the controls demonstrated similar frequencies of the variant allele SULT1A1*2 (35.1% vs 39.1%). Homozygosity for the variant allele was slightly less frequent in cancer patients than controls (12.7% vs 17.4%). Our study does not support the hypothesis that the phenol sulphotransferase variant allele SULT1A1*2 with a G/A transition at nucleotide 638 is a risk modifier for prostate cancer in the Caucasian population.
Ulker O, etal., Hum Exp Toxicol. 2008 Dec;27(12):871-7.
Coal workers' pneumoconiosis (CWP) is an occupational pulmonary disease that occurs by chronic inhalation of coal dust. CWP is divided into two stages depending on the extent of the disease, as simple pneumoconiosis (SP) and progressive massive fibrosis (PMF). In the present study, serum and broncho
alveolar lavage (BAL) cytokine (interleukin-1beta [IL-1beta], IL-6, tumor necrosis factor-alpha [TNF-alpha], transforming growth factor-beta [TGF-beta]) and antioxidant enzymes levels, their relation with the disease severity, and whether they can be considered as biological markers were investigated. Serum and BAL levels of IL-1beta, IL-6, and TNF-alpha were higher in SP and PMF patient groups compared with that in active and retired miner groups. Serum and BAL IL-1beta, IL-6, and TNF-alpha levels were also found to be higher in patients with PMF compared with the SP group. BAL superoxide dismutase (SOD), glutathione peroxidase, and catalase levels and serum SOD level were increased in both patient groups compared with the control group. In addition, mean serum and BAL TGF-beta levels were found to be increased in patients with SP compared with PMF group. Based on these results, BAL and serum cytokine and antioxidant enzymes levels were evaluated and discussed as potential biomarkers for different stages of CWP.
Ishii Y, etal., Toxicology. 1997 Jan 15;116(1-3):193-9.
A toxic coplanar polychlorinated biphenyl, 3,3',4,4',5-pentachlorobiphenyl (PenCB), significantly suppresses the expression of liver aldolase B in rats. Hepatic aldolase activity in PenCB-treated rats was significantly reduced to about 50% of that in free- and p
air-fed control groups. The reduced aldolase activity following PenCB-treatment was due to the marked suppression of the expression of aldolase B shown by immunoblot analysis after SDS-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. The suppression of rat liver aldolase B could be a key biochemical lesion caused by PenCB.
Mangum JB, etal., Part Fibre Toxicol. 2006 Nov 29;3:15.
BACKGROUND: Nanotechnology is a rapidly advancing industry with many new products already available to the public. Therefore, it is essential to gain an understanding of the possible health risks associated with exposure to nanomaterials and to identify biomarkers of exposure. In this study, we inve
stigated the fibrogenic potential of SWCNT synthesized by chemical vapor deposition using cobalt (Co) and molybdenum (Mo) as catalysts. Following a single oropharyngeal aspiration of SWCNT in rats, we evaluated lung histopathology, cell proliferation, and growth factor mRNAs at 1 and 21 days post-exposure. Comparisons were made to vehicle alone (saline containing a biocompatible nonionic surfactant), inert carbon black (CB) nanoparticles, or vanadium pentoxide (V2O5) as a known inducer of fibrosis. RESULTS: SWCNT or CB caused no overt inflammatory response at 1 or 21 days post-exposure as determined by histopathology and evaluation of cells (>95% macrophages) in bronchoalveolar lavage (BAL) fluid. However, SWCNT induced the formation of small, focal interstitial fibrotic lesions within the alveolar region of the lung at 21 days. A small fraction of alveolar macrophages harvested by BAL from the lungs of SWCNT-exposed rats at 21 days were bridged by unique intercellular carbon structures that extended into the cytoplasm of each macrophage. These "carbon bridge" structures between macrophages were also observed in situ in the lungs of SWCNT-exposed rats. No carbon bridges were observed in CB-exposed rats. SWCNT caused cell proliferation only at sites of fibrotic lesion formation as measured by bromodeoxyuridine uptake into alveolar cells. SWCNT increased platelet-derived growth factor (PDGF)-A, PDGF-B, and PDGF-C mRNA levels significantly at 1 day as measured by Taqman quantitative real-time RT-PCR. At 21 days, SWCNT did not increase any mRNAs evaluated, while V2O5 significantly increased mRNAs encoding PDGF-A, -B, and -C chains, PDGF-R alpha, osteopontin (OPN), connective tissue growth factor (CTGF), and transforming growth factor (TGF)-beta1. CONCLUSION: Our findings indicate that SWCNT do not cause lung inflammation and yet induce the formation of small, focal interstitial fibrotic lesions in the alveolar region of the lungs of rats. Of greatest interest was the discovery of unique intercellular carbon structures composed of SWCNT that bridged lung macrophages. These "carbon bridges" offer a novel and easily identifiable biomarker of exposure.
Expression of hepatic cytochrome P450 (CYP) isoforms was compared in Sprague-Dawley (SD) and Wistar (WI) rats, which are commonly used strains in preclinical studies. Basal CYP1A1, CYP1A2, and CYP3A2 mRNA levels were higher in WI rats than in SD rats (by 8-, 3- and 2-fold, respectively). Treatment w
ith phenobarbital, a potent CYP inducer, increased the predominance of expression of these three mRNAs in WI rats (by 26-, 4-, and 2-fold, respectively) along with the predominance of increased microsomal total P450 contents and smooth-surface endoplasmic reticulum in the centrilobular hepatocytes. CYP1A enzymatic activity was also higher in WI rats than in SD rats. No strain differences were observed in phenobarbital induction of CYP2B1/2, CYP2C6, or CYP3A1. CYP3A2 mRNA was more strongly induced by dexamethasone, a typical inducer of CYP3A, together with CYP3A1 mRNA, in WI rats than in SD rats (by 2-fold), whereas the CYP1A1 and CYP1A2 mRNA expression induced by beta-naphtoflavone, a typical inducer of CYP1A, did not differ between the two strains. Furthermore, WI rats exhibited predominantly arylhydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor mRNAs, responsible for CYP1A or CYP3A induction, with phenobarbital or dexamethasone induction. In conclusion, significant, predominant expression of hepatic CYP1A and CYP3A mRNAs in WI rats was observed, possibly related to nuclear receptor-mediated induction. Considering the pharmacokinetic and toxicological importance of CYP1A and CYP3A, different outcomes might arise depending on the rat strains used in preclinical studies of drugs metabolized typically or mainly by both isoforms.
Cui X, etal., Toxicol Pathol. 2004 Jan-Feb;32(1):64-72.
Although arsenic exposure causes liver disease and/or hepatoma, little is known about molecular mechanisms of arsenic-induced liver toxicity or carcinogenesis. We investigated the effects of arsenic on expression of cancer-related genes in a rat liver following
subchronic exposure to sodium arsenate (1, 10, 100 ppm in drinking water), by using real-time quantitative RT-PCR and immunohistochemical analyses. Arsenic accumulated in the rat liver dose-dependently and caused hepatic histopathological changes, such as disruption of hepatic cords, sinusoidal dilation, and fatty infiltration. A 1-month exposure to arsenic significantly increased hepatic mRNA levels of cyclin D1 (10 ppm), ILK (1 ppm), and p27(Kip1) (10 ppm), whereas it reduced mRNA levels of PTEN (1 ppm) and beta-catenin (100 ppm). In contrast, a 4-month arsenic exposure showed increased mRNA expression of cyclin D1 (100 ppm), ILK (1 ppm), and p27(Kip1) (1 and 10 ppm), and decreased expression of both PTEN and beta-catenin at all 3 doses. An immunohistochemical study revealed that each protein expression accords closely with each gene expression of mRNA level. In conclusion, subchronic exposure to inorganic arsenate caused pathological changes and altered expression of cyclin D1, p27(Kip1), ILK, PTEN, and beta-catenin in the liver. This implies that arsenic liver toxicity involves disturbances of some cancer-related molecules.
To investigate the effect of the phosphorothoate insecticide profenofos on male specific gene expression on rat testis, 16-week-old Wistar rats were orally administered at dose of 17.8 mg/kg twice weekly for 65 days. Gene expression in the testes was monitored by DNA microarray analysis and real-tim
e RT-PCR, which revealed that genes related to steroidogenesis including cytochrome P450 17A1 (CYP17A1), steroidogenic acute regulatory protein (StAR) and CYP11A1 were significantly increased. Besides the testes were histopathologicaly examined, which revealed testicular destruction and degeneration represented by a layer of columnar epithelium, oedematous changes surrounding the seminiferous tubules besides vacuolated spermatogonial cells and more elongated Leydig cells. These data suggest that profenofos considered as one of the male reproductive toxicants. Furthermore, we propose that the above three steroidogenic-related genes and the gene of acrosomal reaction as potential biomarkers of testicular toxicity.
Sogutlu Sari E, etal., Cutan Ocul Toxicol. 2014 Jan 22.
Abstract Context: Central serous chorioretinopathy (CSCR) is a poorly understood disease and the choroidal circulation abnormality induced by the plasminogen activator inhibitor type 1 (PAI-1) seems to be associated with the pathogenesis. There are many reports indicating that 4G/5G polymorphism o
f the PAI-1 gene is a risk factor for several diseases related to the elevated serum levels of PAI-1. Objective: To evaluate the 4G/5G polymorphism of the PAI-1 gene and its association with serum levels of PAI-1 in acute CSCR patients. Materials and methods: Sixty CSCR patients and 50 healthy control patients were included. The PAI-1 4G/5G was genotyped using the polymerase chain reaction-restriction technique. Serum PAI-1 level was measured using enzyme-linked immunosorbent assay. Demographic data consisting of age, sex, body mass index (BMI) as well as genotype disturbances and serum PAI-1 levels were compared between the groups. Statistical significance for differences in the serum PAI-1 levels of each group with different genotypes was also analyzed. Results: The CSCR group consisted of 40 male (66.7%) and 20 female (33.3%) patients with a mean age of 46.7 +/- 8.39 years. The control group consisted of 32 male (64%) and 18 female (36%) healthy subjects with a mean age of 45.8 +/- 8.39 years. There was no statistically significant difference between the groups in terms of age, sex and BMI. In the CSCR group the genotype frequencies were 4G/4G: 30% (n = 18), 4G/5G: 50% (n = 30), 5G/5G: 20% (n = 12) and in the control group genotype frequencies were 34% (n = 17), 42% (n = 21) and 24% (n = 12), respectively. There was no statistically significant difference in the distribution of genotypes among the groups (chi-squared, p = 0.70). The CSCR group had a significantly higher serum PAI-1 concentration than the control group (p = 0.001). In both groups the mean plasma PAI-1 concentration did not vary significantly among the different genotypes (p > 0.05). Discussion and conclusion: Although our results demonstrated that the patients with acute CSCR have higher serum PAI-1 concentrations than the controls, no significant difference was found in the genotype disturbances of the PAI-1 gene between the groups. The current study indicates that 4G/5G polymorphism in the promoter of the PAI-1 gene cannot be considered a risk factor for the elevated serum PAI-1 levels and consequent development of CSCR.
Mazer M and Perrone J, J Med Toxicol. 2008 Mar;4(1):2-6.
Acetaminophen-induced liver necrosis has been studied extensively, but the extrahepatic manifestations of acetaminophen toxicity are currently not described well in the literature. Renal insufficiency occurs in approximately 1-2% of patients with acetaminophen o
verdose. The pathophysiology of renal toxicity in acetaminophen poisoning has been attributed to cytochrome P-450 mixed function oxidase isoenzymes present in the kidney, although other mechanisms have been elucidated, including the role of prostaglandin synthetase and N-deacetylase enzymes. Paradoxically, glutathione is considered an important element in the detoxification of acetaminophen and its metabolites; however, its conjugates have been implicated in the formation of nephrotoxic compounds. Acetaminophen-induced renal failure becomes evident after hepatotoxicity in most cases, but can be differentiated from the hepatorenal syndrome, which may complicate fulminant hepatic failure. The role of N-acetylcysteine therapy in the setting of acetaminophen-induced renal failure is unclear. This review will focus on the pathophysiology, clinical features, and management of renal insufficiency in the setting of acute acetaminophen toxicity. CASE: A 47-year-old female was found lethargic at home and brought by ambulance to an emergency department. History from family members suggested an inadvertent acetaminophen overdose, and she had last been seen a few hours earlier. She reportedly ingested 18 tablets of 500 mg acetaminophen (APAP) over the previous two days because she had run out of her prescription pain medication. Her past medical history was significant for fibromyalgia, arthritis, and a prior gastric bypass procedure. She had no history of alcohol abuse or renal insufficiency. She was lethargic. Vital signs: BP 128/96 mmHg, pulse 112/min, respirations 32/min; pulse oximetry 98% on 2L nasal cannula oxygen. Laboratory studies: BUN 9 mg/dL, creatinine 0.9 mg/dl, acetaminophen 12 mcg/mL, AST 5409 u/L and ALT 1085 u/L. A urinalysis was negative for blood with trace protein and ketones. A urine drug screen was positive for marijuana and opioid metabolites. At the initial hospital, she was treated with N-acetylcysteine (NAC) orally. Subsequently, she developed fulminant hepatic failure with elevated transaminases, hypoglycemia, and coagulopathy (Tables 1A and 1B). She was transferred to our facility two days after initial presentation for liver transplant evaluation. At that time, her APAP level was 2.0 mg/L. Oral NAC therapy was continued after transfer. The patient's liver function subsequently improved and she ultimately did not require transplantation. She did develop acute renal failure during the course of her hospitalization, with a creatinine of 2.3 mg/dL on transfer, which increased to 8.1 mg/dL nine days later (approximately 11-13 days post-ingestion). Medical toxicology was consulted by the intensive care unit team to address whether this was acetaminophen-induced renal failure and if there was a role for NAC in this setting.
Ivanovic Matic S, etal., Toxicol Lett. 2004 Mar 1;147(2):153-9.
The ability of dimethyl sulfoxide (DMSO) to induce the acute-phase (AP) response was examined. Injection of DMSO to laboratory rats caused a rapid doubling of the plasma corticosterone concentration 2 h after treatment. The elevated corticosterone concentration promoted the synthesis of mRNAs for se
veral AP reactants. At 24 h after DMSO administration the relative serum concentration of cysteine-proteinase inhibitor (CPI) increased about 710%, alpha1-acid glycoprotein (AGP) 630%, alpha1-macroglobulin (MG) 510%, gamma fibrinogen (Fb) 420%, haptoglobin (Hp) 280%, whereas the relative concentration of albumin, a "negative" AP reactant, decreased to 93%. The extent and kinetics of the corticosterone increase and the general increase of AP reactant mRNAs and protein serum concentrations after DMSO administration corresponded to the overall changes observed during the turpentine-induced AP response. On the basis of these findings it was concluded that DMSO was capable of promoting the AP response in rats.
Kim SY, etal., Chem Res Toxicol. 2003 Sep;16(9):1138-44.
An increased risk of developing endometrial cancer is observed in breast cancer patients treated with tamoxifen (TAM) and in healthy women undergoing TAM chemoprevention therapy. TAM-DNA adducts were detected in the endometrium of women taking TAM (Shibutani, S., et al. (2000) Carcinogenesis 21, 146
1-1467) and are formed primarily through O-sulfonation of alpha-hydroxytamoxifen (alpha-OHTAM). To explore the genotoxicic mechanisms of TAM, TAM was incubated with one of multiple human cytochrome P450 enzymes, i.e., P450 1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, 3A7, 4A11, 4F2, 4F3A, or 4F3B, in a NADPH regenerating system, and the metabolites were identified using HPLC/UV analysis with authentic standards. Among the 18 human P450 enzymes, P450 3A4 generated a significant amount of alpha-OHTAM. When some rat P450 enzymes were examined, P450 3A2 also catalyzed alpha-hydroxylation of TAM. Similarly, human P450 3A4 and rat P450 3A1 and 3A2 converted toremifene (TOR, a chlorinated TAM analogue) to alpha-hydroxytoremifene (alpha-OHTOR). The formation of alpha-OHTAM and alpha-OHTOR by these P450 enzymes was confirmed by tandem mass spectroscopy. Only the P450 3A subfamily enzymes are able to alpha-hydroxylate TAM and TOR. Although the formation of alpha-OHTOR by these enzymes was much higher than that of alpha-OHTAM, TOR is known to be much less genotoxic than TAM. The results support our proposed mechanism that the lower genotoxicity of TOR is due to limited O-sulfonation of alpha-OHTOR by hydroxysteroid sulfotransferases, resulting in the poor formation of DNA adducts (Shibutani, S., et al. (2001) Cancer Res. 61, 3925-3931).
Shibutani M, etal., Toxicology. 2005 Mar 1;208(1):35-48.
Steroid hormones are powerful regulators of gene transcription in the brain and have the potential to permanently alter the structure and function of the developing brain. Steroid-mediated altered gene expression may thus be responsible for the molecular cascade for sexual differentiation. In this s
tudy, to assess effects of maternal exposure to ethinylestradiol (EE) on brain sexual differentiation of offspring, region-specific mRNA expression of two estrogen-responsive genes, gamma-aminobutyric acid transporter type 1 (GAT-1) and anti-apoptotic bcl-xL was measured in the medial preoptic area (MPOA), including sexually dimorphic nucleus (SDN), at the late stage of brain sexual differentiation in rats. Pregnant Sprague-Dawley animals were fed diets containing EE at concentrations of 0, 0.02, 0.1, and 0.5 ppm from day 15 of pregnancy to day 9 after delivery. In another group, neonates were directly injected with estradiol benzoate (EB: 10 microg/pup, sc) on postnatal day (PND) 2. The MPOA on PND 9 was microdissected from methacarn-fixed paraffin-embedded brain sections to measure mRNA levels by competitive RT-PCR, followed by plate hybridization. EE-exposure decreased GAT-1 expression dose-dependently from 0.02 ppm in females and at 0.5 ppm in males, while EB-treatment caused reduction only in females. EE-exposure did not alter Bcl-xL levels. At week 11, EE-exposed females exhibited a similar spectrum of histopathological changes in endocrine-linked organs as with EB, evident from 0.1 ppm, while in males EE-exposure did not cause histopathological alteration despite clear change with EB-treatment. Measurement of SDN-POA dimensions at week 11 revealed volume reduction in males exposed to 0.5 ppm EE or EB. The results suggest that GAT-1 expression in the developing MPOA is a sensitive measure for the level of disruption of brain sexual differentiation due to maternal dietary exposure to estrogens, despite definite reproductive abnormalities may not be detectable in males with this exposure protocol.
Guan L, etal., Arch Environ Contam Toxicol. 2010 Apr 27.
Heme oxygenase-1 (HO-1), an inducible enzyme, degrades heme to carbon monoxide (CO), iron, and bilirubin. We have investigated the relationship among HO-1 protein expression, HO activity, and CO concentrations in the hippocampus of CO-exposed rats. Western blotting and immunohistochemistry revealed
that the enzyme is predominantly localized in hippocampal CA1 and CA3 pyramidal cells and in granule cells of the dentate gyrus. HO enzyme activity was reduced immediately following CO exposure, while expression of HO-1 protein was consistently upregulated in a time-dependent manner. Local CO concentrations in hippocampus rose immediately following exposure, but the elevation was maintained for ~20 h despite the decline in blood carboxyhemoglobin levels toward baseline. We suggest that CO initially inhibits HO enzyme activity, whereas at later time points the inhibition is released and local CO generation is maintained by the activity of the endogenous HO enzyme. And the noninducible form of heme oxygenase, HO-2, was not altered following CO administration. Together these results indicate that the HO/CO pathway in the rat hippocampus is induced by acute CO exposure; local CO production may play a regulatory role in brain injury following CO poisoning.
Karakoyun B, etal., Drug Chem Toxicol. 2009;32(4):312-8.
The aim of this study was to investigate the putative beneficial effect of halofuginone on gentamicin-induced nephrotoxicity in rats. Sprague-Dawley rats were treated with gentamicin sulphate (GEN; 80 mg/kg) or saline intraperitoneally (i.p.) for 7 days. Halofug
inone was administered (0.1 mg/kg/day; i.p.) following GEN or saline injections. Blood and urine samples were collected to measure the renal function tests. Kidneys were excised for histological evaluation and for the measurement of malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO) activity, and chemiluminescence (CL). Halofuginone treatment to animals with GEN-induced renal injury caused a significant decrease in serum blood urea nitrogen level and reduced the elevated MDA, GSH content, and MPO activity. It was also effective in reversing the elevated CL values of rats with GEN-induced nephrotoxicity and preserving renal morphology, as examined microscopically. In conclusion, halofuginone was beneficial in GEN-induced acute nephrotoxicity. The mechanism could be attributed, at least in part, to decreased tissue leukocyte infiltration and reactive metabolite production.
This study was conducted with rats to assess the involvement of leukocytes in a model of CO-mediated brain injury. Myeloperoxidase activity, measured as an index of leukocyte sequestration, was found to be increased 10-fold in brain microvessel segments prepared from rats immediately or 90 min after
exposure to CO. Fluorescence and light microscopic examinations revealed leukocytes in microvessels taken from CO-poisoned rats, but not in that from control rats. Studies were then conducted with rats that had been made leukopenic or treated with monoclonal anti-CD-18 F(ab')2 fragments to inhibit leukocyte adherence to the vasculature. Neither of these groups of animals exhibited the biochemical changes observed in the brains of sham-treated rats: conversion of xanthine dehydrogenase (XD) to sulfhydryl-irreversible xanthine oxidase (XO), and lipid peroxidation, at 90 min following CO poisoning. Treatment with a synthetic serine protease inhibitor, gabexate mesylate, also prevented these biochemical changes if administered immediately after CO poisoning, but the agent did not inhibit leukocyte sequestration. Rats depleted of XD and XO by a tungsten diet, and those treated with allopurinol to inhibit XD and XO, also exhibited at least a 10-fold increase in myeloperoxidase activity in microvessels immediately after CO poisoning, but only a 5-fold increase at 90 min. In vitro studies demonstrated that B2 integrin-dependent polymorphonuclear leukocyte adherence was impaired immediately following CO poisoning although the adherence molecules were expressed on the membrane surface. Adherence function normalized by 45 min. The results suggest that leukocytes are responsible for the development of biochemical changes in brain following CO poisoning, and the sequence of events is as follows: leukocyte sequestration in the microvasculature, B2 integrin-dependent adherence, protease-mediated conversion of XD to XO, O2 radical-dependent lipid peroxidation.
Sakai A, etal., Chem Res Toxicol. 2005 Feb;18(2):277-82.
We previously reported that a lethal dose of monochloroacetate (MCA) causes severe hypoglycemia and lactic acidosis. MCA has been thought to inhibit mitochondrial aconitase; however, the exact effect of MCA on hepatic glucose metabolism is not clear. In this study, we investigated the effects of MCA
on liver gluconeogenesis using an isolated perfused rat liver system. Gluconeogenesis from 2.5 mM lactate was inhibited by 1 mM MCA and was completely abolished after 2 h of perfusion. Levels of citric acid cycle intermediates such as citrate, isocitrate, and 2-oxoglutarate (2-OG) were significantly reduced by MCA. The finding that the levels of citrate and 2-OG were similarly reduced (to 31 and 36% of control, respectively) indicates that aconitase was not inhibited by MCA. On the contrary, gluconeogenesis from glycerol, which can be converted to glucose without glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was not inhibited by MCA. GAPDH was inactivated by MCA in vitro, but enolase, phosphoglycerate mutase, and phosphoglycerate kinase were not inactivated at the same or higher concentrations of MCA. Furthermore, GAPDH activity in the MCA-perfused liver decreased to 33-42% of control and that in the liver of rats exposed to MCA was reduced to 19% of control. We concluded that MCA inactivates GAPDH, and this is the cause of the inhibition of liver gluconeogenesis.
TAR DNA-binding protein 43 (TDP-43) is a major disease protein in amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases. Both the cytoplasmic accumulation of toxic ubiquitinated and hyperphosphorylated TDP-43 fragments and the loss of normal
TDP-43 from the nucleus may contribute to the disease progression by impairing normal RNA and protein homeostasis. Therefore, both the removal of pathological protein and the rescue of TDP-43 mislocalization may be critical for halting or reversing TDP-43 proteinopathies. Here, we report poly(A)-binding protein nuclear 1 (PABPN1) as a novel TDP-43 interaction partner that acts as a potent suppressor of TDP-43 toxicity. Overexpression of full-length PABPN1 but not a truncated version lacking the nuclear localization signal protects from pathogenic TDP-43-mediated toxicity, promotes the degradation of pathological TDP-43 and restores normal solubility and nuclear localization of endogenous TDP-43. Reduced levels of PABPN1 enhances the phenotypes in several cell culture and Drosophila models of ALS and results in the cytoplasmic mislocalization of TDP-43. Moreover, PABPN1 rescues the dysregulated stress granule (SG) dynamics and facilitates the removal of persistent SGs in TDP-43-mediated disease conditions. These findings demonstrate a role for PABPN1 in rescuing several cytopathological features of TDP-43 proteinopathy by increasing the turnover of pathologic proteins.
The utilization of safety biomarkers to predict the possibility of compound-related toxicity provides several advantages for drug discovery and development, especially at an early stage. The objectives of this study were to investigate the effects of male reprod
uctive toxicants on protein expression profiles in the rat testes and to identify potential biomarker candidates. Four well-known reproductive toxicants, ethylene glycol monomethyl ether (EGME), cyclophosphamide (CP), sulfasalazine (SASP) and 2,5-hexanedione (2,5-HD), were administered to male rats in a single dose, and protein expression profiles were investigated after 24 hr by two-dimensional gel electrophoresis (2DE). Histopathological examination of the testes and serum concentration analysis were also performed. From the results of the comparison of 2D-gels among different doses of a compound and among compounds, 52, 20, 24 and 111 spots were nominated as differentially expressed spots with EGME, CP, SASP and 2,5-HD treatments, respectively. Several spermatogenesis-involved proteins were identified, including glutathione S-transferase (GST), testis-specific heat shock protein 70-2 (HSP70-2), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphatidylethanolamine-binding protein (PEBP). Some of them were altered by more than one compound. In summary, remarkable histopathological findings were observed only in the EGME high-dose group, and most of the protein changes were detected before histopathological changes occurred. Therefore, the proteins identified in this study could potentially serve as biomarkers to evaluate male reproductive toxicity at an early stage of drug discovery and development.
Seifert J and Vacha J, Toxicology. 1978 May;10(1):29-38.
After the administration of cycloheximide (2 mg/kg) the utilization of [2(-14C)]orotic acid for the synthesis of pyrimidine nucleotides of acid-soluble extracts of the liver is not affected for about 7 h. The specific activities of uridine and cytidine components are increased later on, and this inc
rease is higher in the case of cytidine components. Analogous changes undergoes the specific activity of RNA pyrimidine nucleotides. The increased utilization of labeled orotic acid for the synthesis of cytidine nucleotides can be observed also in the kidney and in the small intestine. The enhanced degree of labeling of cytidine nucleotides in vivo cannot be correlated with the activity of cytidine triphosphate synthetase (EC 6.3.4.2) of liver cytosol estimated in vitro. The amination of UTP is suppressed at later intervals after the application of cycloheximide. The same holds true for the activity of uridine phosphorylase (EC 2.4.2.3),5'-nucleotidase (EC 3.1.3.5) ATPase (EC 3.6.1.3) and of liver cytosol. The activity of uridine kinase (EC 2.7.1.48) is increased when tested both with uridine and cytidine as substrates. Cytidine deaminase activity (EC 3.5.4.5) raises markedly 3--5 h after the administration of drug; later on it decreases again.
Matsuura M, etal., J Toxicol Sci. 1989 Aug;14(3):165-80.
Hypoprothrombinemic changes were compared in rats fed various vitamin K-deficient diets. Changes such as prolongation of prothrombin time and activated partial thromboplastin time, decrease in plasma levels of prothrombin and clotting factor VII, and increase in plasma descarboxyprothrombin, appeare
d in rats maintained on vitamin K-deficient diet, but in rats on ordinary diet (vitamin K-sufficient diet). As the development of hypoprothrombinemia was not significantly different among animals fed various vitamin K-deficient diets, the blood coagulation parameters were concluded to be regulated only by the vitamin K level. Following the development of hypoprothrombinemia, hemorrhaging in various organs was detected in vitamin K-deficient rats, with strain differences in the severity of hemorrhage; Fischer and Wistar strains were more sensitive than the Sprague Dawley strain. Administration of a beta-lactam antibiotic, latamoxef (LMOX), to vitamin K-deficient rats led to enhancement of the hypoprothrombinemic conditions, but LMOX-associated changes in plasma enzyme levels were not detected.
Tellabati A, etal., Part Fibre Toxicol. 2010 Oct 19;7:30.
BACKGROUND: Epidemiological studies suggest that inhalation of carbonaceous particulate matter from biomass combustion increases susceptibility to bacterial pneumonia. In vitro studies report that phagocytosis of carbon black by alveolar macrophages (AM) impairs killing of Streptococcus pneumoniae.
We have previously reported high levels of black carbon in AM from biomass smoke-exposed children and adults. We therefore aimed to use a mouse model to test the hypothesis that high levels of carbon loading of AM in vivo increases susceptibility to pneumococcal pneumonia. METHODS: Female outbred mice were treated with either intranasal phosphate buffered saline (PBS) or ultrafine carbon black (UF-CB in PBS; 500 mug on day 1 and day 4), and then infected with S. pneumoniae strain D39 on day 5. Survival was assessed over 72 h. The effect of UF-CB on AM carbon loading, airway inflammation, and a urinary marker of pulmonary oxidative stress was assessed in uninfected animals. RESULTS: Instillation of UF-CB in mice resulted a pattern of AM carbon loading similar to that of biomass-smoke exposed humans. In uninfected animals, UF-CB treated animals had increased urinary 8-oxodG (P = 0.055), and an increased airway neutrophil differential count (P < 0.01). All PBS-treated mice died within 72 h after infection with S. pneumoniae, whereas morbidity and mortality after infection was reduced in UF-CB treated animals (median survival 48 h vs. 30 h, P < 0.001). At 24 hr post-infection, UF-CB treated mice had lower lung and the blood S. pneumoniae colony forming unit counts, and lower airway levels of keratinocyte-derived chemokine/growth-related oncogene (KC/GRO), and interferon gamma. CONCLUSION: Acute high level loading of AM with ultrafine carbon black particles per se does not increase the susceptibility of mice to pneumococcal infection in vivo.
Mochizuki M, etal., J Toxicol Sci. 2008 Aug;33(3):307-14.
Effects of dose and duration of phenobarbital (PB) administration and those of co-administration of PB and vitamin K on blood coagulation-related parameters were examined in specific pathogen-free (SPF) rats of Sprague-Dawley strain kept on an ordinary diet. In Experiment 1, oral administration of P
B (0, 25, 50, 100 or 150 mg/kg/day) for 2 weeks induced increases in hepatic cytochrome P450 content and CYP2B expression, prolongation of coagulation time (activated partial thromboplastin time (APTT) and Thrombotest (TBT)) and an increase in anti-thrombin III (AT III) concentration in a dose-dependent manner. In Experiment 2, PB administration (100 mg/kg/day) for up to 14 days produced time-dependent increases in hepatic cytochrome P450 content and CYP2B (CYP2B1 and CYP2B2) expression. APTT was prolonged from day 1 and AT III concentration was increased from day 2, whereas the coagulation time (TBT) was prolonged from day 7. In Experiment 3, APTT prolonged by PB (100 mg/kg/day) was shortened after vitamin K(2) (30 mg/kg/day) co-administration, although AT III concentration was still increased. This suggests that not AT III but PB-induced vitamin K deficiency may play an important role in PB-induced prolongation of coagulation time in SPF rats kept on an ordinary diet.
Potts RJ, etal., Toxicology. 2003 Mar 3;184(2-3):189-202.
The current study tested the hypothesis that the pulmonary carcinogenic potential of cadmium (Cd) is related to its ability to inhibit the expression (mRNA and protein) and activity of 8-oxoguanine-DNA glycosylase (OGG1), a base excision repair (BER) enzyme that functions to preferentially excise pr
e-mutagenic 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA. We demonstrate that a single Cd aerosol exposure of adult male Lewis rats causes time- and dose-dependent down-regulation in the pulmonary levels of rOGG1 mRNA and OGG1 protein, quantified by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assays and western analyses, respectively. Immunohistochemical studies confirmed that Cd inhalation reduces the relative amount of OGG1 in lungs of exposed animals without altering its over-all distribution within the lung, which appears to be more prominent within the alveolar epithelium. In agreement with our in vivo studies, we show that OGG1 expression is also attenuated in alveolar epithelial cell cultures exposed to CdCl(2) either acutely or by repeated passaging in Cd-containing medium. The effects caused by Cd were observed in cells that show no loss in viability, as assessed by colony forming ability, the MTT assay, and propidium iodide membrane permeability studies. Nuclear extracts prepared from Cd-treated cells also exhibit a reduction in the ability to nick a synthetic oligonucleotide containing 8-oxoG. We conclude from these studies that Cd causes suppression of OGG1 in the lung and that this mechanism may, in part, play a role in the Cd carcinogenic process.
Tokumoto M, etal., J Toxicol Sci. 2011 Apr;36(2):191-200.
Cadmium (Cd) causes renal dysfunction with damage to kidney proximal tubule cells; however, the precise mechanisms of the toxicity remain unclear. Previously, we found that the expression of Ube2d4 gene, which is a member of the ubiquitin-conjugating enzyme Ube2
d family, is suppressed by Cd in NRK-52E rat renal tubular epithelial cells. To investigate the mechanisms of Cd-induced renal toxicity, we examined the effects of Cd on the ubiquitin-proteasome system, particularly the expression and function of Ube2d family members in the NRK-52E cells and mice. Cd markedly decreased the expression of Ube2d1, Ube2d2, Ube2d3 and Ube2d4 prior to the appearance of cytotoxicity in the NRK-52E cells. Cd also dramatically increased p53 protein levels in the cells, without stimulation of p53 gene expression or inhibition of proteasome activity. In addition, Cd induced phosphorylation of p53 and caused apoptosis in the NRK-52E cells. In vivo, we examined the effect of orally administrated Cd for 12 months on the expression of Ube2d genes and accumulation of p53 in the mouse kidney. Chronic Cd exposure also caused suppression of Ube2d genes expression and accumulation of p53. Cd did not induce severe kidney injury, but caused apoptosis in the renal tubules. These results suggest that the Cd-induced accumulation of p53 may be due to inhibition of p53 degradation through the down-regulation of Ube2d family genes, and that Cd induces p53-dependent apoptosis in renal tubular cells. Moreover, Ube2d family members may be one of the critical targets of renal toxicity caused by Cd.
Sazci A, etal., Toxicology. 2004 Nov 15;204(2-3):197-202.
There is compelling evidence to suggest that catecholestrogens may play a role in the development of breast cancer. Particularly, inactivation of catecholestrogens may prevent the genesis and arrest the development of breast cancer. Catechol-O-methyltransferase (COMT) is polymorphic and responsible
for the detoxification of catecholestrogens. In the present study, we examined what role COMT gene polymorphisms may play in the development of breast cancer in a case-control study of 130 sporadic unrelated premenopausal Turkish breast cancer patients with 233 unrelated healthy controls. The frequency of COMT-L allele was more significantly represented in the breast cancer cases (48.08%) than in the controls (38.20%). The genotype frequencies of COMT-HH, HL and LL were 25.4, 53.1 and 21.5% in the breast cancer subjects and 26.6, 62.7 and 10.7% in the controls respectively. In conclusion, the COMT-L allele and COMT-LL genotype are genetic risk factors for sporadic breast cancer in premenopausal Turkish women.
The protective activity of pyridoxol L,2-pyrrolidon-5 carboxylate (metadoxine) was investigated in a rat model of carbon tetrachloride (CCL4)-induced hepatic fibrosis. After 6 weeks of CCl4 treatment, the animals developed fibrosis and inflammation of the liver while those treated with CCl4 + metado
xine had less severe lesions (P < 0.05). Since in liver fibroplasia there are quantitative changes of the extracellular matrix components and almost invariably a decrease in albumin synthesis, we have also investigated by Northern blot analysis the expression of the cellular fibronectin, pro-alpha 2(I)collagen and albumin genes. There were striking increases in fibronectin and pro-alpha 2(I)collagen mRNA contents in the livers of CCL4-treated animals and these enhancements were less evident in the metadoxine-treated rats. In contrast, albumin mRNA levels, almost identical in control and metadoxine-treated rats, were lower in the CCl4-treated animals. These data suggest that metadoxine might slow the development of CCl4-mediated liver fibrosis.
Souidi M, etal., Int J Toxicol. 2006 Nov-Dec;25(6):493-7.
After the Chernobyl nuclear accident, epidemiological studies on human populations living in 137Cs-contaminated areas revealed the increase frequencies of thyroid cancer and evoked the apparition of cardiovascular diseases, hormonal effect, liver alteration, and lipid disorder. Actually, it raises a
problem of public safety for the populations living on these territories that are exposed to low levels of 137Cs during a long period through food. Then it is necessary to study potential effect of this chronic contamination. To mimic this situation, the authors investigate the potential biological effects of chronic exposure to 137Cs at a postaccidental dose (150 Bq/rat/day) on hepatic metabolism of cholesterol in rat. Plasma lipid level, gene expression and activity were analyzed. It was observed that in 137Cs-exposed rats, gene expression of low-density lipoprotein receptor (LDLr), apolipoprotein B (apoB), and liver X receptor alpha (LXRalpha) are increased (95%, p < .05; 34%, p < .05; 20%, p < 0.05, respectively), whereas transporter adenosine triphosphate-binding cassette transporter G5 (ABCG5) is decreased (42%, p < .05). In addition, cytochrome P450 27A1 (CYP27A1) activity is increased (34%, p < .05) in contaminated rat liver. In conclusion, the results suggest that 137Cs contamination at low-level induces molecular modifications of the liver cholesterol metabolism without leading to a dysregulation of its homeostasis. These results suggest that chronic long term exposure at low-level of 137Cs may evolve to lipid disorder.
To elucidate the mechanism of nephrotoxicity caused by anti-neoplastic platinum complex, nedaplatin (NDP), treatment with a particular focus on the renal papillary toxicity, we analysed the gene expression profiles of two re
nal regions, the cortex (RC) and the papilla (RP) in rat kidneys. Male Wistar rats received a single administration of 10 mg/kg intravenous NDP or vehicle alone (5% xylitol solution) and were sacrificed six days later. The kidneys were dissected into the RC and RP and used for histopathological and microarray analyses. Histopathologically, NDP caused characteristic renal lesions, such as necrosis, single cell necrosis (with TUNEL TdT-mediated dUTP-biotin nick end labelling-positive) and regeneration/hyperplasia of the epithelial cells in both renal regions. Global gene expression analysis revealed that several genes involved in various functional categories were commonly deregulated in both renal regions, such as apoptosis, cell cycle regulation, DNA metabolism, cell migration/adhesion and cytoskeleton organization or genes induced as a perturbation of oxidative status and calcium homeostasis. Comparative analysis of gene expression between RC and RP revealed that genes encoding several subtypes of cytokeratins were identified as being specifically overexpressed in RP by the NDP treatment. Differential expression patterns of these selected genes observed by microarray analysis were further confirmed by quantitative real time RT-PCR and immunohistochemistry, which demonstrated increased expression of cytokeratins (CKs) 14 and 19 at the epithelium covering RP and/or collecting duct epithelium. Overall, the results contribute to understanding the renal molecular events of NDP-induced nephrotoxicity including novel potential biomarker genes encoding CKs 14 and 19 that may serve as indicators of renal papillary toxicity.
Smith AG, etal., J Biochem Toxicol. 1986 Mar;1(1):105-17.
The potentials of octachlorostyrene (OCS) and hexachlorobenzene (HCB) to induce liver microsomal ethoxyphenoxazone deethylation (an indicator of induction of 3-methylcholanthrene and beta-naphthoflavone-like cytochrome P-450 monoxygenase activity) and cause porphyria in male C57BL/6 and C57BL/10 mic
e and female F344 rats were compared. Ethoxyphenoxazone deethylation was induced much more by HCB than by OCS in both of these strains of mice (although neither OCS nor HCB greatly induced deethylation in the DBA/2 strain). In rats ethoxyphenoxazone deethylase was induced 26-fold by HCB but only four-fold by OCS, whereas dealkylation of pentoxyphenoxazone (an indicator of phenobarbital-like induction) increased 43- and 36-fold, respectively. Both chemicals were poor inducers of dealkylation of pentoxyphenoxazone in mice. When fed HCB continuously but not when given OCS, C57BL/6 and C57BL/10 mice (both after pretreatment with iron) and F344 rats developed porphyria with a depression of hepatic uroporphyrinogen decarboxylase activity. The results illustrate that in these species OCS and HCB cannot be considered as equally efficient agents for inducing ethoxyphenoxazone deethylation or causing porphyria. If these effects are mediated through binding to the aromatic hydrocarbon responsiveness (Ah) receptor, HCB would appear to have a much greater affinity than OCS despite the face that neither chemical possesses a structure currently considered to be necessary for efficient binding.
The aim of this study was to evaluate the effects of low doses of lead (200 ppm of PbAc(2) for 4 weeks) on rat spleens using different routes of administration. The study has been carried out at different levels: a histological evaluation has been made, and alterations of cell proliferation, B and T
lymphocyte subpopulations, and CD4(+) and CD8(+) T cell subpopulations have been evaluated. Apoptosis and necrosis of lymphoid cells were also analysed. Furthermore, lysozyme activity was measured. Results indicate a large increase in spleen size when lead is administered by intraperitoneal injection, being this route in which lead causes larger modifications in all of the parameters measured. Lead administered orally causes histological modifications, such as an increase in the number of lymphocytes as well as edema. However, significant alterations in other parameters studied have not been detected. Lead administration by intraperitoneal route causes more evident histological modifications as well as an increase in the number of lymphocytes, and also induces a decrease in the percentage of B(+), T(+) and CD4(+) cells, and an increase in CD8(+) cells. Cell death of splenic lymphocytes is not altered by lead. With regard to the immune innate response, lead behaves as an immunomodulator as can be deduced from data on lysozyme activity in tissue. Therefore, it is possible to affirm that the effect of low doses of lead depends on the route of administration. Thus, the intraperitoneal route, through which lead goes directly to the bloodstream, causes drastic effects, generating important immunological alterations.
Hfaiedh N, etal., J Biochem Mol Toxicol. 2005;19(1):12-8.
The present study deals with the effects of Ni on the expression level of three stress proteins, namely, the cytosolic HSP72 and HSP73, and the reticulum-associated GRP94. Experiments were carried out on "Wistar'' female rats daily injected with 4 mg NiCl2 per kg body weight for 1, 3, 5, and 10 days
. Another set of experiments were carried out using cell lines, derived from the monkey kidney (COS-7), and from human tumors of the lung (A549) and liver (HepG2). Cells were cultured for 4 days in the permanent presence of 100, 200, or 400 microM NiCl2. In control rats, stress proteins pattern was found to be tissue specific: two protein bands of 96 and 94 kDa were immunodetected with the anti-GRP94 antibody in kidney and liver extracts, whereas only the 96 kDa band was present in ovary extracts. HSP73 was present in kidney, liver, and ovary whereas HSP72 was only found in kidney. In kidney of nickel-treated animals, HSP73 and the 96 kDa proteins were overexpressed whereas HSP72 was strongly down regulated. No such effect was observed in liver or ovary. Similarly, in nickel-treated cell lines, HSP72 was downregulated and GRP94 (96 kDa protein) was overexpressed. HSP73 expression appeared moderately increased in A549 cells but decreased in COS-7 cells. Because long-term caloric restriction was reported to reduce free radical generation in cells, the effect of 1 month food restriction (50%) was tested in rats as a possible way to lower oxidative damages induced by Ni. No significant effect on HSP expression was observed.
Yu WG, etal., Environ Toxicol Chem. 2009 May;28(5):990-6.
The potential toxicity of perfluorooctane sulfonate (PFOS), an environmentally persistent organic pollutant, is of great concern. The present study examines the ability of PFOS to disturb thyroid function and the possible mechanisms involved in PFOS-induced thyr
oid hormone alteration. Male Sprague-Dawley rats were exposed to 1.7, 5.0, and 15.0 mg/L of PFOS in drinking water for 91 consecutive days. Serum was collected for analysis of total and free thyroxine (T4), total triiodothyronine (T3), and thyrotrophin (TSH). Thyroid and liver were removed for the measurement of endpoints closely related to thyroid hormone biosynthesis and metabolism following PFOS exposure. Determined endpoints were the messenger RNA (mRNA) levels for two isoforms of uridine diphosphoglucuronosyl transferases (UGT1A6 and UGT1A1) and type 1 deiodinase (DIO1) in liver, sodium iodide symporter (NIS), TSH receptor (TSHR), and DIO1 in thyroid as well as the activity of thyroid peroxidase (TPO). Serum total T4 level decreased significantly at all applied dosages, whereas total T3 level increased markedly only at 1.7 mg/L of PFOS. No statistically significant toxic effects of PFOS on serum TSH were observed. Hepatic UGTIA1, but not UGT1A6, mRNA was up-regulated at 5.0 and 15.0 mg/L of PFOS. Treatment with PFOS lowered hepatic DIO1 mRNA at 15.0 mg/L but increased thyroidal DIO1 mRNA dose dependently. The activity of TPO, NIS, and TSHR mRNA in thyroid were unaffected by PFOS treatment. These results indicate that increased hepatic T4 glucuronidation via UGT1A1 and increased thyroidal conversion of T4 to T3 via DIO1 were responsible in part for PFOS-induced hypothyroxinemia in rats.
The effect of feeding lead (50 mg kg(-1) body weight) daily for 7 days on the development of various brush border enzymes in the intestine has been studied. The activities of brush border sucrase (P < 0.001), lactase (P < 0.001), gamma-glutamyl transpeptidase (P < 0.05) and leucine aminopeptidase we
re reduced (P < 0.05), whereas the alkaline phosphatase level was augmented (P < 0.05) in lead fed rats compared with controls. Kinetic studies with sucrase revealed a low Vmax (0.224 in control and 0.160 units mg(-1) protein in lead exposed) with no change in Km (12.6-13.5 mM). Western blot analysis for alkaline phosphatase yielded intense staining of enzyme protein in lead fed rats compared with controls, however, the intensity of the antigen signal was reversed for sucrase under these conditions. These findings suggest that ingestion of lead may interfere with the crypt cell differentiation process thus affecting enzyme functions in the rat intestine.
Kezic S, etal., Toxicol Ind Health. 2006 Aug;22(7):281-9.
In the present study, we investigate whether genetic polymorphism in enzymes involved in the metabolism of organic solvents influences susceptibility to chronic solvent encephalopathy (CSE), which is one of the major effects of long-term exposure to organic solvents. Polymorphisms in the genes encod
ing CYP1A1, CYP2E1, EPHX1, GSTM1, GSTT1 and GSTP1 enzymes were determined in a group of male CSE patients (N=97) and controls (N=214). The selection of the patients was based on a standard diagnostic protocol, including interviews, neuropsychological tests and questionnaires directed to somatic, cognitive and mood symptoms and exposure, in combination with well-defined decision rules. As controls, healthy workers of similar socio-economic background, without memory problems and with no known exposure to organic solvents, were included in the study. Comparing patients and controls, higher frequencies of the variant *5B allele of the CYP2E1 gene (OR: 5.8; 95% CI: 1.8-18.8) and of the variant GSTP1*C allele (OR: 0.40; 95% CI: 0.17-0.94) were found. Homozygous carriers of the exon 4 EPHX1 Arg139 variant allele had a lower risk (OR: 0.25; 95% CI: 0.06-1.13). The present study indicates that genetic polymorphism of CYP2E1, EPHX1 and GSTP1 modify the risk of developing CSE.
Souidi M, etal., Toxicology. 2005 Oct 15;214(1-2):113-22.
In addition to its natural presence at high concentrations in some areas, uranium has several civilian and military applications that could cause contamination of human populations, mainly through chronic ingestion. Reports describe the accumulation of this radionuclide in some organs (including the
bone, kidney, and liver) after acute or chronic contamination and show that it produces chemical or radiological toxicity or both. The literature is essentially devoid of information about uranium-related cellular and molecular effects on metabolic functions such as xenobiotic detoxification. The present study thus evaluated rats chronically exposed to depleted uranium in their drinking water (1mg/(ratday)) for 9 months. Our specific aim was to evaluate the hepatic and extrahepatic mRNA expression of CYP3A1/A2, CYP2B1, and CYP1A1 as well as of the nuclear receptors PXR, CAR, and RXR in these rats. CYP3A1 mRNA expression was significantly higher in the brain (200%), liver (300%), and kidneys (900%) of exposed rats compared with control rats, while CYP3A2 mRNA levels were higher in the lungs (300%) and liver (200%), and CYP2B1 mRNA expression in the kidneys (300%). Expression of CYP1A1 mRNA did not change significantly during this study. PXR mRNA levels increased in the brain (200%), liver (150%), and kidneys (200%). Uranium caused CAR mRNA expression in the lungs to double. Expression of RXR mRNA did not change significantly in the course of this study, nor did the hepatic activity of CYP2C, CYP3A, CYP2A, or CYP2B. Uranium probably affects the expression of drug-metabolizing CYP enzymes through the PXR and CAR nuclear receptors. These results suggest that the stimulating effect of uranium on these enzymes might lead to hepatic or extrahepatic toxicity (or both) during drug treatment and then affect the entire organism.
Tea is one of the most frequently consumed beverages in the world, second only to water. Epidemiological studies have associated the consumption of green tea with a lower risk of several types of cancers, including stomach, oral cavity, esophagus, and lung. This paper deals with the mechanism of act
ion of tea as an effective chemopreventive agent for toxic chemicals and especially carcinogens. UDP-glucuronosyltransferase (UDP-GT) activities towards p-nitrophenol were markedly increased (51.8% or 1.5-fold) in rats that consumed tea compared with the control animals on water. Induction of UDP-glucuronosyltransferase activity by tea may involve the UDP-GT1 (UGT1A) gene complex of the UDP-GT multigene family. Therefore, a major mechanism of tea as a chemopreventive agent is induction of the microsomal detoxification enzyme, UDP-glucuronosyltransferase.
Previous reports have recently shown the prototypic neurotoxicant, lead, to induce apoptosis in the brains of developing organisms. In the current study, timed-pregnant rats were exposed to lead acetate (0.2% in the drinking water) 24 h following birth at postna
tal day 1 (PND 1). Dams and pups were continuously exposed to lead through the drinking water of the dam until PND 20. Postnatal exposure in the pups resulted in altered mRNA levels of the following apoptotic and neurotrophic factors: caspase 2 and 3, bax, bcl-x, brain-derived neurotrophic factor (BDNF). Ribonuclease protection assays were conducted to measure the factors simultaneously at the following postnatal time points: 9, 12, 15, 20, 25, days. Our results suggest a brain region- and time-specific response following lead acetate exposure. The region most vulnerable to alterations occurs in the hippocampus with alterations beginning at PND 12, in which caspase 3, bcl-x, BDNF increase with lead exposure. Significant treatment effects were not observed for both the cortex and cerebellum.
Bocchini N, etal., J Appl Toxicol. 2015 Jan;35(1):90-103.
Phospholipidosis (PLD) is characterized by an intracellular accumulation of phospholipids in lysosomes and concurrent development of concentric lamellar bodies. It is induced in humans and in animals by drugs with a cationic amphiphilic structure. The purpose of the present study was to identify a s
et of molecular biomarkers of PLD in rat blood and heart, hypotheticallya pplicable in preclinical screens within the drug development process. A toxicological study was set up in rats orally treated up to 11 days with 300 mg kg(-1) per day(-1) amiodarone (AMD). Light and transmission electron microscopy investigations were performed to confirm the presence of lamellar bodies indicative of phospholipid accumulation. The effects of AMD upon the transcriptome of these tissues were estimated using DNA microarray technology. Microarray data analysis showed that a total of 545 and 8218 genes were modulated by AMD treatment in heart and blood, respectively. Some genes implicated in the phospholipid accumulation in cells, such as phospholipase A2, showed similar alterations of gene expression. After transcriptome criteria of analysis and target selection, including also the involvement in the onset of PLD, 7 genes (Pla2g2a, Pla2g7, Gal, Il1b, Cebpb, Fcgr2b, Acer 2) were selected as candidate biomarkers of PLD in heart and blood tissues, and their potential usefulness as a sensitive screening test was screened and confirmed by quantitative Real-Time PCR analysis. Collectively, these data underscore the importance of transcriptional profiling in drug discovery and development, and suggest blood as a surrogate tissue for possible phospholipid accumulation in cardiomyocytes.
Bhadauria S and Flora SJ, Cell Biol Toxicol. 2006 Nov 1;.
Arsenic and its compounds cause adverse health effects in humans. Current treatment employs administration of thiol chelators, such as meso-2,3-dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), which facilitate its excretion from the body. However, these chelating a
gents are compromised by number of limitations due to their lipophobic nature, particularly in case of chronic poisoning. Combination therapy is a new approach to ensure enhanced removal of metal from the body, reduced doses of potentially toxic chelators, and no redistribution of metal from one organ to another, following chronic metal exposure. The present study attempts to investigate dose-related effects of two thiol chelators, DMSA and one of its new analogues, monoisoamyl dimercaptosuccinic acid (MiADMSA), when administered in combination with the aim of achieving normalization of altered biochemical parameters suggestive of oxidative stress and depletion of inorganic arsenic following chronic arsenic exposure. Twenty-five adult male Wistar rats were given 25 ppm arsenic for 10 weeks followed by chelation therapy with the above chelating agents at a dose of 0.3 mmol/kg (orally) when administered individually or 0.15 mmol/kg and 0.3 mmol/kg (once daily for 5 consecutive days), respectively, when administered in combination. Arsenic exposure led to the inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) activity and depletion of glutathione (GSH) level. These changes were accompanied by significant depletion of hemoglobin, RBC and Hct as well as blood superoxide dismutase (SOD) acitivity. There was an increase in hepatic and renal levels of thiobarbituric acid-reactive substances, while GSH:GSSG ratio decreased significantly, accompanied by a significant increase in metallothionein (MT) in hepatocytes. DNA damage based on denaturing polyacrylamide gel electrophoresis revealed significant loss in the integrity of DNA extracted from the liver of arsenic-exposed rats compared to that of normal animals. These changes were accompanied by a significant elevation in blood and soft-tissue arsenic concentration. Co-administration of DMSA and MiADMSA at lower dose (0.15 mmol/kg) was most effective not only in reducing arsenic-induced oxidative stress but also in depleting arsenic from blood and soft tissues compared to other treatments. This combination was also able to repair DNA damage caused following arsenic exposure. We thus recommend combined administration of DMSA and MiADMSA for achieving optimum effects of chelation therapy.
Mijal RS, etal., Chem Res Toxicol. 2004 Mar;17(3):424-34.
The tobacco specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent pulmonary carcinogen, both methylates and pyridyloxobutylates DNA. Both reaction pathways generate promutagenic O6-alkylguanine adducts. These adducts, O6-methylguanine (O6-mG) and O6-[4-oxo-4-(3-pyridyl
)butyl]guanine (O6-pobG), are repaired by O6-alkylguanine-DNA alkyltransferase (AGT). In this report, we demonstrate that pyridyloxobutyl DNA adducts are repaired by AGT in a reaction that results in pyridyloxobutyl transfer to the active site cysteine. Because minor changes within the binding pocket of AGT can alter the ability of this protein to repair bulky O6-alkylguanine adducts relative to O6-mG, we explored the ability of AGTs from different species as well as several human AGT variants and mutants to discriminate between O6-mG or O6-pobG adducts. We incubated proteins with equal molar amounts of oligodeoxynucleotides containing site specifically incorporated O6-mG or O6-pobG and measured repair. Bacterial AGTs poorly repaired O6-pobG. Mouse and rat AGT repaired both adducts at comparable rates. Wild-type human AGT, variant I143V/K178R, and mutant N157H repaired O6-mG approximately twice as fast as O6-pobG. Human variant G160R and mutants P140K, Y158H, G156A, and E166G did not repair O6-pobG until all of the O6-mG was removed. To understand the role of adduct structure on relative repair rates, the competition experiments were repeated with two other bulky O6-alkylguanine adducts, O6-butylguanine (O6-buG) and O6-benzylguanine (O6-bzG). The proteins displayed similar repair preference of O6-mG relative to O6-buG as observed with O6-pobG. In contrast, all of the mammalian proteins, except the mutant P140K, preferentially repaired O6-bzG. These studies indicate that the rate of repair of O6-pobG is highly dependent on protein structure. Inefficient repair of O6-pobG by bacterial AGT explains the high mutagenic activity of this adduct in bacterial systems. In addition, differences observed in the repair of this adduct by mammalian proteins may translate into differences in sensitivity to the mutagenic and carcinogenic effects of NNK or other pyridyloxobutylating nitrosamines.
The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects cau
sed by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), gamma-glutamylcysteine synthetase (gamma-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24months) were dosed orally with toluene (0, 0.65 or 1g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at -80 degrees C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12month old rats following toluene exposure, but only in the hippocampus of 24month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative damage in frontal cortex and cerebellum of 12month old rats. Although increases in oxidative damage are associated with increases in horizontal motor activity in older rats, further research is warranted to determine if these changes in OS parameters are related to neurobehavioral and neurophysiological effects of toluene in animal models of aging.
Brauch H, etal., Toxicol Lett. 2004 Jun 15;151(1):301-10.
Occupational exposures have long been suspected to play a role in the incidence of renal cell carcinoma (RCC). Especially, the carcinogenicity of the industrial solvent trichloroethylene (TCE) has been controversially debated, both with respect to the epidemiological and the molecular studies. In o
rder to further elucidate this issue, it appeared important to compare suitable RCC patient groups, i.e., TCE-exposed versus non-TCE-exposed patients. We evaluated RCC from a previous German study that had described differences in RCC risks between TCE-exposed (n=17) and non-exposed patients (n=21). We compared age at diagnosis and histopathologic parameters of tumors as well as somatic mutation characteristics in the kidney cancer causing VHL tumor suppressor gene. RCC did not differ with respect to histopathological characteristics in both patient groups. We noticed a younger age at diagnosis in TCE-exposed patients compared to non-exposed patients (P=0.01). Moreover, the non-TCE-exposed patients did not share the somatic VHL mutation characteristics of TCE-exposed patients such as the previously identified hot spot mutation 454 C > T P81S or multiple mutations. These data support the notion of a putative genotoxic effect of TCE leading to VHL gene damage and subsequent occurrence of RCC in highly exposed subjects.
Katsuta O, etal., Toxicol Pathol 2003 Jul-Aug;31(4):411-6.
Amelogenesis imperfecta (AI) is an inherited dental disease of enamel formation in humans, and there are various phenotypes due to the combination of enamel quality and quantity. We encountered four female IGS rats with spontaneous AI including odontogenic cysts in the incisor teeth. Histopathologic
ally, in the incisors of the rats, the enamel organ was disorganized with the remaining enamel matrix residing within the enamel space. The expanding cysts derived from the enamel organ were formed in the periosteal connective tissue on the labial side. At the bottom of the tooth germs, the precursor cells of the epithelial root sheath were arranged regularly and the enamel organs were preserved to the same degree as those of normal rats. In the molar teeth of the affected rats an enamel matrix remained on the neck and crown of the erupted teeth; however, no abnormality was observed at the tooth root. Although an animal model of AI has been developed from mutants of the SHR-SP rat strain, the present cases represent another potential model of the disease because of the differences in the way the enamel matured and the odontogenic cyst formation in the incisors.
Uroporphyrinogen decarboxylase is an essential enzyme in all organisms and functions in the heme biosynthetic pathway, catalyzing the decarboxylation of the four acetate groups of uroporphyrinogen to form coproporphyrinogen. This work examines whether the four sequential decarboxylations occur at th
e same active site, and explores whether hexachlorobenzene-induced porphyria affects the behavior of the enzyme. For this purpose, kinetic competition studies were done with mixtures of uroporphyrinogen III and pentacarboxyporphyrinogen III. With the enzyme from normal rats, a constant velocity was obtained with all the mixtures, indicating that uroporphyrinogen and pentacarboxy-porphyrinogen react at the same active site, i.e. the first and fourth decarboxylations occur at the same site. In contrast, in experiments with enzyme from rats with hexachlorobenzene-induced porphyria, the total rate for mixtures was always lower than the reference rate; and a curve with a deep minimum was obtained, indicating that the two reactions occur at functionally different sites, but with cross-inhibition. This suggests that the modifications induced in the enzyme by hexachlorobenzene cause the two active sites to become nonequivalent and functionally different. The question is discussed how the hexachlorobenzene treatment may produce this abnormal kinetic behavior, and alternative hypotheses are considered.
The expression of most drug-metabolising enzymes is highest in the perivenous region of the liver, where drug-induced damage is commonly initiated. Arylamine N-acetyltransferase plays an important role in activation or detoxification of many drugs, carcinogens,
pesticides and other xenobiotics, but its acinar distribution is unknown. In this study we have analysed the activity of N-acetyltransferase in cell lysates obtained from the periportal or perivenous region by digitonin treatment during in situ liver perfusion. Livers from control animals were compared with rats chronically exposed either to ethanol by liquid diet or to lipopolysaccharide (endotoxin) by intravenous administration. The activity of N-acetyltransferase in the perivenous region was slightly (+ 20%) higher than in the periportal region. Although chronic ethanol exposure did not change total activity, the acinar distribution was reversed to a higher activity in the periportal region. In contrast, chronic endotoxin significantly increased N-acetyltransferase activity, but did not affect the acinar distribution. This increase was counteracted by simultaneous ethanol treatment. N-Acetyltransferase activity in perivenous lysates was significantly reduced after the co-administration of ethanol and endotoxin compared to that after endotoxin alone. Thus, the perivenous zonation of liver N-acetyltransferase is moderate compared to other transferases or P450 isozymes, and the cellular capacity for N-acetylation in the perivenous region, where xenobiotic activation to reactive intermediates dominates, may be insufficient.
Previous studies have shown that inhaled particles exacerbate asthma and allergic rhinitis. Several factors related to the particle may play a role in immune-stimulating activity; however, the underlying mechanisms remain unclear. We carried out in vitro studies to investigate the effects of TiO(2)
particle exposure on antigen presenting activity and expression of the associated cell-surface molecules (Ia, B7.1, B7.2) in rat derived monocytes and alveolar macrophages, in terms of two aspects of the particles: (1) size (59 nm (ST) and 350 nm (LT) particles), and (2) the timing of particle exposure (before antigen exposure or co-administered). Results indicated that particle exposure prior to antigen exposure led to decreased antigen presenting activity in both types of cell. This decrease was greater with ST particles. In monocytes, the expression of cell surface molecules decreased similarly with both particles. Conversely, alveolar macrophages showed greater expression of Ia with ST than with LT exposures. Ia expression was confirmed to be functionally active by a mixed lymphocyte reaction. It is possible that particle exposure might result in poor antigen processing, thereby leading to decreased antigen presenting activity. Co-exposure of particles and antigen induced an increase in antigen presenting activity with both types of particle; however, ST exposure induced greater antigen presenting activity. The expression of Ia also increased similarly with both particle sizes. This suggests that, in a co-exposure situation, antigen may be processed without intensive retardation by particles, and factors other than Ia may affect antigen presenting activity. In conclusion, both size and timing of exposure to TiO(2) particles affect antigen presenting activity of monocytes and alveolar macrophages.
Costa VM, etal., Chem Res Toxicol. 2009 Jan;22(1):129-135.
Isolated heart cells are highly susceptible to the toxicity of catecholamine oxidation products, namely, to catecholamine-glutathione adducts. Although cellular uptake and/or efflux of these products may constitute a crucial step, the knowledge about the involve
ment of transporters is still very scarce. This work aimed to contribute to the characterization of membrane transport mechanisms, namely, extraneuronal monoamine transporter (EMT), the multidrug resistant protein 1 (MRP1), and P-glycoprotein (P-gp) in freshly isolated cardiomyocytes from adult rats. These transporters may be accountable for uptake and/or efflux of adrenaline and an adrenaline oxidation product, 5-(glutathion-S-yl)adrenaline, in cardiomyocyte suspensions. Our results showed that 5-(glutathion-S-yl)adrenaline efflux was mediated by MRP1. Additionally, we demonstrated that the adduct formation occurs within the cardiomyocytes, since EMT inhibition reduced the intracellular adduct levels. The classical uptake2 transport in rat myocardial cells was inhibited by the typical EMT inhibitor, corticosterone, and surprisingly was also inhibited by low concentrations of another drug, a well-known P-gp inhibitor, GF120918. The P-gp activity was absent in the cells since P-gp-mediated efflux of quinidine was not blocked by GF120918. In conclusion, this work showed that freshly isolated cardiomyocytes from adult rats constitute a good model for the study of catecholamines and catecholamines metabolites membrane transport. The cardiomyocytes maintain EMT and MRP1 fully active, and these transporters contribute to the formation and efflux of 5-(glutathion-S-yl)adrenaline. In the present experimental conditions, P-gp activity is absent in the isolated cardiomyocytes.
Kasper M, etal., Exp Toxicol Pathol. 1996 Jun;48(4):283-8.
To determine the value of von Willebrand factor (vWF) antigen as a marker of endothelial injury in radiation-induced fibrosis of rat lungs, we studied endothelial immunoreactivity to antibodies against vWF using the indirect immunoperoxidase technique combined with morphometric analysis. Using immun
oelectron microscopy of LR White embedded lung samples to detect vWF, immunogold-labelled Weibel Palade bodies were found in endothelial cells of capillary endothelium. The irradiated lungs showed a statistically significant elevation of vWF expression, ie, vWF positive endothelia per unit area, and a significant increase of vWF expression per unit of parenchyma as well. The results suggest that vWF antigen expression and the number of vWF positive structures is modulated under condition of injury in radiation-induced fibrosis.
The effect of thiabendazole (TB) on some rat hepatic xenobiotic metabolising enzymes has been investigated. Male Sprague-Dawley rats were fed control diet or diets containing 102-5188 ppm TB for 28 days. As a positive control for induction of hepatic xenobiotic metabolism, rats were also fed diets c
ontaining 1457 and 10,155 ppm butylated hydroxytoluene (BHT). Treatment with TB and BHT resulted in dose-dependent increases in relative liver weight. TB was found to be a mixed inducer of cytochrome P450 (CYP) forms in the CYP1A and CYP2B subfamilies. The administration of high doses of TB resulted in the induction of 7-ethoxyresorufin O-deethylase and 7-pentoxyresorufin O-depentylase activities, CYP1A1, CYP1A2, CYP2B1 and CYP2B1/2 mRNA levels and CYP1A2 and CYP2B1/2 apoprotein levels. In contrast, BHT was a CYP2B form inducer, increasing 7-pentoxyresorufin O-depentylase activity, CYP2B1 and CYP2B1/2 mRNA levels and CYP2B1/2 apoprotein levels. Both TB and BHT induced GSH S-transferase activities towards a range of substrates. In addition, TB and BHT markedly induced GSTP1 mRNA levels, but had only a small effect on GSTT1 mRNA levels. In summary, these results demonstrate that TB induces both phase I and II xenobiotic metabolising enzymes in rat liver.
Two alternatives for the treatment of lead intoxication, administration of zinc or a thiol donor, S-adenosyl-L-methionine (SAM), were analysed. Rats were exposed to lead (Pb)-acetate (60 mg/l) in drinking water during 90 days; one group also received SO4Zn in wa
ter (40 mg/l), while another received both Pb and SAM (5 mg/24 hr intraperitoneally. Erythrocytic delta-aminolaevulinic dehydratase (ALA-D) activity was significantly reduced (P < 0.001) both in rats receiving Pb alone and in rats receiving Pb and each of the other two treatments. The high erythrocytic uroporphyrinogen synthetase (URO-S) activity noticed in Pb administered rats, was significantly (P < 0.001) reduced in animals treated either with zinc or with SAM. Hepatic ALA-D activity tended to decrease while renal enzyme activity was not modified by the low level Pb exposure used in this work. Interestingly, SAM treated rats in both tissues exhibited significantly (P < 0.01) higher activities of the enzyme. It is argued that SAM treatment causes a surplus of thiols that allows the full expression of ALA-D catalytic activity.
Schlecht C, etal., Toxicology. 2004 Dec 1;205(1-2):123-30.
The estrogen receptors (ERs) are members of a super family of ligand-activated transcription factors mediating estrogenic responses. A close functional kinship was found for the structurally related estrogen receptor-related receptor1 (ERR1), a constitutively active transcription factor. The aryl h
ydrocarbon receptor (AhR) mediates the toxic and estrogenic effects of a wide variety of environmental contaminants and industrial pollutants. Both the ERR1 and the AhR are known to modulate the ER's signalling pathways in multiple ways. Organic chemicals with a certain structural relationship to steroid hormones often induce a tissue- or cell-specific variety of responses distinct from estrogenic responses and this may involve ERR1 and AhR. The UV-screens benzophenone-2 and benzophenone-3 (BP2, BP3), structurally related to known steroid receptor ligands, are used in cosmetics and plastics to improve product stability and durability. Both BP2 and BP3 were shown to exert uterotrophic effects and BP2 was shown to bind to the estrogen receptors. Whether such effects are also exerted in other organs is unknown. Therefore, an approach to a multi-organic risk assessment for these substances was made by measuring the gene-expression of the four mentioned receptors in the pituitary, the uterus and the thyroid after a five-day treatment in comparison to estradiol. Though BP2 seems to exert an estrogen-like effect while BP3 does not, there are regulatory effects on receptor expression for both substances that indicate a kind of endocrine disruption that is not assessed by "classical" estrogenic markers.
Daggett DA, etal., Toxicology. 1998 Jul 17;128(3):191-206.
The effect of acute exposure to lead acetate on the expression of glutathione S-transferase (GST) subunits and the levels of reduced and oxidized glutathione (GSH) and malondialdehyde (MDA) in rat kidney and liver was determined. The purpose of this study was to determine if GSH depletion and/or oxi
dative stress were responsible for changes in the expression of some or all GSTs that followed lead exposure. In kidney, all GST subunits increased following injection of lead. The level of kidney GSH was not changed at either 0.5 or 1 h after lead exposure, but increased 3, 6, 12 and 24 h after a single injection of lead. MDA levels (a marker of lipid peroxidation) did not change in kidney following lead injection. Immunohistochemical markers of oxidative stress and nitric oxide production were also unchanged by lead administration. Therefore. we conclude that the increases in GST levels in kidney following lead exposure were not dependent on oxidative stress. In liver, lead injection caused GSH depletion (61% of control 12 h after lead treatment) and increased MDA production (2.5-fold increase 6 h after lead exposure), while GSTA1, GSTA2, GSTM1 and GSTM2 did not increase. Analysis of the effects of lead on GST mRNA and GST cellular localization were performed by Northern blot and immunohistochemical techniques. Immunoperoxidase light microscopy and immunogold electron microscopy revealed that the increase in kidney GSTM1 and GSTP1 occurred in nuclei, cytoplasm and microvilli of proximal tubules. Northern blot analysis of GSTA2 and GSTP1 mRNAs showed that their increase following lead exposure was inhibited by actinomycin D, suggesting transcriptional induction. This study demonstrates that acute lead exposure causes dramatic changes in the subcellular distribution and expression of rat kidney GSTs, and that these changes are not a result of oxidative stress.
The present study was carried out to investigate the effects of paeoniflorin in cultured RAW264.7 cell line as well as in an experimental model of sepsis induced by cecal ligation and puncture, and intraperitoneal injection (i.p.) of lipopolysaccharide in rats. Results showed that paeoniflorin conce
ntration-dependently down-regulated the levels of TNF-alpha, IL-6 and high-mobility group-box 1 protein in lipopolysaccharide-induced RAW264.7 cell, inhibited the IkappaB kinase pathway and modulated NF-kappaB. Intravenous injection (i.v.) of paeoniflorin alone or in combination with imipenem reduced i.p. of lipopolysaccharide or cecal ligation and puncture-induced lethality in rats. In addition, serum levels of TNF-alpha, IL-6, high-mobility group-box 1 protein, triggering receptor expressed on myeloid cells and endotoxin were down-regulated; by contrast, serum levels of IL-10 were up-regulated. Amelioration of hemodynamics, decrease of enzyme levels, decrease of myeloperoxidase in lung, liver, and small intestine were also found after paeoniflorin injection. These data indicate that the anti-sepsis effect of paeoniflorin was mediated by decreasing local and systemic levels of a wide spectrum of inflammatory mediators. This work provides the first evidence that paeoniflorin has the capacity to inactivate inflammatory response in sepsis and the anti-inflammatory mechanism of paeoniflorin may inhibit activation of the NF-kappaB pathway by inhibiting IkappaB kinase activity.
Xu XH, etal., Environ Toxicol Chem. 2010 Jan;29(1):176-81.
Bisphenol-A (BPA) is one of the most common environmental endocrine disrupters with mixed estrogen agonist/antagonist properties. The toxicity of BPA has been extensively evaluated in a variety of tests in rodents, including developmental and reproductive tox
style='font-weight:700;'>toxicity, and carcinogenicity. The objective of the present study is to evaluate whether or not perinatal maternal exposure to BPA at 0.05, 0.5, 5, 50, and 200 mg/kg/d affects N-methyl-D-aspartate (NMDA) receptor (NMDAR) subunits NR1, NR2A, 2B, estrogen receptor beta (ERbeta), and aromatase cytochrome P450 (P450arom) protein expressions of hippocampus in male rat offspring during postnatal development. Western-blotting analyses showed that perinatal exposure to BPA significantly affected the expression of NMDAR subunits. At the lower doses of 0.05 to 50 mg/kg/d, BPA concentration dependently inhibited the expression of NMDAR subunits. However, at the higher dose (200 mg/kg/d), the effects of BPA on these subunits were different, with a stronger inhibition of NR1 expression and a slighter inhibition of NR2A, 2B expression when compared with those at the lower dosage of BPA. In addition, perinatal exposure to BPA inhibited the expression of ERbeta protein, but increased P450arom protein expression in a concentration-dependent manner, especially during the early postnatal period (the first 1-3 postnatal weeks). No significant influence of BPA on P450arom was observed at postnatal week 8. These data suggest that environmental BPA exposure may affect the development of the brain, enhancing the local biosynthesis of estrogen in the brain, inhibiting ERbeta and NMDAR expressions.
Koen YM, etal., Chem Res Toxicol. 2006 Nov;19(11):1426-34.
The hepatotoxicity of bromobenzene (BB) derives from its reactive metabolites (epoxides and quinones), which arylate cellular proteins. Application of proteomic methods to liver proteins from rats treated with a hepatotoxic
dose of [14C]-BB has identified more than 40 target proteins, but no adducted peptides have yet been observed. Because such proteins are known to contain bromophenyl- and bromodihydroxyphenyl derivatives of cysteine, histidine, and lysine, the failure to observe modified peptides has been attributed to the low level of total covalent binding and to the "dilution" effect of multiple metabolites reacting at multiple sites on multiple proteins. In this work glutathione S-transferase (GST), a well-known and abundant BB-target protein, was isolated from liver cytosol of rats treated with 14C-BB by use of a glutathione (GSH)-agarose affinity column and further resolved by reverse-phase high-performance liquid chromatography (HPLC) into subunits M1, M2, A1, A2 and A3. The subunits were identified by a combination of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), whole-molecule mass spectrometry, and peptide mass mapping and found to contain radioactivity corresponding to 0.01-0.05 adduct per molecule of protein. Examination of tryptic digests of these subunits by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and electrospray ionization mass spectrometry (ESI-MS) failed to reveal any apparent adducted peptides despite observed sequence coverages up to 87%. However, use of HPLC-linear ion-trap quadrupole Fourier transform mass spectrometry (LTQ-FTMS) to search for predicted modified tryptic peptides revealed peaks corresponding, with a high degree of mass accuracy, to a bromobenzoquinone adduct of peptide 89-119 in both GSTA1 and A2. The identity of these adducts and their location at Cys-111 was confirmed by tandem mass spectrometry (MS-MS). No evidence for the presence of any putative BB-adducts in GST M1, M2, or A3 was obtained. This work highlights the challenges involved in the unambiguous identification of reactive metabolite adducts formed in vivo.
Gulec M, etal., Toxicol Ind Health. 2006 Apr;22(3):125-30.
This study was carried out to determine if Ginkgo Biloba Extract (GBE or Egb 761) exerts a beneficial effect against cisplatin-induced renal failure in rats. Sprague Dawley rats were divided into four groups. The first group (control) received orally 1 mL/kg/day of 0.9% saline by an oral carrier veh
icle on days 1 to 10. The second group was injected with 7 mg/kg cisplatin intraperitoneally (i.p.) on the fourth day, once only. The third group (vit E+cisplatin) was administered 10 mg/kg/day i.p. vit E on 1 to 10 days with one dose of i.p. cisplatin (7 mg/kg) injection on the fourth day. The fourth group (GBE+cisplatin) was given GBE orally at 100 mg/mL/kg started on the first day up to the tenth day with one dose of cisplatin (7 mg/kg) injection on the fourth day. Cisplatin was found to lead a statistically significant increase in plasma BUN and creatinine levels, as well as urine micro total protein (MTP) levels, leading to acute renal failure (ARF) in rats. Renal xanthine oxidase (XO) activities increased in all groups (statistically significant in cisplatin + GBE-treated rats; P < 0.001). Adenosine deaminase (AD) activities were increased in cisplatin-treated rats, and decreased in cisplatin+GBE-treated (P < 0.041) and cisplatin+vit E-treated (P < 0.005) rats, compared to controls. Malondialdehyde (MDA), nitric oxide (NO) levels and myeloperoxidase (MPO) activities were increased in the kidney tissue of cisplatin-treated rats. Vit E improved plasma creatinine and urine MTP levels, together with tissue MDA, NO levels, and MPO activities. But GBE had no statistically significant effect on those parameters. These results indicate that increased XO, AD and MPO activities, as well as MDA and NO levels play a critical role in cisplatin nephrotoxicity. GBE has been shown to protect against cisplatin-induced nephrotoxicity.
Yuan SH, etal., Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2909-14. doi: 10.1073/pnas.0805555106. Epub 2009 Feb 5.
We report the cloning and characterization of TOX3, a high mobility group box protein involved in mediating calcium-dependent transcription. TOX3 was identified as a calcium-dependent transactivator using the Transactivator
Trap screen. We find that TOX3 interacts with both cAMP response element (CRE)-binding protein (CREB) and CREB-binding protein (CBP), and knockdown of the endogenous TOX3 by RNAi leads to significant reduction of calcium-induced c-fos expression and complete inhibition of calcium activation of the c-fos promoter. The effects of TOX3 on calcium-dependent transcription require the CRE elements. These observations identify TOX3 as an important regulator of calcium-dependent transcription and suggest that TOX3 exerts its effect on CRE-mediated transcription via its association with the CREB-CBP complex.
Bodwell JE, etal., Chem Res Toxicol 2004 Aug;17(8):1064-76.
Arsenic (As) contamination of drinking water is considered a principal environmental health threat throughout the world. Chronic intake is associated with an increased risk of cancer, diabetes, and cardiovascular disease, and recent studies suggest increased health risks at levels as low as 5-10 ppb
. We report here that 0.05-1 microM (6-120 ppb) As showed stimulatory effects on glucocorticoid receptor (GR)-mediated gene activation in rat EDR3 hepatoma cells of both the endogenous tyrosine aminotransferase (TAT) gene and the reporter genes containing TAT glucocorticoid response elements. At slightly higher concentrations (1-3 microM), the effects of As became inhibitory. Thus, over this narrow concentration range, the effects of As changed from a 2- to 4-fold stimulation to a greater than 2-fold suppression in activity. Interestingly, the inhibitory effect of GR on both AP1- and NF-kappa B-mediated gene activation was not affected by As. The magnitude of GR stimulation and inhibition by As was highly dependent on the cellular level of hormone-activated GR. Mutational deletion studies indicated that the central DNA binding domain (DBD) of GR is the minimal region required for the As effect and does not require free sulfhydryls. Point mutations located within the DBD that have known structural consequences significantly altered the GR response to As. In particular, point mutations in the DBD that confer a DNA-bound GR confirmation abolished the low dose As stimulatory effect but enhanced the inhibitory response, further indicating that the DBD is important for mediating these As effects.
Grignard E, etal., Int J Toxicol. 2008 Jul-Aug;27(4):323-8.
Uranium is a naturally occurring heavy metal found in the Earth's crust. It is an alpha-emitter radioactive element from the actinide group that presents both radiotoxicant and chemotoxicant properties. Some studies revealed
that uranium could affect the reproductive system. To distinguish chemical versus radiological effects of uranium on the metabolism of the steroids in the testis, rats were contaminated via their drinking water with depleted or enriched uranium. Animals were exposed to radionuclides for 9 months at a dose of 40 mg/L (560 Bq/L for depleted uranium, 1680 Bq/L for enriched uranium). Whereas depleted uranium did not seem to significantly affect the production of testicular steroid hormones in rats, enriched uranium significantly increased the level of circulating testosterone by 2.5-fold. Enriched uranium contamination led to significant increases in the mRNA levels of StAR (Steroidogenic Acute Regulatory protein; 3-fold, p = .001), cyp11a1 (cytochrome P45011a1; 2.2-fold, p < .001), cyp17a1 (cytochrome P45017a1; 2.5-fold, p = .014), cyp19a1 (cytochrome P45019a1; 2.3-fold, p = .021), and 5alpha -R1 (5alpha reductase type 1; 2.0-fold, p = .02), whereas depleted uranium contamination induces no changes in the expression of these genes. Moreover, expression levels of the nuclear receptors LXR (Liver X Receptor) and SF-1 (Steroidogenic Factor 1), as well as the transcription factor GATA-4, were modified following enriched uranium contamination. Altogether, these results show for the first time a differential effect among depleted or enriched uranium contamination on testicular steroidogenesis. It appears that the deleterious effects of uranium are mainly due to the radiological activity of the compound.
Weber K, etal., Int J Toxicol. 2011 Mar;30(2):162-73. doi: 10.1177/1091581810391818. Epub 2011 Feb 7.
The discussion on whether the Sprague Dawley (SD), the Fischer F344, or the Hannover Wistar rat is the most appropriate model for toxicity studies in rodents is ongoing. A substantial quantity of data on these strains concerning their source, diet, and housing c
onditions have been published. Generally, before starting a toxicology program in rodents, it should be taken into account that oncogenicity studies will be required for the majority of compounds successfully completing development. Survival, body weight development, incidence, type, time of onset of age-dependent lesions and neoplasms, as well as some special considerations of the rat model selected may be decisive. Therefore, an understanding of the historical background data is essential. These aspects demonstrate why the use of a specific rat model should be carefully considered at the beginning of the toxicology program.
Lino-Dos-Santos-Franco A, etal., Toxicol Lett. 2010 May 31.
Exposure to air pollutants such as formaldehyde (FA) leads to inflammation, oxidative stress and immune-modulation in the airways and is associated with airway inflammatory disorders such as asthma. The purpose of our study was to investigate the effects of exposure to FA on the allergic lung inflam
mation. The hypothesized link between reactive oxygen species and the effects of FA was also studied. To do so, male Wistar rats were exposed to FA inhalation (1%, 90min daily) for 3 days, and subsequently sensitized with ovalbumin (OVA)-alum by subcutaneous route. One week later the rats received another OVA-alum injection by the same route (booster). Two weeks later the rats were challenged with aerosolized OVA. The OVA challenge of rats upon FA exposure induced an elevated release of LTB(4), TXB(2), IL-1beta, IL-6 and VEGF in lung cells, increased phagocytosis and lung vascular permeability, whereas the cell recruitment into lung was reduced. FA inhalation induced the oxidative burst and the nitration of proteins in the lung. Vitamins C, E and apocynin reduced the levels of LTB(4) in BAL-cultured cells of the FA and FA/OVA groups, but increased the cell influx into the lung of the FA/OVA rats. In OVA-challenged rats, the exposure to FA was associated to a reduced lung endothelial cells expression of ICAM-1 (intercellular cell adhesion molecule 1). In conclusion, our findings suggest that FA down regulate the cellular migration into the lungs after an allergic challenge and increase the ability of resident lung cells likely macrophages to generate inflammatory mediators, explaining the increased lung vascular permeability. Our data are indicative that the actions of FA involve mechanisms related to endothelium-leukocyte interactions and oxidative stress, as far as the deleterious effects of this air pollutant on airways are concerned.
Shi LZ and Zheng W, Hum Exp Toxicol. 2007 Mar;26(3):159-67.
The cell type constructing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) is entirely different, ie, endothelia in BBB and epithelia in BCB. Nonetheless, both barriers share a common character--the tight junctions (TJ) between adjacent cells. This study investigated the c
onsequence of lead (Pb) exposure on the tightness of BCB. In an in vitro BCB transwell model, using immortalized choroidal epithelial Z310 cells, we found that early exposure to Pb (prior to the formation of tight barrier) at 5 and 10 microM, significantly reduced the tightness of BCB, as evidenced by a 20% reduction in transepithelial electrical resistance (TEER) values (P <0.05), and >20% increase in the paracellular permeability of [(14)C]sucrose (P <0.05). Exposure to Pb after the formation of tight barrier, however, did not cause any detectable barrier dysfunction. RT-PCR and Western blot analyses on typical TJ proteins revealed that Pb exposure decreased both the mRNA and protein levels of claudin-1, with the membrane-bound claudin-1 more profoundly affected than cytosolic claudin-1. Pb exposure, however, had no significant effect on ZO1 and occludin. These data suggest that Pb exposure selectively alters the cellular level of claudin-1, which, in turn, reduces the tightness and augments the permeability of tight blood-CSF barrier. The immature barrier appears to be more vulnerable to Pb toxicity than the mature, well-developed, brain barrier, the fact possibly contributing to Pb-induced neurotoxicity among young children.
We evaluated the effects of granulocyte colony-stimulating factor (G-CSF) on bleomycin (BLM)-induced lung injury that developed diffuse alveolar damage and subsequent pulmonary fibrosis (PF) of varying severity. G-CSF (100 microg/kg/day) was administered subcutaneously to BLM (0.2, 20, 2,000 microg)
-treated or -untreated rats for 3 or 14 days. In the BLM 0.2 microg group, slight alveolar mononuclear cell infiltration was observed, although PF was not noted. In the BLM 20-microg and 2,000-microg groups, diffuse alveolar damage along with neutrophil infiltration and subsequent PF were observed. In the saline + G-CSF group and BLM 0.2 microg + G-CSF group, a marked increase in the number of alkaline phosphatase (ALP)-positive neutrophils was noted in the alveolar capillaries, although there was neither neutrophil infiltration in alveoli nor exacerbation of lung injury. In the BLM 20 microg + G-CSF and BLM 2,000 microg + G-CSF groups, an exacerbation of lung injury along with an increase in the number of ALP-positive neutrophils in the alveoli was observed. These results indicate that the administration of G-CSF to rats with slight lung injury bearing no PF does not exacerbate the lung injury. The exacerbating effects of G-CSF seem to be associated not only with the marked infiltration of activated neutrophils but also with the severity of underlying lung injury.
Resveratrol and its analogs are considered to be a promising drug candidate for treatment of cancer and different age-associated diseases. In the present study we have investigated the effects of resveratrol and its synthetic analogs on steroidogenesis and mitochondrial function in primary cultures
of rat Leydig cells. Our findings indicate that resveratrol and its analogs structure-dependently attenuated hCG-activated steroidogenesis in Leydig cells through suppression of the expression of steroidogenic acute regulatory protein and cytochrome P450c17. 3,5-Diacetyl resveratrol was observed to modulate mitochondrial function in Leydig cells, suppressing polarization of inner mitochondrial membrane, and 3,4,4'-trimethoxystilbene stimulated the overall activity of intracellular reductases involved in the reduction of WST-1 to formazan. Thus, the inhibitory actions of resveratrol analogs on steroidogenesis in Leydig cells indicate novel mechanisms of action of these compounds, which may be of potential therapeutic interest, where suppression of androgen action is needed.
Trevisan A, etal., Toxicol Lett. 2004 Sep 10;152(2):105-10.
The effect of cis-platin on erythrocyte aminolevulinic acid dehydratase (ALAD) activity was studied in vivo and in vitro. Young male Wistar rats were treated with a single i.p. injection of cis-platin at 2.5, 5.0, and 10.0mg/kg dose. In addition, a single i.p. injection of lead nitrate (1.0mg/kg dos
e) was administered as positive control. Experiments in vitro were also performed to elucidate the possible mechanism of action. The aminolevulinic acid dehydratase was almost completely inhibited in vitro from 0.5mM concentration, and the IC(50) was stated at 0.265 mM, 20 times higher than lead (IC(50) stated at 0.013 mM). Reduced glutathione, partially but significantly, reactivated in vitro the enzyme treated with cis-platin (0.5 and 5.0mM), whereas zinc showed a positive, significant effect with the higher dose (5.0mM) only. On the contrary, inhibition caused by lead (0.005 mM) was partially, but significantly restored by reduced glutathione, and, almost completely, by zinc. The experiments in vivo show that cis-platin causes a dose- and time-dependent inhibition of ALAD activity with 5.0 and 10.0mg/kg dose, until 66 and 33% of the control activity 96 h after treatment, respectively. The results show that erythrocyte ALAD is sensitive to cis-platin and suggest that the mechanism of enzyme inhibition is a direct interaction with sulfhydryl groups, whereas zinc site appears involved with the higher doses only. This mechanism appears different from lead that prevalently inhibits ALAD removing zinc from the enzyme, other than interacting with sulfhydryl groups.
Vinclozolin and procymidone are antiandrogens that are thought to share a common androgen receptor (AR) mediated mechanism of action. This assessment is based primarily on morphological, AR binding, and in vitro transcriptional activation studies. Studies designed to evaluate the gene expression pro
files induced by these compounds have the potential to provide further information to test this hypothesis. We have used targeted gene arrays to examine gene expression in the ventral prostate (VP) of 100-day old Sprague Dawley male rats exposed to either vinclozolin or procymidone. Animals were castrated and administered silastic implants with or without testosterone. A subset of testosterone treated animals was then dosed with 200 mg/kg of either fungicide in corn oil. Four treatment groups were used: castrated (C), testosterone (T), testosterone+vinclozolin (V), and testosterone+procymidone (P). Tissue from the VP was collected from six animals per group (3 animals per block x 2 blocks) at 20 h and at 4 days after the start of treatment. Total RNA was then isolated and gene expression analyzed using Clontech Atlas Rat 1.2 Toxicology arrays. When compared to group T, similar changes in gene expression were observed in groups C, P and V at both the 20 h and 4 day time points. After 20 h of treatment, 20 genes were similarly affected across these three treatment groups. Down-regulated genes included various molecular chaperones, the 11-kDa diazepam binding inhibitor, cyclin D1, and mitochondrial aspartate aminotransferase. Genes such as the androgen receptor, PTEN, and ERK2 were up-regulated. Three of the down-regulated genes, GRP78 (BiP), Dad1, and mitochondrial aspartate aminotransferase have been previously shown to be directly androgen regulated. Fifty-four genes were affected at 20 h, whereas, 311 genes were altered 4 days after the start of treatment. These observations, in part, may reflect regression of the VP at the later time point. These results support the hypothesis that procymidone and vinclozolin share a common mechanism or mode of action, a critical step in a cumulative risk assessment.
Strange RC, etal., Toxicol Lett 2000 Mar 15;112-113:357-63.
The glutathione S-transferases (GST) are a supergene family of dimeric, enzymes that catalyse the conjugation of glutathione (GSH) to a variety of electrophiles including arene oxides, unsaturated carbonyls, organic halides and other substrates. Their importance is suggested by the finding that GST
enzymes are expressed in probably all life forms. In humans, polymorphism in GST genes has been associated with susceptibility to various diseases though some recent data indicate that these genotypes modify disease phenotype. Thus, GST genotypes alone and in combination have been linked with clinical outcome.
Fumonisin B1, a fungal mycotoxin that grows on corn and other agricultural products, alters sphingolipid metabolism by inhibiting ceramide synthase. The precise mechanism of fumonisin B1 toxicity has not been completely eluc
idated; however, a central feature in the cytotoxicity is alteration of sphingolipid metabolism through interruption of de novo ceramide synthesis. An affinity column consisting of fumonisin B1 covalently bound to an HPLC column matrix was used to isolate a rat liver protein that consistently bound to the column. The protein was identified as argininosuccinate synthetase by protein sequencing. The enzyme-catalyzed formation of argininosuccinic acid from citrulline and aspartate by recombinant human and rat liver argininosuccinate synthetase was inhibited by fumonisin B1. Fumonisin B1 showed mixed inhibition against citrulline, aspartate, and ATP to the enzyme. Fumonisin B1 had a Ki' of approximately 6 mM with the recombinant human argininosuccinate synthase and a Ki' of 35 mM with a crude preparation of enzyme prepared from rat liver. Neither tricarballylic acid nor hydrolyzed fumonisin B1 inhibited recombinant human argininosuccinate synthetase. This is the first demonstration of fumonisin B1 inhibition of argininosuccinate synthethase, a urea cycle enzyme, which adds to the list of enzymes that are inhibited in vitro by fumonisin B1 (ceramide synthase, protein serine/threonine phosphatase). The extent of the inhibition of argininosuccinate synthetase in cells, and the possible role of this enzyme inhibition in the cellular toxicity of FB1, remains to be established.
Any influence of iron in polycyclic aromatic hydrocarbon (PAH)/iron oxide mixtures on the capacity of PAHs to induce metabolizing enzymes will be one of the ways that iron oxides can affect PAH carcinogenicity. Because cytochromes P450 (CYPs) are haemoproteins, it will be of interest to investigate
the possible involvement of Fe(2)O(3) in benzo[a]pyrene (BaP)/Fe(2)O(3) mixtures on the induction of CYP1A1 enzymes in the lung. Male Sprague-Dawley rats were instilled intratracheally with haematite ((56)Fe(2)O(3) or (54)Fe(2)O(3), 3 mg), BaP (3 mg) or BaP (3 mg) coated onto haematite ((56)Fe(2)O(3) or (54)Fe(2)O(3)) particles (3 mg). Firstly, mRNA expressions of cyp1a1 were studied. Secondly, protein concentrations and catalytic activities (7-ethoxyresorufin O-deethylase: EROD) of CYP1A1 were determined. Thirdly, (54)Fe from BaP/(54)Fe(2)O(3) mixtures in microsomal proteins was studied using time-of- flight laser microprobe mass spectrometry (ToF-LMMS). Statistically significant increases in mRNA expressions, protein concentrations and catalytic activities of CYP1A1 were observed in animals exposed to BaP, to BaP coated onto (56)Fe(2)O(3) particles or to BaP coated onto (54)Fe(2)O(3) particles versus controls. Both of the BaP/Fe(2)O(3) mixtures induced higher CYP1A1 protein levels and EROD activities than BaP alone. Iron oxide particles per se did not affect mRNA levels of cyp1a1 but only enhanced BaP-mediated increases of CYP1A1 protein levels and activity. The ToF-LMMS spectrum pro fi les showed that the (54)Fe/(56)Fe ratio in the microsomes of BaP coated onto (54)Fe(2)O(3) particle-instilled animals was 1.3 instead of the theoretical ratio (i.e. 0.063) observed in BaP coated onto (56)Fe(2)O(3) particle-instilled animals. Taken together, these novel data support the hypothesis that the Fe(2)O(3)-induced increases of the metabolic activation of BaP might rely on the property of Fe(2)O(3) particles to enhance the BaP-induced translation rate of the cyp1a1 gene into functional haemoproteins.
Mouse embryos are more sensitive than rat embryos in response to methanol (CH(3)OH) and its ability to elicit developmental abnormalities. Intrinsic differences in the metabolism of CH(3)OH to formaldehyde (HCHO) and formic acid (HCOOH) by the enzymes alcohol dehydrogenase (ADH1), formaldehyde dehyd
rogenase (ADH3), and catalase may contribute to the observed species sensitivity. Specific activities for enzymes involved in CH(3)OH metabolism were determined in rat and mouse conceptuses during the organogenesis period of 8-25 somites. Spatial activity relationships were also compared separately in heads, hearts, trunks, and the visceral yolk sac (VYS) from early (7-12 somites) and late (20-22 somites) organogenesis-stage rat and mouse embryos. Catalase activities were similar between rat and mouse conceptuses. In the mouse heart, catalase activities were consistently lower when compared to other tissues. Specific activities for catalase were consistently highest in the VYS of both species when compared to other tissues of the embryo. These activities were highly significant in the 6-12 somite VYS. ADH1 activities were significantly higher in embryos when compared to VYS in both species, except for a 27% lower activity in the early 8-10 somite mouse embryo. Mouse ADH1 activities in the VYS were significantly lower throughout the organogenesis period when compared to the rat VYS or embryos of either species. Mouse activities were lower overall in specific tissues of the embryo but maintained the same relative proportions as in the rat. ADH3 activities in the rat VYS were significantly higher by 20% than those in the mouse. Mouse embryo ADH3 activities were slow to mature, starting at a level 42% below rat, and failed to reach optimal levels until the 14-16-somite stage. Heart ADH3 activities were also significantly lower in the mouse embryo at the 7-12-somite stage. Both species have lower ADH3 activities in the early heart, relative to other embryonic tissues. These results show a more slowly maturing capacity of the mouse embryo to remove HCHO, which provides a rationale for increased sensitivity of this species to CH(3)OH-induced embryotoxicity and teratogenicity.
Krause RJ, etal., Chem Res Toxicol. 2006 Dec;19(12):1643-9.
The roles of flavin-containing monooxygenases (FMOs) in the oxidation of seleno-l-methionine (SeMet) to l-methionine selenoxide (MetSeO) were investigated using cDNA-expressed human FMOs, purified rat liver FMOs, and rat liver microsomes. MetSeO and the N-2,4-dinitrophenyl-derivatives of SeMet and M
etSeO were synthesized and characterized by 1H-NMR and ESI/MS. These reference compounds were then used to develop a sensitive HPLC assay to monitor SeMet oxidation to MetSeO. The formation of MetSeO in rat liver microsomes was time-, protein concentration-, SeMet concentration-, and NADPH-dependent. The microsomal activity exhibited a SeMet Km value (mean +/- S.D.; n = 4) of 0.91 +/- 0.29 mM and a Vmax value of 44 +/- 8.0 nmol MetSeO/mg protein/min. The inclusion of 1-benzylimidazole, superoxide dismutase, or deferoxamine caused no inhibition of the rat liver microsomal activity. Because these results suggested the involvement of FMOs in the oxidation of SeMet in rat liver microsomes, the formation of MetSeO was also examined using cDNA-expressed human and purified rat FMOs. The results showed that both rat and human FMO1 and FMO3 but not FMO5 can catalyze the reaction. The SeMet kinetic constants were obtained with purified rat liver FMO3 (Km = 0.11 mM, Vmax = 280 nmol/mg protein/min) and rat liver FMO1 (Km = 7.8 mM, Vmax = 1200 nmol/mg protein/min). Because SeMet has anti-cancer, chemopreventive, and toxic properties, the kinetic results suggest that FMO3 is likely to play a role in the biological activities of SeMet at low exposure conditions.
Corsini E, etal., Chem Res Toxicol. 2003 Dec;16(12):1520-7.
We have previously demonstrated in alveolar macrophages that aging is associated with a decline in lipopolysaccharide-induced tumor necrosis factor-alpha production. The purpose of the present study was to investigate the immunotoxicological consequences of this
defective activation in an experimental model of acute silicosis. Young (3 months old) and old (>18 months old) rats were intratracheally instilled with silica or saline as control. In young animals, as expected, silica induced a significant increase in bronchoalveolar lavage fluid of tumor necrosis factor-alpha, lactate dehydrogenase, and cell numbers, which correlated with increased collagen deposition and silicotic nodule formations. On the contrary, in old rats, no changes in bronchoalveolar lavage fluid or lung parameters were observed, indicating that senescent rats are resistant to the acute effects of silica. These in vivo results were confirmed in vitro, where silica-induced tumor necrosis factor-alpha release was drastically reduced in alveolar macrophages obtained from old animals. This could be explained with a defective protein kinase C betaII translocation in aged macrophages, due to decreased expression of its anchoring protein RACK-1. Furthermore, a decrease in FAS-L expression and silica-induced apoptosis in old macrophages was observed, supporting the idea that age-associated alterations in signal transduction pathways contribute to decreased sensitivity to silica-induced acute lung fibrosis in old animals.
Kaetsu A, etal., J Appl Toxicol. 2001 Sep-Oct;21(5):425-30.
The possibility of establishing a new method of treatment against pulmonary fibrosis caused by acute paraquat intoxication, which takes into consideration the role of heat shock protein 60 (HSP60), was investigated in paraquat-exposed rat lung mitochondria. In p
olyacrylamide electrophoresis, mitochondrial protein bands appeared, especially in the range of molecular weight 60 kDa and higher, whereas protein bands disappeared in the 20-40 kDa range on the 4th day after paraquat exposure. The protein profile was normalized on the 7th day and no remarkable changes were seen thereafter up to the 56th day. The changes seen during the observation period were thought to reflect the course of paraquat-induced dysfunction and subsequent repair. The malondialdehyde concentration in mitochondria decreased until the 7th day but subsequently increased and recovered to normal levels by the 56th day. The relative density of HSP60 increased until the 7th day but subsequently decreased and recovered to normal levels by the 56th day. These two parameters therefore showed symmetrical changes. The change in the malondialdehyde concentration was thought to reflect the course of activation of the antioxidation function in mitochondria and the progression of repair. The change in the relative density of HSP60 was thought to have increased to repair the proteins affected by the paraquat radical and to have normalized with the progression of healing. These results suggest that HSP60 may play an important role in preventing the progression of pulmonary fibrosis induced by paraquat.
Jan YH, etal., Chem Res Toxicol. 2010 Jun 21;23(6):1045-53.
Thioredoxin reductase (TrxR) is a selenocysteine-containing flavoprotein that catalyzes the NADPH-dependent reduction of oxidized thioredoxin and plays a key role in regulating cellular redox homeostasis. In the present studies, we examined the effects of 2-chloroethyl ethyl sulfide (CEES), a model
sulfur mustard vesicant, on TrxR in lung epithelial cells. We speculated that vesicant-induced alterations in TrxR contribute to oxidative stress and toxicity. The treatment of human lung A549 epithelial cells with CEES resulted in a time- and concentration-dependent inhibition of TrxR. Using purified rat liver TrxR, we demonstrated that only the reduced enzyme was inhibited and that this inhibition was irreversible. The reaction of TrxR with iodoacetamide, which selectively modifies free thiol or selenol on proteins, was also markedly reduced by CEES, suggesting that CEES induces covalent modification of the reduced selenocysteine-containing active site in the enzyme. This was supported by our findings that recombinant mutant TrxR, in which selenocysteine was replaced by cysteine, was markedly less sensitive to inhibition by CEES and that the vesicant preferentially alkylated selenocysteine in the C-terminal redox motif of TrxR. TrxR also catalyzes quinone redox cycling, a process that generates reactive oxygen species. In contrast to its inhibitory effects on TrxR activity, CEES was found to stimulate redox cycling. Taken together, these data suggest that sulfur mustard vesicants target TrxR and that this may be an important mechanism mediating oxidative stress and tissue injury.
Draper AJ and Hammock BD, Toxicol Sci. 1999 Jul;50(1):30-5.
Soluble epoxide hydrolase (sEH) is a ubiquitous mammalian enzyme for which liver and kidney are reported to have the highest activity. We have shown that the soluble epoxide hydrolase (sEH) activity present in rat neutrophils and macrophages is kinetically, immunologically, and physically indistingu
ishable from rat liver cytosolic sEH. Cytosol from rat liver or inflammatory cells and recombinant rat sEH were incubated with trans-diphenylpropene oxide (tDPPO), a selective substrate for sEH. The tDPPO hydration activity we observed in inflammatory cell cytosol was lower than that from liver. The Km for tDPPO hydration observed in rat inflammatory cell cytosol was the same as the Km for rat liver cytosol (10 microM). Recombinant rat sEH and cytosol from rat liver or inflammatory cells were incubated with the sEH inhibitors, chalcone oxide, 4-fluorochalcone oxide, and 4-phenylchalcone oxide. The IC50 values were 40, 8, and 0.4 microM, respectively, in all samples. Furthermore, sEH activity could be completely immunoprecipitated out of the samples, and the amount of antibody required to do so was apparently identical, regardless of the source of enzyme. SDS-polyacrylamide gel electrophoresis followed by Western blot analysis revealed a single sEH band with a molecular weight of 62 kDa. Isoelectric focusing followed by Western blot analysis revealed multiple bands containing tDPPO-hydrating activity. Although the inflammatory cell bands had the same pattern as those from liver cytosol, the recombinant sEH showed a different banding pattern. These multiple bands were not an artifact of the IEF gel selected. Furthermore, in a 2-dimensional IEF gel, the bands re-migrated to the same position. The presence of sEH in inflammatory cells suggests that this enzyme may have an important endogenous function.
Methylsulfonylmethane (MSM), naturally occurring in green plants, fruits and vegetables, has been shown to exert anti-inflammatory and antioxidant effects. MSM is an organosulfur compound and a normal oxidative metabolite of dimethyl sulfoxide. This study was carried out to investigate the effect of
MSM in a rat model of experimental colitis. Colitis was induced by intracolonic instillation of 1ml of 5% of acetic acid. Rats were treated with MSM (400mg/kg/day, orally) for 4days. Animals were euthanized and distal colon evaluated histologically and biochemically. Tissue samples were used to measurement of malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), glutathione (GSH) and proinflammatory cytokine (TNF-alpha and IL-1beta) levels. Results showed that MSM decreased macroscopic and microscopic colonic damage scores caused by administration of acetic acid. MSM treatment also significantly reduced colonic levels of MDA, MPO and IL-1beta, while increased the levels of GSH and CAT compared with acetic acid-induced colitis group. It seems that MSM as a natural product may have a protective effect in an experimental ulcerative colitis.
Singla A, etal., J Appl Toxicol. 2006 Sep-Oct;26(5):397-401.
The effect of feeding nickel (50 mg kg(-1) body weight) daily for 7 days was studied on the development of various brush border enzymes across the crypt-villus axis. The activities of brush border maltase (P < 0.05), lactase (P < 0.05), alkaline phosphatase (P < 0.05) and leucine amino peptidase (P
< 0.05) were augmented in purified brush borders, whereas sucrase, trehlase (P < 0.01) and glutamyl transpeptidase (P < 0.05) were reduced in nickel fed animals compared with controls. Kinetic and heat inactivation studies with brush border sucrase and alkaline phosphatase confirmed these findings. Western blot analysis of alkaline phosphatase showed a strong signal for the enzyme protein but a reduced level of sucrase antigen in nickel fed rat intestine compared with the controls. These findings suggest that the expression of various brush border enzymes along the crypt-villus axis is modulated in rat intestine exposed to nickel, which may disrupt the digestive functions of the intestinal tissue.
Venkatesan N, etal., Toxicology. 1993 Dec 31;85(2-3):137-48.
Activity of the dipeptidyl hydrolase angiotensin converting enzyme (ACE) has been observed to be altered by treatment with adriamycin (ADR). We used an animal model of ADR nephrotoxicity to study the effects on ACE in serum, urine and tissues on days 5, 10, 15,
20, 25 and 30 after ADR administration. Both glomerular and tubular injury occurred as evidenced by heavy proteinuria, albuminuria and increased urine N-acetyl glucosaminidase (NAG) excretion. Serum ACE was significantly elevated on days 20, 25 and 30. Of great interest was the excretion of ACE in urine of treated rats which ran parallel with the total protein excretion above the barely detectable levels found in controls. ACE activity increased in kidney, adrenal gland and liver on days 15, 20, 25 and 30. Heart and brain ACE levels increased on days 25 and 30. Increased ACE activity in aorta and lungs occurred on days 20, 25 and 30. ACE activity decreased in kidney, aorta, heart and brain on days 5 and 10. These observations strongly suggest a contribution of various tissues to elevate the serum ACE level. Urinary ACE may be of potential use as an index for renal glomerular and tubular damage.
Steiner S, etal., Toxicol Lett. 2001 Mar 31;120(1-3):369-77.
The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is a key regulator in cholesterol biosynthesis and HMG CoA reductase inhibitors (statins) have become a widely prescribed family of lipid lowering agents. Cholesterol synthesis occurs predominantly in liver which is the target orga
n of statins. We studied the effects of fluvastatin (Lescol), a member of the statin family, on hepatic protein regulation. Male F344 rats treated with 0.8 mg/kg per day fluvastatin or 24 mg/kg per day fluvastatin for 7 days showed treatment-related changes in 58 liver proteins (P<0.005). Major effects were evident in the cholesterol biosynthesis pathway including the induction of enzymes upstream and downstream of the target enzyme HMG CoA reductase. Treatment also triggered alterations in key enzymes of carbohydrate metabolism and was associated with changes in a heterogeneous set of cellular stress proteins involved in cytoskeletal structure, calcium homeostasis and protease activity. The latter set of protein alterations indicates that hepatotoxicity is associated with high-dose treatment. Based on the results it is suggested that HMG-CoA synthase and isopentenyl-diphosphate delta-isomerase may be explored as alternative drug targets and that the induction levels of these enzymes may serve as a measure of potency of individual statin drugs. It is proposed that efficacy and cellular stress markers discovered in this study may be used in a high throughput screen (HTS) assay format to compare efficiently and accurately the therapeutic windows of different members of the statin family.
Sakurai T, etal., Chem Res Toxicol. 2006 Sep;19(9):1196-204.
Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], a seleno-organic compound showing glutathione peroxidase-like activity, is one of the promising synthetic antioxidants. In the present study, we investigated the electrophilic potential of this antioxidant and established the mechanism of the cystei
ne-targeted oxidation of protein. In addition, using ebselen as an electrophilic probe, we characterized the cysteine residues required for posttranslational modification into an electrophile sensor protein in the phase 2 detoxification response. Ebselen showed a potent antioxidant effect against the spontaneous and 4-hydroxy-2-nonenal-stimulated production of intracellular reactive oxygen species in rat liver epithelial RL34 cells. Meanwhile, upon in vitro incubation with a redox-active sulfhydryl protein (thioredoxin), ebselen showed a strong electrophilic potential of mediating the formation of selenenylsulfide and intra- and intermolecular disulfide linkages within the protein. By taking advantage of this antioxidant and electrophilic property of ebselen, we characterized posttranslational modification of Kelch-like ECH-associated protein 1 (Keap1), an electrophile sensor protein, which represses the ability of the transcription factor NF-E2-related factor 2 (Nrf2) upon induction of the phase 2 detoxification response. Ebselen potently induced the gene expression of a series of phase 2 enzymes in rat liver epithelial RL34 cells, which was associated with the formation of a high molecular weight complex of Keap1. Furthermore, a cysteine residue in Keap1, C151, was found to be uniquely required not only for the formation of the complex but also for the induction of the phase 2 response by ebselen. Thus, this unique antioxidant and electrophilic property of ebselen giving rise to the cysteine-targeted oxidation enabled us to evaluate the role of sensor cysteines in redox regulation of protein function under electrophile stress.
Coordinate regulation of Phase-I and -II enzymes with xenobiotic transporters has been shown after treatment with microsomal enzyme inducers. The chemopreventive agent oltipraz (OPZ) induces Phase-I and -II drug-metabolizing enzymes such as CYP2B and NQO1. The purpose of this study was to examine th
e regulation of drug-metabolizing enzymes and transporters in response to OPZ treatment and to investigate a potential role for constitutive androstane receptor (CAR) in OPZ-mediated induction. Sprague-Dawley rats treated with OPZ exhibited increased mRNA and protein levels of both Nqo1 and Cyp2b1/2 by 24 h. To examine whether OPZ activates transporter gene expression via CAR, sexually dimorphic male and female Wistar-Kyoto (WKY) rats were treated with OPZ and mRNA levels quantified by bDNA signal amplification. OPZ induced Ugt1a6 and Ugt2b1 in males significantly higher than in females, indicating a CAR-dependent mechanism of induction. However, OPZ induced microsomal epoxide hydrolase, NAD(P)H quinone oxidoreductase, and Cyp3a1/23 equally in both genders, indicating a CAR-independent mechanism of induction of these genes. Similarly, the transporters Mdr1a, Mdr1b, Mrp3, and Mrp4 were induced by OPZ without any apparent difference between genders. In summary, OPZ coordinately increases multiple hepatic xenobiotic transporter mRNA levels, along with Phase-I and -II enzymes some of which may occur through CAR-dependent mechanisms.
Novotna M, etal., Reprod Toxicol. 2004 Aug-Sep;18(6):785-92.
P-glycoprotein (P-gp) is a drug efflux transporter that limits the entry of various potentially toxic drugs and xenobiotics into the fetus and is thus considered a placental protective mechanism. In this study, P-gp expression was investigated in the rat chorioa
llantoic placenta over the course of pregnancy. Three methods have been employed: real-time RT-PCR, western blotting and immunohistochemistry. The expression of mdr1a and mdr1b genes was demonstrated as early as on the 11th gestation day (gd) and increased with advancing gestation. Western blotting analysis revealed the presence of P-gp in the rat placenta starting from gd 13 onwards. P-gp was localized in the developing labyrinth zone of the placenta on gd 13; from gd 15 up to the term P-gp was seen as a dot like continuous line in the syncytiotrophoblast layers. Our data confirm the presence of P-gp in the rat chorioallantoic placenta starting soon after its development, which may signify the involvement of P-gp in transplacental pharmacokinetics during the whole period of placental maturing.
LeCluyse EL, etal., Toxicol In Vitro. 2000 Apr;14(2):101-15.
Primary rat hepatocytes were cultured under various matrix and media conditions and examined after 1 week for the expression and regulation of cytosolic glutathione S-transferase (GST) enzymes. Striking effects on cell morphology were observed in relation to the different matrix conditions, whereas
media effects were less prominent. Hepatocytes cultured in serum-free Dulbecco's modified Eagle's medium (DMEM) or modified Chee's medium (MCM) maintained similar levels of total GST protein regardless of the matrix configuration or corresponding cell integrity. However, HPLC analysis showed a differential expression pattern of individual GST subunits in both a time- and medium-dependent fashion. A variable, but pronounced, matrix and medium effect was observed on the induction of total GST expression by various prototypical inducers. Dexamethasone (10 microM) induced subunits A2, M1 and M2 in a medium- and matrix-dependent fashion, whereas phenobarbital (100 microM) induced significantly only subunit A2. beta-Naphthoflavone (50 microM) suppressed all GST subunit expression except subunit P1, which was induced in a matrix- and medium-dependent fashion. These studies show that total basal level expression of GSTs in vitro is reflective of a concomitant increase in mu and pi class subunits and a decrease in alpha class subunits. Moreover, the matrix and medium conditions influence both the basal and inducible expression of GST subunits in cultured rat hepatocytes.
Nakajima T, etal., Chem Res Toxicol 1994 Nov-Dec;7(6):891-6.
The rate of formation of styrene glycol from styrene was compared in human, rat, and mouse liver microsomes. At a low styrene concentration (0.085 mM), the rates decreased in the order, mouse (2.43 +/- 0.29 nmol/(mg of protein.min)) > rat (1.07 +/- 0.20) > human (0.73 +/- 0.45); at a high concentrat
ion (1.85 mM), the order was rat (4.21 +/- 0.72) > mouse (2.72 +/- 0.11) > human (1.91 +/- 0.84). Kinetic analysis indicated the presence of at least two forms of styrene-metabolizing cytochrome P450s with different Km values in human liver microsomes. Styrene was also metabolized in human lung microsomes: the rate of styrene glycol formation was higher in the lung microsomes from smokers than in those from current nonsmokers. The P450 forms responsible for transforming styrene to styrene glycol were determined by analyzing cDNA-expressed individual P450 forms produced in cultured hepatoma G2 cells by recombinant vaccinia viruses. Of the 12 human P450 forms studied, CYP2B6 and CYP2E1 existing in human liver and/or lungs and CYP2F1 in human lungs were the most active in the forming of styrene glycol, followed by CYP1A2 and CYP2C8. Human CYP3A3, CYP3A4, CYP3A5, and CYP4B1 also catalyzed the metabolism but were much less active. CYP2A6, CYP2C9, and CYP2D6 had only a little detectable activity. CYP1A2, CYP2B6, CYP2C8, CYP2E1, and CYP3A4/3A3 were expressed in human liver microsomes, and CYP2C8 was expressed in human lung microsomes, although the expression of CYP2F1 and CYP4B1 could not be investigated. These data indicate that several human hepatic and/or pulmonary P450 forms are capable of metabolizing styrene, albeit at different rates.
Yen CH, etal., Toxicol Appl Pharmacol. 2013 Jan 1;266(1):67-75. doi: 10.1016/j.taap.2012.11.003. Epub 2012 Nov 10.
Although glycine N-methyltransferase (GNMT) has been discovered for five decades, its function was not elucidated until recently. In this review, we discuss the multiple roles of GNMT in toxicology and cancer. Besides catalyzing the production of methylglycine (
sarcosine) in one carbon metabolism pathway, GNMT was found to be able to bind a number of polycyclic aromatic hydrocarbons and inhibit DNA adducts formation. Moreover, GNMT exerts protective effects against the cytotoxicity and carcinogenicity of benzo(a)pyrene and aflatoxin B(1) in vitro and in vivo. Occupational study showed that workers who had genotypes with higher GNMT promoter activity may have lower content of oxidative damaged DNA products in their urine. In terms of cancer, recent studies using GNMT knockout mouse models demonstrated that GNMT deficiency has high penetrance in inducing the development of steatohepatitis and hepatocellular carcinoma. In terms of the mechanism, besides dysregulation of epigenetic modification, insights have been provided by recent identification of two novel proteins interacting with GNMT-DEPTOR and NPC2. These studies suggest that GNMT not only is involved in mTOR signaling pathway, but also plays an important role in the intracellular trafficking of cholesterol. The implication of these findings to the preventive medicine and translational research will be discussed.
Foster SB, etal., Chem Res Toxicol. 2003 Oct;16(10):1372-84.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly peroxynitrite, have been implicated as key participants in the dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium (MPP(+)). However, on the basis of available information, it
is not clear whether the MPP(+)-induced overproduction of ROS and RNS occurs in the intraneuronal and/or extracellular compartment. Early steps in the neurotoxic mechanism evoked by MPP(+) include a profound dopaminergic energy impairment, which mediates a massive release of dopamine (DA), glutathione (GSH), and cysteine (CySH). In the event that MPP(+) mediates extracellular generation of ROS (such as superoxide and/or hydroxyl radicals) and/or peroxynitrite, released DA, GSH, and CySH should be oxidized forming thioethers of DA and disulfides. Using microdialysis experiments in which MPP(+) was perfused into the striatum of awake rats, the present study was unable to detect the presence of such biomarkers of extracellular ROS and/or RNS generation. However, MPP(+) induced a transient, concentration-dependent rise of extracellular l-3,4-dihydroxyphenylalanine (l-DOPA), identified on the basis of dialysate analysis using several HPLC methods and its conversion to DA by purified l-DOPA decarboxylase (DDC). Methamphetamine (30 mg/kg, i.p.) similarly caused a significant but transient rise of l-DOPA in the rat striatum. Antioxidants such as salicylate and mannitol had no effect on the MPP(+)-mediated elevation of extracellular l-DOPA, suggesting that it is not formed by nonenzymatic hydroxylation of l-tyrosine by ROS or RNS. Rather, in vivo, but not in vitro, MPP(+) caused rapid inhibition of DDC, which appears to result in intraneuronal accumulation and subsequent release of l-DOPA. Because l-DOPA can mediate l-glutamate release, as well as be an excitotoxin, the possibility is raised that l-DOPA may play a role in the dopaminergic neurotoxicity of MPP(+).
Cifuentes F, etal., Int J Toxicol. 2009 Nov-Dec;28(6):534-41.
The aim of this work is to determine whether consuming tap water containing arsenic (20 microg/L) alters oxidative stress levels in female rats and changes vascular response. Whereas nitric oxide produces complete relaxation, arsenic (7 months of exposure) impairs the acetylcholine-induced endotheli
al relaxation in the rat aorta compared with control rats. Arsenic exposure results in a marked elevation in reactive oxygen species in blood, and delta-aminolevulinic acid dehydratase activity, which is a sensitive biomarker for arsenic toxicity and oxidative stress, is significantly decreased in erythrocytes from 7-month-old rats. Diastolic blood pressure increases significantly in 7-month-old arsenic-treated versus control rats. The percentage of change in peripheral resistance increases. The results indicate that chronic environmental exposure to low levels of arsenic alters the release of vasoactive substances, causes changes in oxidative stress, and increases blood pressure in female rats.
Xiao-feng Z, etal., Int J Toxicol. 2009 Sep-Oct;28(5):448-56.
The present study focused on investigating whether the inhibitory effect of di (n-butyl) phthalate (DBP) on testosterone (T) biosynthesis was mediated by the glucocorticoid (GC) pathway in prepubertal male rats and T production after the exposure to DBP ceased. Prepubertal male rats were administere
d DBP in corn oil orally at 0, 250, 500, 1000, and 2000 mg/kg daily for 30 days. Serum T and GC were measured by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The responses, including glucocorticoid receptor (GR), type I 11beta-hydroxysteroid dehydrogenase (11beta-HSD1), and steroidogenesis acute regulatory protein (StAR) in the testes tissues, were determined by Western blotting and reverse transcriptase PCR. DBP exposure resulted in testicular toxicity, such as seminiferous tubule degeneration and a decrease in the number of spermatogenic cells. T was decreased and GC was increased in a DBP concentration-dependent manner in the exposure group. The expression of GR and 11beta-HSD1 was significantly increased, with an associated decrease in expression of StAR. Neither the expression of the GR nor 11beta-HSD1 and StAR were statistically significantly different in the postexposure group compared with the control. However, the weight and morphology of the testes did not recover in the postexposure group. These data suggest that DBP inhibits testosterone production through a GC-mediated pathway in prepubertal male rats, and after exposure to DBP ceases, testosterone biosynthesis returns.
Nobukata H, etal., Toxicol Lett. 1999 Jan 11;104(1-2):93-101.
We investigated the effect of dienogest on bleeding time, coagulation, fibrinolysis, and platelet aggregation in female rats compared with that of medroxyprogesterone acetate (MPA) and danazol, in order to elucidate the reason for relatively high incidence of bleeding in dienogest-treated patients w
ith endometriosis. Dienogest caused no change in the bleeding time at a single dose of 100 mg/kg or at a repeated dose of 10 mg/kg per day for 2 weeks. The drug increased the fibrinogen level, coagulation factor II and V activities, and antithrombin III activity, but had no effect on fibrinolysis or on platelet aggregation at repeated doses of 1 and 10 mg/kg per day for 4 weeks. MPA significantly shortened the bleeding time at the same doses as dienogest. MPA increased the fibrinogen level and plasminogen activity, potentiated the platelet aggregation, and increased the platelet cholesterol-to-phospholipid ratio at a repeated dose of 10 mg/kg per day for 4 weeks. Danazol significantly shortened the bleeding time like MPA. Danazol increased the fibrinogen level, coagulation factor II, V, VII, VIII, IX, X, XI, and XII activities, and antithrombin III activity, but had no influence on the platelet aggregation at repeated doses of 10 and 100 mg/kg per day for 4 weeks. In comparison with MPA and danazol, dienogest may induce a relatively high incidence of bleeding in patients with endometriosis partially because of its minimal effect on hemostasis.
Nonalcoholic fatty liver disease encompasses a spectrum of hepatic pathologies ranging from simple fatty liver to an inflammatory state known as nonalcoholic steatohepatitis (NASH). NASH is also characterized by severe hepatic oxidative stress. The goal of this study was to determine whether genes o
f the antioxidant response are induced in rodent models of nonalcoholic fatty liver disease. To simulate simple fatty liver and NASH, respectively, male Sprague-Dawley rats were fed a high-fat (HF) or a methionine and choline-deficient (MCD) diet for 8 weeks. Key marker genes of the antioxidant response that are known to undergo upregulation via activation of Nuclear Factor Erythroid 2-Related Factor 2 were measured using the branched DNA signal amplification assay. Messenger RNA levels of the antioxidant response, including NAD(P)H:quinone oxidoreductase-1 (Nqo1), Glutamate cysteine ligase catalytic (Gclc), and Heme oxygenase-1 (Ho-1), were significantly induced in MCD rat liver but not in HF rat liver. Furthermore, Nqo1 protein expression and activity underwent significant upregulation in MCD rat liver but not in HF rat liver. These data strongly indicate that the pathology induced by the MCD dietary model of NASH results in upregulation of the antioxidant response in rats.
Vinay SD and Sood PP, Pharmacol Toxicol. 1991 Jul;69(1):71-4.
Arylsulfatase A and B activities have been analysed in different areas of the CNS (olfactory bulbs, cerebral hemispheres, cerebellum, medulla oblongata and spinal cord) during methyl mercuric chloride (MMC), N-acetyl-DL-homocysteine thiolactone (NAHT) and glutathione (GSH) treatment. Male albino rat
s were administered with two different doses of MMC (1 mg/kg and 10 mg/kg), NAHT (40 mg/kg and 80 mg/kg) and GSH (100 mg/kg and 150 mg/kg) for 2, 7 and 15 days, and sacrificed on the 3rd, 8th and 16th day, respectively. Likewise, eight groups of animals, after treatment for 7 days with MMC, were kept for another 7 days and sacrificed on the 15th day (normal withdrawal). Sixteen groups of 7 days MMC pretreated animals were given either NAHT or GSH for another seven days before sacrifice on the 15th day. The study revealed 1) a dose and duration dependent inhibition of the enzymes in all CNS areas, 2) a maximum inhibition of the enzymes among various hydrolases reported so far, and 3) none of the antagonists restored the enzymes significantly except for one group with NAHT. It is, therefore, concluded that arylsulfatases are more sensitive to MMC than other lysosomal enzymes, and the antagonists used here have not helped their restoration.
The influence of mercury on the association of rat kidney glucocorticoid receptor (GR) with heat shock proteins Hsp90 and Hsp70 was investigated. The GR heterocomplexes with Hsp90 and Hsp70 were immunopurified from the renal cytosol of rats administered different doses of mercury (1, 2 and 3 mg Hg k
g(-1) b.w.). A quantitative immunoblotting procedure was applied to determine the levels of GR, Hsp90 and two nucleocytoplasmic Hsp70 isoforms (constitutive Hsp73 and inducible Hsp72) in the renal cytosol, as well as the amounts of these proteins within GR heterocomplexes immunoprecipitated by anti-GR antibody. Mercury was found to stimulate GR association with all the examined Hsps. The most prominent effect of the metal was stimulation of Hsp72 interaction with GR. On the other hand, the metal administration led to an increase of Hsp90 level in the cytosol, while the cytosolic levels of Hsp70 isoforms remained unaltered. These findings suggest that association of Hsps, at least Hsp70, with the GR might be ascribed to changes in the affinity of their interaction rather than to changes in the Hsp availability in the cytosol. Therefore, GR heterocomplex assembly seems to be a controlled process enabling chaperoning and functioning of the GR to be in concert with physiological demands.
Cellular distribution of the antimutagenic MTH1protein in the liver, kidney, and testis of Fischer rat was evaluated using the immunohistochemical staining with anti-MTH1 polyclonal antibody. The present investigation revealed a non-uniform distribution of MTH1 among cells and among the cytoplasmic,
nuclear, and membranal structures of cells within a given tissue. A particularly strong expression of MTH1 was observed for the first time in the perinuclear acrosomic bodies of spermatocytes and in the acrosomic vesicles of sperm heads. Treatment of rats with a single sc dose of 20 micromol Cd(II)/kg body wt. produced histopathologic changes in these organs accompanied by redistribution of the cellular MTH1 protein between the cytoplasm and nuclei. The acute phase of Cd(II) toxicity, that in the liver and especially in the testes (but not in kidneys) led to cell necrosis, was accompanied by a characteristic decrease in the abundance of MTH1-expressing nuclei. Chronic toxicity without necrosis, persisting in the kidney over the entire 14-day study, as well as the survival and proliferation of cells, observed in the liver and testis after the necrotizing phase, were signified by increased number of nuclei expressing MTH1. Thus, unlike previous biochemical studies, immunohistochemistry managed to reveal alterations in the patterns of inter- and intracellular distribution of MTH1, associated apparently with the conditional changes in the dynamics of synthesis of nucleic acids, assisted by this protein.
Fernandes CJ, etal., Toxicol Lett. 2002 Dec 15;136(2):107-20.
Glutathione (GSH) plays vital roles in antioxidant defense mechanisms. To determine whether gene transfection strategies could be used to enhance GSH synthetic capacities and protect mammalian cells against oxidant stresses, we used liposome-mediated transfer of the cDNA for rat glutamate-cysteine l
igase (GLCL) catalytic subunit (GLCLC) to transfect Chinese hamster ovary (CHO) cells. CHO cell lines (CHOhi) with stably enhanced GLCL activities (14.61+/-0.82 mU/mg protein) and greater GSH contents (45.7+/-1.37 nmol/mg protein) than observed in wild-type CHO K1 cells (0.26+/-0.01 mU/mg protein and 20.7+/-1.15 nmol/mg protein, respectively) were developed and were confirmed to have integrated the GLCLC cDNA into their genomic DNA and to exhibit increased GLCLC mRNA levels, by Southern and northern analyses, respectively. Similarly treated and selected CHO cell lines that showed no increases in GLCL activities (CHOun) were studied as controls for the effects of GLCLC transgene expression. CHOhi cells showed significantly greater resistance to oxidant stress caused by exposure to tert-butyl hydroperoxide (tBuOOH) than did CHO or CHOun cells. Twenty-four hours after exposure to 400 or 800 microM tBuOOH, wild-type CHO cells had released more cellular lactate dehydrogenase (67.3+/-14.5% and 94.4+/-2%) than had CHOhi cells (5.11+/-0.5% and 46.0+/-5.4%, n=4, P<0.05). The present data demonstrate improved resistance to oxidant injury of CHO cells stably transfected with the GLCLC cDNA. Although additional enhancements in GLCL activities are possible by transfection with cDNAs for both catalytic and regulatory GLCL subunits, our results demonstrate that the increases in GLCL activities that can be attained by transfection of the GLCLC cDNA alone can enhance cellular antioxidant defense function.
Vences-Mejia A, etal., Hum Exp Toxicol. 2006 Aug;25(8):453-9.
This study demonstrates that chronic aspartame (ASP) consumption leads to an increase of phase I metabolizing enzymes (cytochrome P450 (CYP)) in rat brain. Wistar rats were treated by gavage with ASP at daily doses of 75 and 125 mg/kg body weight for 30 days. Cerebrum and cerebellum were used to obt
ain microsomal fractions to analyse activity and protein levels of seven cytochrome P450 enzymes. Increases in activity were consistently found with the 75 mg/kg dose both in cerebrum and cerebellum for all seven enzymes, although not at the same levels: CYP 2E1-associated 4-nitrophenol hydroxylase (4-NPH) activity was increased 1.5-fold in cerebrum and 25-fold in cerebellum; likewise, CYP2B1-associated penthoxyresorufin O-dealkylase (PROD) activity increased 2.9- and 1.7-fold respectively, CYP2B2-associated benzyloxyresorufin O-dealkylase (BROD) 4.5- and 1.1-fold, CYP3A-associated erythromycin N-demethylase (END) 1.4- and 3.3-fold, CYP1A1-associated ethoxyresorufin O-deethylase (EROD) 5.5- and 2.8-fold, and CYP1A2-associated methoxyresorufin O-demethylase (MROD) 3.7- and 1.3-fold. Furthermore, the pattern of induction of CYP immunoreactive proteins by ASP paralleled that of 4-NHP-, PROD-, BROD-, END-, EROD- and MROD-related activities only in the cerebellum. Conversely, no differences in CYP concentration and activity were detected in hepatic microsomes of treated animals with respect to the controls, suggesting a brain-specific response to ASP treatment.
Bomhard EM, etal., Drug Chem Toxicol. 1999 Nov;22(4):679-703.
Twelve male and female Wistar rats each received cadmium (as CdCl2) in their diet at concentrations of 0, 10, 50, and 250 ppm for 72 weeks. After 1, 4, 8, 13, 18, 26, 32, 45, 57, and 68 weeks a total of 8 enzymes from different cellular compartments of the nephron were measured. At the end of the s
tudy period, the kidneys were examined histopathologically. Concentrations up to and including 50 ppm did not induce any adverse effect. At 250 ppm, growth of male and female animals was markedly retarded. Significantly increased activities of the cytosolic phosphohexose isomerase were excreted by males and females receiving 250 ppm at all timepoints from week 13. The values of the mitochondrial glutamate dehydrogenase were mostly elevated from week 1 to 57, however, due to a wide scatter range, were only occasionally significantly different from control values. The brush border enzymes (gamma-glutamyl transferase, alkaline phosphatase and leucine arylamidase) were not changed in a relevant manner in female rats, while in 250 ppm males the excreted activity of ALP and LAP from week 1 to week 18, and that of GGT during the entire study period were significantly lower than the control values. Excretion of the lysosomal enzymes aryl sulfatase A, beta-galactosidase, and beta-N-acetyl-D-glucosaminidase was at no time influenced in a noteworthy manner. Histopathology after 72 weeks revealed chronic but also acute degenerative changes in the kidneys of 250 ppm males and females. A comparison of published data on persons having undergone high cadmium exposure with the results presented here shows remarkable differences.
Taylor CM, etal., Kidney Int. 1999 Apr;55(4):1367-74.
BACKGROUND: Verocytotoxin-producing (Shiga-like toxin-producing) Escherichia coli infection is the principal cause of hemolytic uremic syndrome (HUS). The pathogenesis is unclear, and there is a need for animal models. These
are impeded by the different distribution of verocytotoxin receptors between species. We have circumvented this restriction using ricin, which gains entry into cells via various galactose receptors. Like verocytotoxin, ricin specifically cleaves a single adenine from ribosomal RNA. METHODS: Rats were given ricin at a dose of 6.7 micrograms/100 g body wt, with or without lipopolysaccharide at 10 micrograms/100 g body wt. Lipopolysaccharide alone or saline were used as controls. Changes in glomerular filtration rate, hematological parameters, histology, and plasma cytokine concentrations were measured. RESULTS: Extensive glomerular thrombosis, pyknotic nuclei, and an infiltration of ED1-positive cells into glomeruli were observed eight hours after an injection of ricin. Other vascular beds were unaffected. Histologic changes were preceded by oliguric renal failure, hemolysis, and thrombocytopenia. Ricin produced a rise in plasma concentrations of monocyte chemotactic protein-1, > tumor necrosis factor-alpha, > interleukin-1 beta, > interleukin-6. Interferon-gamma showed a small increase at the end of the experiment. CONCLUSIONS: Ricin induces glomerular thrombotic microangiopathy, closely resembling that which occurs in verocytotoxin-producing E. coli-induced HUS. As in HUS, high concentrations of proinflammatory cytokines are present, which are probably a result of cytokine superinduction by the toxin.
Li LH, etal., Toxicol Appl Pharmacol. 2000 Aug 1;166(3):222-9.
In this study, we explored the impact on both Sertoli cells and gonocytes of a single, relatively low dose of di-(2-ethylhexyl) phthalate (DEHP; 20-500 mg/kg) administered in vivo to 3-day-old rat pups. In parallel, we assessed the potential for two immediate metabolites of DEHP to produce similar t
esticular changes and began to explore the possible mechanisms involved. Morphological examination revealed the presence of many abnormally large, multi-nucleated germ cells by 24 h posttreatment with DEHP and with its metabolite, mono-ethylhexyl phthalate (MEHP), but not with another metabolite, 2-ethylhexanol (2-EH; all at 1.28 mmol/kg) or with vehicle alone. These cells persisted through 48 h posttreatment, the longest time point examined in our study. We also assessed the rate of Sertoli cell proliferation in pups at intervals after dosage with either chemical or vehicle by administering bromodeoxy uridine (BrdU) 3 h before euthanasia. By 24 h after treatment with DEHP or MEHP, but not 2-EH or vehicle, the number of BrdU-labeled Sertoli cells was obviously diminished in testicular sections. Quantitation of DEHP-treated pups and controls indicates that a dose-response relationship exists between chemical treatment and labeling index (LI) of Sertoli cells, with a LI at the highest DEHP dose tested that was only 20% of that in controls. In addition, when we examined the time course of the effect of an intermediate dose of DEHP, we found that there the LI of Sertoli cells rebounds by 48 h after dosage, when we found the rate of proliferation in treated pups to be significantly higher than in controls. We also explored the potential mechanism involved in the response to DEHP and found serum levels of FSH to be unaffected by the chemical. In addition, study of cell cycle-related proteins including p27kip1 and cyclins D1, D2, and D3 with Western and Northern analysis indicated that cyclin D2 mRNA is specifically down-regulated by DEHP in a dose-dependent manner, and this decrease is manifest as a small, transient but reproducible reduction in the amount of cyclin D2 protein detectable in samples from treated pups compared to controls. Our findings characterize the changes in neonatal Sertoli cells and gonocytes that follow in vivo to low levels of DEHP and its metabolite, MEHP, as well as providing new information on the underlying mechanism and highlighting the extreme sensitivity of the neonatal testis to injury by this toxicant.
Arsenite (As[III]) effects on the intermediate steps of heme biosynthesis were studied in adult rat hepatocytes seeded on a feeder layer of 3T3 cells (3T3-hepatocytes) and maintained for 2 weeks with culture medium non-supplemented or supplemented with 150 microM 5-aminolevulinic acid (ALA). The act
ivities of the intracellular enzymes porphobilinogen deaminase (PBG-D), uroporphyrinogen III synthase (UROIII-S), and uroporphyrinogen III decarboxylase (URO-D), and the intermediary uroporphyrins (URO), coproporphyrins (COPRO) and protoporphyrin IX (PROTO) were determined in these cultures. The 3T3-hepatocytes maintained the activities of PBG-D, UROIII-S and URO-D during 2 weeks and ALA addition to the culture medium increased PBG-D (2-3-fold) and UROIII-S (50%) activities and porphyrin production, which accumulated as PROTO. Exposure to 3.9 microM As(III) inhibited UROIII-S activity (down to 34%), and PBG-D and URO-D activities to a lower extent; these effects were magnified by ALA supplementation. As(III) also produced an intracellular accumulation and a decreased excretion of PROTO, and a 31% reduction of the COPRO/URO ratio in the culture medium. Additionally, As(III) caused cytoplasmic vacuolization and lipid accumulation. Our results show that As(III) exposure selectively inhibits several intermediary enzymes of heme metabolism and affects the intra- and extracellular content of porphyrins and their ratio in the culture medium. They also confirm that 3T3-hepatocytes are a suitable in vitro model to study hepatic heme metabolism and its alterations by hepatotoxic chemicals.
The present study characterizes the anticoagulant resistance mechanism in a Danish bromadiolone-resistant strain of Norway rats (Rattus norvegicus), with a Y139C VKORC1 mutation. We compared liver expression of the VKORC1 gene, which encodes a protein of the vitamin K 2,3-epoxide reductase complex,
the NQO1 gene, which encodes a NAD(P)H quinone dehydrogenase and the Calumenin gene between bromadiolone-resistant and anticoagulant-susceptible rats upon saline and bromadiolone administration. Additionally, we established the effect of bromadiolone on the gene expression in the resistant and susceptible phenotype. Bromadiolone had no effect on VKORC1 and NQO1 expression in resistant rats, but induced significantly Calumenin expression in the susceptible rats. Calumenin expression was similar between the resistant and the susceptible rats upon saline administration but twofold lower in resistant rats after bromadiolone treatment. These results indicate that Danish bromadiolone resistance does not involve an overexpression of calumenin. Independent of the treatment, we observed a low VKORC1 expression in resistant rats, which in conjugation with the Y139C polymorphism most likely explains the low VKOR activity and the enhanced need for vitamin K observed in Danish resistant rats. Furthermore the bromadiolone resistance was found to be associated with a low expression of the NQO1 gene.
Khan SA and Nyce JW, Pharmacol Toxicol. 1997 Mar;80(3):118-21.
The adrenal steroid, dehydroepiandrosterone (DHEA) has been identified as a peroxisome proliferator. We examined the effects of the cellular antioxidant ubiquinone and its precursor mevalonic acid on the induction of enzymes associated with DHEA-mediated peroxisome proliferation in male F-344 rats.
Upon treatment with DHEA (300 mg/kg orally for 14 days), there was a significant increase in hepatic activities of peroxisomal beta-oxidation (3 fold), 3-ketoacyl-CoA thiolase (4 fold) and catalase (1.8 fold). Co-administration of either mevalonic acid (100 mg/kg intraperitoneally) or ubiquinone (50 mg/kg orally) with DHEA significantly attenuated the DHEA-mediated induction of these enzymes. However, neither ubiquinone nor mevalonic acid alone significantly altered peroxisomal enzyme activities in rat liver. These data suggest that exogenous administration of ubiquinone or mevalonic acid can modulate the induction of the enzymes involved in peroxisome proliferation.
Unilateral ureteral obstruction (UUO) has been used as an experimental model to induce tubulointerstitial damage and interstitial fibrosis. UUO is characterized by cellular proliferation, accumulation of inflammatory cells, and subsequent replacement of renal parenchyma by fibrous tissue. The influ
x of inflammatory cells into the renal interstitium is mediated by adhesion molecules. In this study, the development of fibrosis in the UUO model of the rat was examined and its relation to the time course of LFA-1 and ICAM-1 expression was assessed by immunohistochemistry. An increase in interstitial connective tissue was detected on day 10 after UUO, with a maximum on day 35. After unilateral ureteral obstruction, LFA-1 was prominently expressed in interstitial infiltrates, and to a lesser degree in glomerular areas. An initial increase in LFA-1-positive cells was noted already on day 10, with a maximum on day 20 and a decline on day 25. During the time course of 35 days after UUO, we observed an increase in ICAM-1 expression in the vascular endothelium, in tubular epithelium and in interstitial areas. This study shows that LFA-1 expression and ICAM-1 expression are concordant and that this process is associated with increasing interstitial fibrosis. ICAM-1 interstitial tissue may facilitate the homing and persistence of an interstitial infiltrate by ICAM-1/LFA-1 interactions, thereby preceding the development of renal interstitial fibrosis.
To test the applicability of an anti-8-hydroxy-2'-deoxyguanosine (8-OH-dG) antibody for immunohistochemistry using paraffin-embedded sections, carbon tetrachloride (CCl4)-induced rat liver injury was evaluated. Male rats were given a single dose of CCl4 and killed at 6 hr, 12 hr, 1, 2, 3, and 7 days
thereafter. Severe centrilobular necrosis was evident at 1 day. At 2 days, moderate mononuclear cell infiltration was present in centrilobular necrotic regions. Infiltrating mononuclear cells, surrounding sinusoidal endothelial cells and hepatocytes were stained with anti-8-OH-dG antibody at 2 and 3 days. Formation of 8-OH-dG in DNA and 8-oxo-dGTPase mRNA expression were also increased at these time points, the amounts of malondialdehyde and 4-hydroxy-2-nonenal showed 2 peaks at 6 hr and 3 days. The findings suggest that the main contributory factor in the massive hepatic necrosis was increased lipid peroxidation, rather than excessive formation of 8-OH-dG, and that the observed increase in the latter was largely due to infiltrating mononuclear cells. The agreement between biochemical data and the results for immunohistochemical analysis confirms that the anti-8-OH-dG antibody is applicable for detection of cells targeted by free radicals in paraffin-embedded sections and also for investigation of the mechanisms of oxidative damage-related disease, including carcinogenesis.
Rats were fed a restricted standard diet (6-8 g daily) for 4 weeks. The erythrocyte activity of delta-aminolevulinic acid dehydratase showed a very expressed decrease (7.9 times) and its hepatic activity diminished more than twice. Porphobilinogen deaminase activity was reduced by 40% and 17% respec
tively. After a 3-day total food deprivation delta-aminolevulinic acid dehydratase activity remained unchanged in red blood cells, but an increase by 52% was found in the liver. The erythrocyte activity of porphobilinogen deaminase was reduced by 42% and its hepatic activity--by 16%.
In an effort to better understand the consequences of lead (Pb2+) on skeletal growth, the effects of Pb2+ were investigated using ROS 17/2.8 bone-like cells in vitro. These studies revealed that Pb2+ (4.5 x 10(-6) M -4.5 x 10(-7) M) has little or no effect on cell shape except when added immediately
following seeding of the cells. However, proliferation of ROS cells was inhibited, in the absence of serum, at concentrations of 4.5 x 10(-6) M Pb2+. Protein production was generally increased, however, the major structural protein of bone, type I collagen, production was only slightly altered. Following treatment of ROS cells with Pb2+, intracellular levels of the calcium-binding protein osteonectin/SPARC were increased. Osteonectin/SPARC secretion into the media was delayed or inhibited. Coincident with retention of osteonectin/SPARC there was a decrease in the levels of osteonectin/SPARC mRNA as determined by Northern analysis. These studies suggest that processes associated with osteonectin/SPARC translation and secretion are sensitive to Pb2+.
Hard metal alloys (WC-Co) are made of a mixture of cobalt (Co; 6%) and tungsten carbide (WC; 94%) particles. Chronic inhalation of hard metal dust can lead to the development of a fibrosing alveolitis, the pathogenesis of which is still undefined. The present investigation was undertaken to assess t
he effect of Co, WC, and WC-Co particles on the release by lung phagocytes of interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-alpha), fibronectin, and cystatin-c. The responses were compared with those induced by two other lung toxicants, i.e., crystalline silica (DQ12) and arsenic trioxide (As2O3). IL-1 and TNF-alpha activities produced in the presence and absence of LPS stimulation were measured with the aid of bioassays while fibronectin and cystatin-c were determined by latex immunoassays. In vitro, maximal noncytotoxic doses of As2O3, Co, WC, or WC-Co did not significantly affect the production of these mediators by rat alveolar macrophages. In contrast, DQ12 enhanced the production of TNF-alpha (with and without LPS stimulation) and IL-1 (after LPS stimulation) and decreased cystatin-c release (in the absence of LPS). Following a single intratracheal instillation of the different test preparations in the rat, the response of the lung phagocytes obtained by bronchoalveolar lavage (BAL) 24 hr later was examined. We were unable to detect any consistent effect of Co (0.06 mg/100 g body wt), WC (1 mg/100 g body wt), or WC-Co treatment (1 mg/100 g body wt) on the production of the above mediators. In contrast, after LPS stimulation, As2O3 (0.5 mg/100 g body wt) and DQ12 (1 mg/100 g body wt) stimulated the production of TNF-alpha and IL-1. In the absence of LPS, As2O3 stimulated fibronectin and cystatin-c production and DQ12 stimulated cystatin-c release. Since the dose of WC-Co used in vivo (1 mg/100 g body wt) caused pronounced lung inflammation (increased LDH, protein, and albumin levels in BAL fluid), we conclude that the acute lung toxicity of WC-Co particles is not mediated through enhanced production of the examined mediators by lung phagocytes.
Cisplatin is one of the most potent chemotherapeutic antitumor drugs. Oxidative stress has been proven to be involved in cisplatin-induced toxicity. Therefore, the present study was undertaken to examine the antioxidant potential of grape seed proanthocyanidin e
xtract (GSPE) against the toxicity of cisplatin in male rats. Cisplatin treated animals revealed a significant elevation in plasma, heart, kidney and liver thiobarbituric acid reactive substances (TBARS), while the activities of antioxidant enzymes (GST, SOD, CAT and GSH-Px, and the levels of glutathione (GSH) were decreased. Aspartate and alanine transaminases (AST and ALT), creatine kinase and lactate dehydrogenase were significantly increased in plasma, while liver AST and ALT were significantly decreased. Cisplatin significantly increased the levels of plasma total lipid, cholesterol, urea and creatinine, and the relative weight of kidney. On the other hand, plasma total protein and albumin, and body weight were significantly decreased. GSPE reduced cisplatin-induced the levels of TBARS in plasma, heart, kidney and liver, TL, cholesterol, urea and creatinine, and liver AST and ALT. Moreover, it ameliorated cisplatin-induced decrease in the activities of antioxidant enzymes, and GSH, total protein and albumin. Therefore, the present results revealed that GSPE exerts a protective effect by antagonizing cisplatin toxicity.
Choudhuri S J Biochem Mol Toxicol. 2010 May-Jun;24(3):195-216.
In recent years, the discovery of small ncRNAs (noncoding RNAs) has unveiled a slew of powerful riboregulators of gene expression. So far, many different types of small ncRNAs have been described. Of these, miRNAs (microRNAs), siRNAs (small interfering RNAs), and piRNAs (Piwi-interacting RNAs) have
been studied in more detail. A significant fraction of genes in most organisms and tissues is targets of these small ncRNAs. Because these tiny RNAs are turning out to be important regulators of gene and genome expression, their aberrant expression profiles are expected to be associated with cellular dysfunction and disease. In fact, an ever-increasing number of studies have implicated miRNAs and siRNAs in human health and disease ranging from metabolic disorders to diseases of various organ systems as well as various forms of cancer. Nevertheless, despite the flurry of research on these small ncRNAs, many aspects of their biology still remain to be understood. The following discussion focuses on some aspects of the biogenesis and function of small ncRNAs with major emphasis on miRNAs since these are the most widespread endogenous small ncRNAs that have been called "micromanagers" of gene expression. Their emerging significance in toxicology is also discussed.
Ryu JY, etal., J Toxicol Environ Health A. 2008;71(23):1542-9.
Phthalate esters were reported to damage fetal and postnatal testes of experimental animals, but the molecular mechanisms underlying these effects remain unknown. The time-response effects of di(n-butyl) phthalate (DBP) on the expression patterns of the testicular genes in male Sprague-Dawley rats w
ere examined for different periods of exposure (1, 7, 14, or 28 d). The steroidogenic- or spermatogenic-related gene expression patterns were measured using reverse-transcription polymerase chain reaction (RT-PCR). After 28 d of exposure, the serum concentrations of DBP and monobutyl phthalate (MBP) increased in a dose-dependent manner, and were significantly higher in the DBP-treated rats than in the control rats. Liver weight was increased markedly at 28 d after DBP exposure at 750 mg/kg/d. Testicular weight was reduced significantly after 14 and 28 d of exposure. DBP (750 mg/kg/d) produced a significant increase in scavenger receptor class B1 (SR-B1) and steroidogenic acute regulatory (StAR) mRNA after 14 and 28 d of exposure. The level of cytochrome P-450 (P450) side-chain cleavage (P450scc) mRNA decreased in the group treated with DBP at 750 mg/kg/d at 7 d. After 14 and 28 d of exposure, there was an apparent increase in P450scc mRNA. High doses of DBP significantly increased the Cyp17 mRNA level after 28 d of exposure. At 7 d, a significant decrease in Cyp19 mRNA was observed only in the group exposed to 750 mg/kg/d DBP. In addition, DBP significantly decreased the levels of a spermatid-specific gene (Spag4) and lactate dehydrogenase A (LDHA) mRNA after 7 d of exposure. The levels of androgen receptor (AR), estrogen receptor-alpha (ER-alpha), and retinoid X receptor-gamma (RXR-r) expression decreased significantly in a time- or dose-dependent manner. DBP significantly increased the peroxisome proliferator-activated receptor-gamma (PPAR-r) and phosphorylated extracellular-signal-regulated kinase (p-ERK1/2) levels in the testis. These results suggest that the acute and chronic effects of DBP on the steroidogenic pathways in the testes show mechanistically distinct patterns. Data thus provide some insights into the molecular mechanisms underlying DBP-induced testicular dysgenesis.
Zhang S, etal., Toxicol Appl Pharmacol 2002 Mar 1;179(2):74-82.
Ethylbenzene (EB) effectively induces several hepatic P450 enzymes including CYP2E1 and CYP2B. Hypophysectomy diminishes the magnitude of EB-mediated induction of CYP2B. Although growth hormone (GH) plays a key role in sexual dimorphism of CYP2C11, its impact on EB-mediated P450 expression is still
unknown. Because hypophysectomy leads to a depletion of multiple pituitary hormones besides GH, a study was designed to investigate the possible involvement of GH in EB-mediated hepatic P450 expression using GH-deficient dwarf rats as a more specific animal model. In these rats, pituitary GH was selectively reduced to about 10% of normal levels and other pituitary trophic hormones including thyroid-stimulating hormone, adrenocorticotropic hormone, luteinizing hormone, follicle-stimulating hormone, and prolactin are largely unchanged. Male control and HsdOla:DWARF-dw-4 (Harlan, UK) rats were subjected to a single ip injection of EB (10 mmol/kg). CYP2E1- and CYP2B-dependent activities, protein, and RNA levels were measured 10 and 24 h afterward. The results indicated that dwarf rats without EB exposure expressed higher CYP2E1. Although EB treatment induced CYP2E1 activity, protein, and mRNA both in controls and dwarf rats, the magnitude of the response to EB exposure was greater 10 h after the treatment in dwarf rats. Hypophysectomy also increased CYP2E1 protein induction by EB compared to intact rats. This effect was reversed by GH supplementation to hypophysectomized rats. Overall, responses of CYP2B to EB exposure in dwarf rats did not display basic differences from controls. In conclusion, the results demonstrate that (1) the suppression of CYP2B induction found in the multi-hormone-deficient HX rats is not found in the more specific GH-deficient rat model, confirming that GH does not have a major influence on CYP2B expression and (2) both hypophysectomized and GH-deficient rats show an altered inducibility of CYP2E1 after EB treatment.
The present study investigates the effects of nicotine treatment on exocrine pancreatic function. Adult male, Sprague-Dawley rats received nicotine via a time-release pellet, at a rate of 1.65 micrograms/min for 3 weeks. At the end of the experimental period, it was observed that although nicotine d
id not affect final body or pancreatic weight, the activities of amylase, trypsin, and chymotrypsin in pancreatic homogenates from nicotine-treated rats were 51, 29, and 35% higher, respectively, than in controls. Levels of immunoreactive cationic trypsin(ogen) were significantly higher in pancreatic homogenates and serum from nicotine-treated rats as compared with controls. In addition, concentrations of mRNA, encoding for pancreatic amylase, were higher in pancreatic homogenates from the nicotine-treated rats than in controls. In dispersed pancreatic acini isolated from nicotine-treated rats, basal secretion of amylase, trypsinogen, and chymotrypsinogen was 50% higher than controls and enzyme release following CCK-8 (100 pM), secretin (1 microM), and carbachol (7.5 microM) stimulation was also significantly higher. These data indicate that nicotine treatment, at levels comparable to those expected in moderate cigarette smokers, increases the content of digestive enzymes in rat pancreas, as well as their basal and secretagogue-induced release.
Zhang S, etal., Toxicol Appl Pharmacol. 2005 Jan 1;202(1):13-7.
To probe the mitochondrial involvement in Mn intoxicity, aliquots of brain mitochondria samples from control and treated (30 mg/kg manganese chloride, ip) male Sprague-Dawley rats were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and
searched for protein abundance changes induced by Mn exposure. The electrophoretic separation resolved over 300 distinct spots as visualized by colloidal Coomassie blue (CCB), of which three spots were induced and three spots were inhibited after Mn exposure in all the five brain mitochondria preparations. Analysis by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) indicated that these spots are calcium-transporting ATPase type 2C (ATP-dependent Ca(2+) pump PMR1); 60-kDa heat shock protein; Mitochondrial transmembrane GTPase FZO1B; ATP-binding cassette, sub-family b; Long-chain-fatty-acid-CoA ligase; ATP Synthase Beta Chain; and Succinate dehydrogenase flavoprotein subunit. The changes of the mitochondrial ATP synthase beta-subunit and Succinate dehydrogenase flavoprotein subunit indicate an effected level of mitochondrial ATP content and/or ATP-producing capacity. This result provides suggestion that respiratory chain complexes were implicated in the mitochondrial dysfunction induced by Mn intoxicity. And the changes of 60-kDa heat shock protein and ATP-dependent Ca(2+) pump PMR1 expression indicate that the Ca homeostasis and stress effect were involved in Mn intoxicity.
Schmiedl A, etal., Exp Toxicol Pathol. 2005 Mar;56(4-5):265-72.
In asthma surfactant proteins (SP) might differ in distribution and composition and thus play a role in pathophysiology of this disease. Therefore, the well-established animal model of ovalbumin sensitized and challenged rats were used to study the distribution of surfactant proteins in Clara cells
and type II pneumocytes. Serial sections of paraffin embedded lung tissue were sequentially immunostained by the avidin-biotin-peroxidase complex (ABC) technique. Antisera against SP-A, SP-B and Clara cell specific protein (CC10) were used. We determined stereologically' the surface fraction of immunolabelled cells and semiquantitatively the percentage of test fields containing labelled alveolar macrophages. In allergen sensitized and provocated rat lungs: (1) the surface fraction of SP-A and SP-B positive Clara cells was significantly reduced, (2) the surface fraction of Clara cells stained with CC10 was coincided with controls, (3) the surface fraction of SP-A and not of SP-B possitive type II pneumocytes decreased significantly, (4) a significantly higher percentage of test fields with SP-A labelled alveolar macrophages was evaluated. Thus, in this animal model of asthma the inflammatory process after allergen challenge is accompanied by alterations in the distribution patterns of SP in Clara cells and type II pneumocytes.
Ross MK and Pegram RA, Chem Res Toxicol. 2003 Feb;16(2):216-26.
Bromodichloromethane (CHBrCl(2)), a prevalent drinking water disinfection byproduct, was previously shown to be mutagenic in Salmonella that express rat GSH transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the kinetics of CHBrCl(2) reactions
mediated by GST in different species as well as the isoform specificity and reaction products of the GST pathway. Conjugation activity of CHBrCl(2) with GSH in mouse liver cytosol was time- and protein-dependent, was not inhibited by the GST alpha, mu and pi inhibitor S-hexyl-GSH, and correlated with GST T1-1 activity toward the substrate 1,2-epoxy-3-(4'-nitrophenoxy)propane. Conjugation activities in hepatic cytosols of different species toward CHBrCl(2) followed the order mouse > rat > human. As compared with CH(2)Cl(2), the catalytic efficiency (k(cat)/K(m)) of conjugation of CHBrCl(2) with GSH by pure recombinant rat GST T1-1 was approximately 3-6-fold less. Taken together, this suggests that GST T1-1 is the primary catalyst for conjugation of CHBrCl(2) with GSH and that flux through this pathway is less than for CH(2)Cl(2). The initial GSCHCl(2) conjugate formed was unstable and degraded to several metabolites, including GSCH(2)OH, S-formyl-GSH, and HCOOH. Addition of NAD(+) to cytosol did not alter the rate of conjugation of CHBrCl(2) with GSH; however, it did increase the amount of [(14)C]HCOOH produced ( approximately 10-fold). A similar result was seen in a reaction containing pure rat GST T1-1 and GSH-dependent formaldehyde dehydrogenase, indicating that GSCH(2)OH was formed as a precursor to S-formyl-GSH. The half-life of synthetic S-formyl-GSH in pH 7.4 buffer was approximately 1 h at ambient temperature and decreased to approximately 7 min in pH 9.0 buffer, and it does not react with deoxyguanosine. In conclusion, GST T1-1 conjugation of CHBrCl(2) has been definitively demonstrated and the kinetics of conjugation of CHBrCl(2) with GSH characterized in mouse, rat, and human hepatic cytosols. The significance of this GST pathway is that reactive GSH conjugates are produced resulting in possible formation of DNA adducts. Comparisons with CH(2)Cl(2) suggest that the reactive intermediates specific to GSH conjugation of CHBrCl(2) are more mutagenic/genotoxic than those derived from CH(2)Cl(2).
The effects of mercury (Hg) on basal and dexamethasone-induced tyrosine aminotransferase (TAT) activity in rat liver were studied. Comparison of TAT activity after in vitro and in vivo mercury application revealed the influence of the metal only when applied in vivo, suggesting that the effects are
expressed at the level of TAT gene transcription. Intraperitoneal administration of mercury at 1, 2 or 3 mg Hg kg(-1) b.w. 4 h before decapitation was shown to stimulate the basal activity of TAT. The most prominent increase was observed 4 h after the metal administration. When applied at 1 and 2 mg Hg kg(-1) b.w. mercury was also shown to reduce partially the extent of the enzyme induction by dexamethasone, which was injected intraperitoneally at 5 mg kg(-1) b.w. 5 h before death. The highest dose of mercury (3 mg Hg kg(-1) b.w.) almost completely abolished the dexamethasone effect. The finding that mercury increases basal activity of the enzyme while decreasing its induction by dexamethasone suggests that stimulatory effects of this metal on TAT activity are probably mediated by factors other than glucocorticoids.
Wu D and Cederbaum AI, J Biol Chem 2003 Jan 10;278(2):1115-24.
Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 (CYP2E1) and in HepG2 E47 cells, which express CYP2E1. The possible r
ole of mitogen-activated protein kinase (MAPK) members in this process was evaluated. SB203580, a p38 MAPK inhibitor, and PD98059, an ERK inhibitor, but not wortmannin a phosphatidylinositol 3-kinase (PI3K) inhibitor, prevented AA toxicity in pyrazole hepatocytes and E47 cells. SB203580 prevented the enhancement of AA toxicity by salicylate. SB203580 neither lowered the levels of CYP2E1 nor affected CYP2E1-dependent oxidative stress. The decrease in mitochondrial membrane potential produced by AA was prevented by SB203580. Treating CYP2E1-induced cells with AA activated p38 MAPK but not ERK or AKT. This activation was blocked by antioxidants. AA increased the translocation of NF-kappaB to the nucleus. Salicylate blocked this translocation, which may contribute to the enhancement of AA toxicity by salicylate. SB203580 restored AA-induced NF-kappaB translocation, which may contribute to protection against toxicity. In conclusion, AA toxicity was related to lipid peroxidation and oxidative stress, and to the activation of p38 MAPK, as a consequence of CYP2E1-dependent production of reactive oxygen species. Activation of p38 MAPK by AA coupled to AA-induced oxidative stress may synergize to cause cell toxicity by affecting mitochondrial membrane potential and by modulation of NF-kappaB activation.
Liu H, etal., Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2013 Aug;31(4):280-3.
OBJECTIVE: To study the pathological damage of thymus and thymus cell apoptosis of male rats infected with Toxoplasma gondii. METHODS: Fifty Wistar male rats (7-8-week-old) were randomly divided into infection group (40) and control group (1
0). Rats in infection group were infected with 5 x 10(4) tachyzoites by intraperitoneal injection, while those in control group received same volume of PBS. On the 3rd, 6th, 9th and 12th day post infection, ten rats from infection group and two from control group were sacrificed, the thymus glands were removed. The thymus tissue sections were stained with hematoxylin and eosin (HE) for observation on histopathological changes. Single thymus cell suspensions were prepared. Cell cycle analysis was performed by flow cytometry, and proliferation index was calculated. Thymus frozen sections were stained with Hoechst 33258, and morphologic changes in apoptotic nuclei were observed under fluorescence microscope. Expression of Bcl-2 and Bax proteins were determined by using immunohistochemistry. RESULTS: Microscopic examination showed that pathological changes occurred in thymus grand on the 3rd day after infection. The space between connective tissue capsules was widened, cells in cortex and medulla cells were sparse, and more phagocytes and extravasated blood were found in thymus. On the 6th day post infection the thymus damage was aggravated, and no significant improvement was seen on day 12. On the 3rd, 6th, 9th and 12th day after infection, thymocyte proliferation index was (11.15 +/- 0.99)%, (6.17 +/- 1.02)%, (5.45 +/- 0.96)% and (6.63 +/- 1.52)%, respectively, and each of them was significantly lower than that of the control [(13.81 +/- 1.18)%] (P < 0.01). On the 3rd day after infection, the number of apoptotic cells increased, significantly increased on day 6, and there was no much difference in the number of apoptotic cells between day 6 and day 12. The immunohistochemistry results showed that on the 3rd, 6th, 9th and 12th day post-infection, the gray scale value of Bax positive cells was 88.21 +/- 4.74, 64.69 +/- 6.82, 83.62 +/- 5.79, and 101.09 +/- 6.72, respectively, and each of them was significantly lower than that of the control (128.69 +/- 8.95) (P < 0.01), while there was no significant change in the Bcl-2 protein level (P > 0.05). CONCLUSION: T. gondii causes severe pathological damage in host thymus tissue with a decrease in the proliferation index, an increase in the number of apoptotic cells, and high expression of Bax protein.
The distal trachea and centriacinus of the lung are primary sites of acute injury during short-term ozone exposure; long-term exposure yields cells in these areas that are resistant to high doses of oxidant gases. Epithelial cells located in primary sites for ozone injury are also targets for chemic
als that undergo cytochrome P450 (CYP)-dependent activation. These studies were designed to compare the effects of ozone exposure on pulmonary CYP2E1 in susceptible and nonsusceptible sites within the airway tree of lung. CYP2E1 activity was measured in well-defined regions of airways using p-nitrophenol, a CYP2E1-selective substrate, with HPLC/ electrochemical detection of the p-nitrocatechol. Alterations in distribution of CYP2E1 were evaluated by immunohistochemistry. CYP2E1 activities were highest in the distal bronchioles and minor daughter airways but were much lower in the lobar bronchi/ major daughter airways and trachea. Immediately after short-term ozone exposures (8 h, 1 ppm), CYP2E1 activities were elevated only in the lobar bronchi/major daughter airways. These activities remained above the filtered air control at 1 day but returned to control levels by 2 days. Immunohistochemical assessment of CYP2E1 protein in ozone and filtered air-exposed animals was consistent with the activity measurements. After long-term ozone exposures (90 days, 1 ppm), CYP2E1 activities were decreased in the major and minor daughter airways. These studies indicate that CYP2E1 activities vary substantially by airway level. However, ozone exposure only results in minimal alterations in activity with varying concentration of ozone, length of exposure, and time after exposure in any of the lung subcompartments examined.
Okayama A, etal., Toxicol Appl Pharmacol. 1988 Jul;94(3):356-61.
Eight-week-old female Wistar rats were exposed to carbon disulfide for 6 hr a day, 5 days a week, for 12 weeks in inhalation chambers. Then the activities of the main enzymes of tryptophan metabolism (i.e., L-tryptophan 2,3-dioxygenase, indoleamine 2,3-dioxygenase, kynurenine 3-hydroxylase, kynureni
nase, and kynurenine aminotransferases) in their tissues were determined. The results showed that exposure to carbon disulfide caused a significant increase in the activities of kynureninase and kynurenine-2-oxoglutarate aminotransferase in the kidneys, but only a slight increase in their activities in the liver. The activities of L-tryptophan 2,3-dioxygenase and kynurenine 3-hydroxylase also tended to increase, but the increases were not statistically significant. These results suggests that the kynurenine pathway of tryptophan metabolism in the kidneys of rats exposed to carbon disulfide is activated and that the increased activities of kynurenine-2-oxoglutarate aminotransferase in the kidneys may cause the increased excretion of tryptophan metabolites after tryptophan loading as shown in an earlier study (A. Okayama, L. Fun, A. Yamatodani, Y. Ogawa, H. Wada, and S. Goto, 1987, Arch. Toxicol. 60, 460-463.
Jing X, etal., Toxicol Appl Pharmacol. 2013 Dec 15;273(3):672-9.
Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes
and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke.
Kojima M and Degawa M, J Appl Toxicol. 2006 Jul-Aug;26(4):381-4.
Changes in gene expression levels of hepatic sterol regulatory element binding protein-2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) after a single i.v. injection of lead nitrate (LN, 100 micromol kg(-1) body weight) were examined comparatively by real time reverse transcriptase-po
lymerase chain reaction (RT-PCR) in male and female rats. Significant increases in the gene expression level of SREBP-2, a transcription factor for the HMGR gene, occurred at 6-12 h in male and at 24-36 h in female rats after LN-treatment. The gene expression level of HMGR, a rate-limiting enzyme for cholesterol biosynthesis, significantly increased at 3-48 h in male rats and 12-48 h in female rats. Subsequently, significant increases in the amount of hepatic total cholesterol in male and female rats were also observed at 3-48 h and 24-48 h, respectively. The present findings demonstrate that increases in gene expressions of hepatic SREBP-2 and HMGR and the amount of hepatic total cholesterol by LN occur earlier in male rats than in the females, and that increases in the gene expression level of HMGR and the amount of hepatic total cholesterol occur prior to the increase in the gene expression level of SREBP-2 in either sex of rats. Copyright (c) 2006 John Wiley & Sons, Ltd.
El-Maraghy SA and Nassar NN, J Biochem Mol Toxicol. 2010 Oct 18.
Exposure to toxic metals including cadmium has become an increasingly recognized source of illness worldwide. Cadmium (Cd(2+)) is one of the environmental pollutants affecting various tissues and organs including testis. The protective effect of lipoic acid and
selenium on Cd(2+)-induced testicular damage was investigated. Accordingly, male Wistar rats were allocated into four groups (n = 8; each). Gp I: (control), whereas the other 3 groups received CdCl(2) (2 mg/kg, i.p. for 28 days) alone or in combination with either (i) lipoic acid (35 mg/kg, p.o) or (ii) selenium (0.35 mg/kg, p.o) throughout the experiment. Serum testosterone, luteinizing hormone and follicle-stimulating hormone levels significantly decreased in the Cd(2+)-exposed rats. The activities of testicular key androgenic enzymes, 3beta-hydroxysteroid dehydrogenase and 17 beta-HSD significantly decreased in Cd(2) exposed rats compared to the control counterparts. In addition, the activities of testicular marker enzymes were significantly altered in cadmium-treated animals. Significant reductions in body and testicular weight as well as antioxidant status were also observed in Cd(2+)-exposed rats. Moreover, some testicular metal levels were altered. Lipoic acid and selenium significantly increased serum testosterone level and restored testicular activity of 3beta-HSD and 17 beta-HSD and were effective in modulation of most of the measured biochemical parameters. The biochemical parameters were further confirmed with histopathological findings. In conclusion, the present study demonstrated the beneficial influences of lipoic acid and selenium in reducing harmful effects of Cd(2+) in rats' testes. (c) 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 00:1-11, 2010; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20354.
Neuropeptide Y (NPY) is the most powerful peptide drug stimulating feeding in rats. Rats with paraventricular hypothalamic (PVH) cannulae were used to investigate the mechanisms involved in NPY-induced feeding. Consistent with previous reports, injection of 2 micrograms of NPY into the PVH significa
ntly increased the cumulative food intake over 1-, 2- and 4-hr periods. Ad lib feeding decreased significantly two days after pertussis toxin (PT) administration, but recovered to nearly normal levels on the fourth day. PT had no immediate effect on NPY-induced feeding; however, four days after PT was injected NPY (2 micrograms) did not increase the food intake compared to control. In vitro investigations showed that isoproterenol-stimulated adenylate cyclase activity in the hypothalamus of control rats was inhibited by NPY. In PT-treated rats, however, no inhibition of cAMP production was observed. These results suggest that cAMP may mediate NPY-induced feeding and that a PT-sensitive G protein may be involved in this signal transduction.
Matrix metalloproteinases (MMPs), a class of enzymes responsible for the degradation of extracellular matrix proteins, play important roles in inflammatory and immune responses. In skin, MMP-2 (gelatinase A) and MMP-9 (gelatinase B) are normally inactive but can be expressed during tissue injury. Bo
th degrade collagen IV and other critical components of the basement membrane zone that separates the epidermis from the dermis. The expression of MMP-2 and -9 was studied in sulfur mustard (SM)-exposed ear skin from mice to determine their role in tissue vesicant injury. Punch biopsies of mouse ears were collected between 6 and 168 h after exposure to 97.5 mM (0.08 mg) SM diluted in CH(2)Cl(2). They were examined histologically and assayed for MMP-2 and -9 expression by gelatinase activity assays, real-time reverse transcriptase-polymerase chain reaction and Western blot analysis. A time-related increase in overall gelatinase activity was observed in SM-treated ears. At 168 h after SM exposure, the relative levels of MMP-9 mRNA were increased 27-fold and MMP-9 protein 9-fold when compared with the control (CH(2)Cl(2) treated) ears. In contrast, there were no observable increases in the MMP-2 mRNA or protein levels between treated and control ears. These observations suggest the differential expression of MMP-2 and -9 during the cutaneous response to SM injury and suggest a role for MMP-9 in SM-induced injury.
Wang Y, etal., Toxicon. 2009 Aug;54(2):95-102. Epub 2009 Mar 26.
Maitotoxin (MTX) is one of the most potent toxins known to date. It causes massive calcium (Ca(2+)) influx and necrotic cell death in various tissues. However, the exact mechanism(s) underlying its cellular tox
-weight:700;'>toxicity is not fully understood. In the present study, the role of the sodium hydrogen exchanger (NHE) in MTX-induced increases in intracellular Ca(2+) and subsequent cell death were investigated in cultured rat cortical neurons. Intracellular Ca(2+) concentrations ([Ca(2+)](i)) were measured fluorimetrically using FURA-2 as the fluorescence indicator. Cell death was measured with the alamarBlue cell viability assay and the vital dye ethidium bromide (EB) uptake assay. Results showed that MTX increased, in a concentration dependent manner, both [Ca(2+)](i) and cell death in cortical neurons. Decreasing the pH of the treatment medium from 7.5 to 6.0 diminished MTX-induced cell death. The protection offered by lowering extracellular pH was not due to MTX degradation, because it was still effective even if the cells were treated with MTX in normal pH and then switched to a lower pH. Pretreatment of cells with the specific NHE inhibitor, 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), prevented MTX-induced increases in [Ca(2+)](i), as well as cell death in a concentration dependent manner. Furthermore, knockdown of NHE1 by SiRNA transfection suppressed MTX-induced cell death in human embryonic kidney (HEK) cells. Together, these results suggest that NHE1 plays a major role in MTX-induced neurotoxicity.
Sanderson JT Toxicol Sci. 2006 Nov;94(1):3-21. Epub 2006 Jun 28.
Various chemicals found in the human and wildlife environments have the potential to disrupt endocrine functions in exposed organisms. Increasingly, the enzymes involved in the steroid biosynthesis pathway are being recognized as important targets for the actions of various endocrine-disrupting chem
icals. Interferences with steroid biosynthesis may result in impaired reproduction, alterations in (sexual) differentiation, growth, and development and the development of certain cancers. Steroid hormone synthesis is controlled by the activity of several highly substrate-selective cytochrome P450 enzymes and a number of steroid dehydrogenases and reductases. Particularly aromatase (CYP19), the enzyme that converts androgens to estrogens, has been the subject of studies into the mechanisms by which chemicals interfere with sex steroid hormone homeostasis and function, often related to (de)feminization and (de)masculinazation processes. Studies in vivo and in vitro have focussed on ovarian and testicular function, with less attention given to other steroidogenic organs, such as the adrenal cortex. This review aims to provide a comprehensive overview of the state of knowledge regarding the mechanisms by which chemicals interfere with the function of steroidogenic enzymes in various tissues and organisms. The endocrine toxicities and mechanisms of action related to steroidogenesis of a number of classes of drugs and environmental contaminants are discussed. In addition, several potential in vitro bioassays are reviewed for their usefulness as screening tools for the detection of chemicals that can interfere with steroidogenesis. Analysis of the currently scattered state of knowledge indicates that still relatively little is known about the underlying mechanisms of interference of chemicals with steroidogenesis and their potential toxicity in steroidogenic tissues, neither in humans nor in wildlife. Considerably more detailed and systematic research in this area of (endocrine) toxicology is required for a better understanding of risks to humans and wildlife.
Larsen-Su SA and Williams DE, Toxicol Sci. 2001 Dec;64(2):162-8.
Indole-3-carbinol (I3C), a naturally occurring component of broccoli, cabbage, and other members of the family Cruciferae, is a tumor modulator in several animal models that demonstrates significant chemoprevention against development of both spontaneous and chemically induced cancers while converse
ly eliciting tumor promoter effects in others. This study examines the disposition of I3C in the pregnant rat model, specifically to determine whether I3C can traverse the maternal placenta, and what effects, if any, are elicited in the neonate. We now report that dietary I3C treatment of pregnant female rats results in appearance of I3C acid condensation products in both maternal and neonatal livers. Livers from I3C-fed maternal rats showed CYP1A1 protein induction; however, no CYP1B1 protein was detected. No CYP1A1 or CYP1B1 protein was detected in the livers of pregnant controls or their offspring. We also report a sex-specific induction of CYP1A1 and CYP1B1 protein in livers from newborns born to I3C-fed dams. CYP1A1 protein was significantly induced in male neonatal liver, but not in females. Conversely, hepatic CYP1B1 protein was induced to high levels in female neonates, with no CYP1B1 protein detected in male littermates. Our results demonstrate that dietary I3C acid condensation products can cross the maternal placenta and differentially induce neonatal hepatic CYP1A1 and CYP1B1 in a sex-specific manner. The results highlight the potential of I3C to effect changes in the overall metabolic profile of xenobiotics to which the fetus is exposed transplacentally and indicate the possible involvement of sex-specific modulators in Ah receptor-mediated responses in this model.
Salazar I, etal., Toxicol Appl Pharmacol. 2004 Jul 1;198(1):1-10.
We report that oxidative phosphorylation and Ca2+ uptake processes are enhanced in liver mitochondria isolated from benzo[a]pyrene (B[a]P)-treated rats. The carcinogen did not affect either the respiratory control index or the Ca2+ control ratio. B[a]P treatment increased the oxidation rate of sever
al substrates that donate electrons at the level of all three coupling sites, either the ADP- or Ca2+-stimulated rates or those observed after ADP or Ca2+ exhaustion. However, the efficiency of energy coupling was maintained because both ADP/O and Ca2+/site ratios remained unchanged. The electron flow through NADH-oxidase, NADH-duroquinone reductase, NADH-juglone reductase, NADH-cytochrome c reductase, succinate-cytochrome c reductase, and cytochrome c oxidase was enhanced by B[a]P; however, succinate dehydrogenase activity was not affected. All these effects depended on the time post B[a]P administration, with a greater increase close to 48 h after administration of the carcinogen. The contents of cytochromes b, c1, and a + a3 from liver mitochondria, especially those isolated 48 h after B[a]P, were also significantly increased, although cytochrome c levels was just lightly increased 24 h after B[a]P treatment. These results suggest that B[a]P treatment stimulates mitochondrial respiration by increasing the level of several components of the mitochondrial respiratory chain. This may reflect mitochondrial adaptation to the cellular energy requirements of cell division in the neoplastic transformation process.
UDP-glucuronosyltransferase 1A6 (UGT1A6), a key enzyme catalyzing the glucuronidation of small planar phenols and amines, is expressed in a tissue- and inducer-dependent manner. Expression is high in kidney, gastrointestinal tract, and induced liver, with low expression in spleen, lung, and ovary. E
xposure to certain chemicals, such as 3-methylcholanthrene, benzo[a]pyrene, beta-naphthoflavone, and oltipraz elevates UGT1A6 mRNA in liver and to a lesser extent gastrointestinal tract and kidney, but not in other tissues. The mechanisms underlying this complex pattern of expression have been elusive. We have identified a new type of UGT1A6 mRNA (class 2) that differs in its 5' untranslated sequence. The class 2 transcript is the more abundant type expressed in liver, gastrointestinal tract, and kidney. Transcription of the class 2 mRNA is initiated 107 bases 5' of the UGT1A6 coding exon. The promoter region flanking the transcription start site contains an HNF1-like binding site identical to that in the human UGT1A6 gene. Both class 1 and class 2 mRNAs were elevated in liver by 3-methylcholanthrene, benzo[a]pyrene, beta-naphthoflavone, and oltipraz, with preferential elevation of class 1 occurring after 3-methylcholanthrene and benzo[a]pyrene treatment. These data suggest that transcription from a second promoter contributes to tissue- and inducer-specific expression of rat UGT1A6.
Borlak J, etal., Toxicol Appl Pharmacol. 2002 Jun 1;181(2):79-88.
Human exposure to polychlorinated biphenyls (PCBs) may lead to increased albumin serum levels, but little is known about the underlying events. Certain PCBs are also ligands for the aryl hydrocarbon receptor (Ahr) and this receptor regulates transcriptional activation of many different genes, includ
ing CYP1A1. We tested our hypothesis that expression of certain nuclear transcription factors is altered upon treatment of rat hepatocyte cultures with Aroclor 1254 and we studied the gene expression of albumin and liver-enriched transcription factors simultaneously. We correlate albumin gene expression with protein synthesis and we used CYP1A1 gene expression and enzyme activity as a surrogate endpoint for aryl hydrocarbon receptor activation. We found mRNA transcripts of CCAAT/enhancer binding protein alpha and gamma, hepatic nuclear factor 1, and hepatic nuclear factor 4 to be increased up to 62-fold, whereas albumin gene expression and secretion was increased 3-fold. Noticeably, expression of c-fos, c-jun (AP-1), HNF-6, CCAAT/enhancer binding protein beta and delta, tissue-specific enhancer-1, Ah-receptor, and albumin D-site-binding protein was unchanged. We show coordinate albumin gene expression and protein secretion in primary rat hepatocyte cultures and propose a relationship between induction of certain liver-enriched transcription factors and of the albumin gene via an Ahr-mediated mechanism.
Plant N, etal., Toxicol Appl Pharmacol. 2002 Sep 1;183(2):127-34.
Sodium valproate (VPA) is clinically employed as an anticonvulsant and, to a lesser extent, as a mood stabilizer. While the incidence of toxicity associated with the clinical use of valproate is low, serious hepatotoxicity m
akes up a significant percentage of these rare adverse effects, with fatalities occurring mainly in children receiving polypharmacy. Previous studies have highlighted the different pharmacological effects of acute valproate exposure, a combination of which are likely to underpin its observed broad-spectrum anticonvulsant efficacy. However, limited studies have been undertaken to investigate the subacute effects of this compound and how genomic effects may underlie the observed hepatotoxic effects. Investigation into the mild hepatoxicity observed in rats exposed to high doses of VPA may provide important information on the human situation. Male Sprague-Dawley rats were dosed with 500 mg/kg/day sodium valproate: after necropsy, mRNA was subjected to suppression PCR subtractive hybridization, identifying 8 up-regulated and 14 down-regulated mRNA species. The down-regulation of several mRNA species coding for enzymes involved in cellular energetics (e.g., succinate dehydrogenase, aldolase B) was of particular interest, as mitochondrial dysfunction is a key feature of valproate hepatotoxicity. In vitro studies were then undertaken to examine the dose and time dependence of these changes and also their effect on the overall energy levels within the cell. We demonstrate that, both in vivo and in vitro, valproate exposure in rats results in a significant decrease in pathways involved in cellular energy homeostasis. These changes may provide insight into the rare human hepatoxicity associated with this compound.
Mishra D and Flora SJ, Toxicol Ind Health. 2008 May;24(4):247-56.
Chronic arsenic poisoning caused by contaminated drinking water is a wide spread and worldwide problem particularly in India and Bangladesh. One of the possible mechanisms suggested for arsenic toxicity is the generation of reactive oxygen species (ROS). The pre
sent study was planned 1) to evaluate if chronic exposure to arsenic leads to oxidative stress in blood and brain - parts of male Wistar rats and 2) to evaluate which brain region of the exposed animals was more sensitive to oxidative injury. Male Wistar rats were exposed to arsenic (50A ppm sodium arsenite in drinking water) for 10A months. The brain was dissected into five major parts, pons medulla, corpus striatum, cortex, hippocampus, and cerebellum. A number of biochemical variables indicative of oxidative stress were studied in blood and different brain regions. Single-strand DNA damage using comet assay was also assessed in lymphocytes. We observed a significant increase in blood and brain ROS levels accompanied by the depletion of GSH/GSSG ratio and glucose-6-phosphate dehydrogenase (G6PD) activity in different brain regions of arsenic-exposed rats. Chronic arsenic exposure also caused significant single-strand DNA damage in lymphocytes as depicted by comet with a tail in arsenic-exposed cells compared with the control cells. On the basis of results, we concluded that the cortex region of the brain was more sensitive to oxidative injury compared with the other regions studied. The present study, thus, leads us to suggest that arsenic induces differential oxidative stress in brain regions with cortex followed by hippocampus and causes single-strand DNA damage in lymphocytes.
Kondraganti SR, etal., Chem Res Toxicol. 2005 Nov;18(11):1634-41.
There is significant human exposure to polycyclic aromatic hydrocarbons (PAHs), many of which are bioactivated by the cytochrome P450 (P450) 1A family of enzymes to metabolites that are capable of covalently binding to DNA, a critical step in the initiation of carcinogenesis. We reported earlier tha
t exposure of rats to 3-methylcholanthrene (MC) causes sustained induction of hepatic cytochrome P4501A expression for up to 45 days. Here, we tested the hypothesis that MC elicits persistent induction of other genes that are regulated by the Ah receptor (AHR). Female Sprague-Dawley rats were treated with MC (100 micromol/kg) ip once daily for 4 days, and gene expression patterns were investigated using total liver RNA isolated from animals at 1, 15, and 28 days after MC withdrawal. Gene expression was studied by cDNA microarray analyses using 4608 unique clones from liver-derived expressed sequence tag (EST) libraries fortified with clones of known liver genes representing approximately 4000 genes. Several phase I (P4501A1, -1A2) and phase II [e.g., glutathione-S-transferase (GST)-M1, UDP-glucuronosyl transferases (UGT)] genes were persistently induced (3-10-fold) by MC for 15-28 days. The persistent induction of P4501A1 gene expression was confirmed by real time reverse transcriptase polymerase chain reaction (RT-PCR) experiments. MC also elicited a 5-fold persistent augmentation of acute phase genes such as orosomucoid 1 and alpha-1-acid glycoprotein (AGP), and this was accompanied by sustained liver damage and inflammation in the MC-exposed rats. In conclusion, our results strongly suggest that sustained induction of P4501A1 by MC is accompanied by persistent expression of other genes belonging to the Ah gene battery, as well as certain other genes involved in toxic responses. Elucidating the mechanisms of persistent induction of P4501A1 and other genes by MC might lead to a better understanding of the mechanisms of toxicity mediated by PAHs.
Koen YM and Hanzlik RP, Chem Res Toxicol. 2002 May;15(5):699-706.
The hepatotoxicity of bromobenzene is strongly correlated with the covalent binding of chemically reactive metabolites to cellular proteins, but up to now relatively few hepatic protein targets of these reactive metabolites have been identified. To identify addi
tional hepatic protein targets we injected an hepatotoxic dose of [14C]bromobenzene to phenobarbital-pretreated male Sprague-Dawley rats ip. After 4 h, their livers were removed and homogenized, and the homogenates fractionated by differential ultracentrifugation. The highest specific radiolabeling (6.1 nmol equiv 14C/mg of protein) was observed in a particulate fraction (P25) sedimented at 25000g from a 6000g supernatant fraction. Proteins in this fraction were separated by two-dimensional electrophoresis and, after transblotting, analyzed for radioactivity by phosphorimaging. More than 20 radiolabeled protein spots were observed in the blots. For 17 of these spots, peptide mass maps were obtained using in-gel digestion with trypsin, followed by MALDI-TOF mass spectrometric analysis of the resulting peptide mixtures. By searching genomic databases, the 17 sets of MS-derived peptide masses were found to match predicted tryptic fragments of just 7 proteins. Spots 1-4 matched with 78 kDa glucose regulated protein (GRP78), protein disulfide isomerase isozyme A1 (PDIA1), endoplasmic reticulum protein ERp29, and PDIA6, respectively. Spots 5 and 6, 7-11, and 12-17 presented as apparent "charge trains" of spots, each of which gave peptide mixtures closely similar to those of other spots within the train. The proteins present in these sets of spots were identified as transthyretin, serum albumin precursor and PDIA3, respectively. The possible relationship of the adduction of these proteins to the toxicological outcome is discussed.
Sulfotransferase catalyzed sulfation is important in the regulation of different hormones and the metabolism of hydroxyl containing xenobiotics. In the present investigation, we examined the effects of hyperoxia on aryl sulfotransferase IV in rat lungs in vivo. The enzyme activity of aryl sulfotrans
ferase IV increased 3- to 8-fold in >95% O2 treated rat lungs. However, hyperoxic exposure did not change the mRNA and protein levels of aryl sulfotransferase IV in lungs as revealed by Western blot and RT-PCR. This suggests that oxidative regulation occurs at the level of protein modification. The increase of nonprotein soluble thiol and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios in treated lung cytosols correlated well with the aryl sulfotransferase IV activity increase. In vitro, rat liver cytosol 2-naphthol sulfation activity was activated by GSH and inactivated by GSSG. Our results suggest that Cys residue chemical modification is responsible for the in vivo and in vitro oxidative regulation. The molecular modeling structure of aryl sulfotransferase IV supports this conclusion. Our gel filtration chromatography results demonstrated that neither GSH nor GSSG treatment changed the existing aryl sulfotransferase IV dimer status in cytosol, suggesting that oxidative regulation of aryl sulfotransferase IV is not caused by dimer-monomer status change.
Najib A, etal., FEBS Lett. 2000 Dec 8;486(2):136-42. doi: 10.1016/s0014-5793(00)02294-8.
Tetanus toxin (TeTx) modifies Na(+)-dependent, high-affinity 5-hydroxytryptamine (5-HT, serotonin) uptake in a synaptosomal-enriched P(2) fraction from rat brain. The effect corresponds to a rapid and non-competitive uptake inhibition, and it is preceded by indu
ction of phospholipase C (PLC) activity and translocation and down-regulation of the classical protein kinase C (PKC-alpha, -beta and -gamma) isoforms. The effects on serotonin transport and on cPKC activation were similar to the effects exhibited by phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Moreover, after treatment with TeTx, an increase in Ser- and Tyr-specific phosphorylation was found. Activation of PKC by both TeTx and TPA results in a loss of transport capacity and serotonin transporter (SERT) phosphorylation, which are abolished by coapplication of the specific PKC inhibitor bisindolylmaleimide-1. Since a specific PLCgamma1 phosphorylation prior to TeTx's inducing SERT phosphorylation was found, the studies suggest that part of the action of TeTx consists of modifying the signal cascade initiated in tyrosine kinase receptors on nerve tissue previous to its cellular internalization, resulting in transporter phosphorylation.
Zhou H, etal., Toxicol Appl Pharmacol. 2004 Oct 15;200(2):111-20.
The purpose of this study was to evaluate the expressions and the roles of proteins involved in cell cycle regulation and DNA repair in cis-diamminedichloroplatinum (II) (cisplatin or CDDP)-induced acute renal failure (ARF). Treatment with CDDP (6 mg/kg, iv) induced tubular damage and increased seru
m creatinine (Scr) and the number of TUNEL-positive cells in the outer stripe of the outer medulla in rats, which reached peak levels at 5 days after CDDP. The expressions of cyclin-dependent kinase inhibitors (p21 and p27), cyclin B1, cyclin D1, PCNA, GADD 45, and GADD 153 were significantly increased in the outer medulla, reaching peak levels at 3 days after CDDP. Increments of p27 and PCNA were observed in the same nuclei. Sodium arsenite (SA), a heavy metal, attenuated tubular damage and increased Scr- and TUNEL-positive cells at 5 days after CDDP. SA augmented CDDP-induced increment of p27 but suppressed the increased expression of cyclin B1 and cyclin D1 at 3 days after CDDP. SA-induced attenuation of nephrotoxicity was associated with enhanced expression of proliferating cell nuclear antigen (PCNA) and growth-arrest and DNA damage (GADD) 153 in damaged tubular cells. Our findings indicated that (1) proteins related to cell cycle regulation and DNA repair are induced in CDDP nephrotoxicity, (2) the SA-induced attenuation of CDDP nephrotoxicity is associated with increased expression of p27 and decreased expression of cyclin B1 and cyclin D1, they all induce cell cycle arrest at G1/S and G2/M, and (3) enhanced expression of DNA repair-related proteins is also associated with attenuation of CDDP-nephrotoxicity.
Meneses-Lorente G, etal., Chem Res Toxicol. 2004 May;17(5):605-12.
A significant problem faced by pharmaceutical companies today is the failure of lead compounds in the later stages of development due to unexpected toxicities. We have used two-dimensional differential in-gel electrophoresis and mass spectrometry to identify a p
roteomic signature associated with hepatocellular steatosis in rats after dosing with a compound in preclinical development. Liver toxicity was monitored over a 5 day dosing regime using blood biochemical parameter measurements and histopathological analysis. As early as 6 h postdosing, livers showed hepatocellular vacuolation, which increased in extent and severity over the course of the study. Alterations in plasma glucose, alanine aminotransferase, and aspartate aminotransferase were not detected until the third day of dosing and changed in magnitude up to the final day. The proteomic changes were observed at the earliest time point, and many of these could be associated with known toxicological mechanisms involved in liver steatosis. This included up-regulation of pyruvate dehydrogenase, phenylalanine hydroxylase, and 2-oxoisovalerate dehydrogenase, which are involved in acetyl-CoA production, and down-regulation of sulfite oxidase, which could play a role in triglyceride accumulation. In addition, down-regulation of the chaperone-like protein, glucose-regulated protein 78, was consistent with the decreased expression of the secretory proteins serum paraoxonase, serum albumin, and peroxiredoxin IV. The correlation of these protein changes with the clinical and histological data and their occurrence before the onset of the biochemical changes suggest that they could serve as predictive biomarkers of compounds with a propensity to induce liver steatosis.
U.S. and internationally harmonized Health Effects Test Guidelines for Reproduction and Fertility Effects include enumeration of primordial and developing ovarian follicles as endpoints of safety tests, and the number of these structures is also of interest for other aspects of reproductive biology.
Performing the counts microscopically on representative hematoxylin and eosin (H&E)-stained sections of ovary is tedious and error-prone. The ability to mark oocyte nuclei distinctly with an antibody significantly increases speed and accuracy of counting. We have identified a rabbit polyclonal antibody directed against a synthetic 14-amino acid sequence from human cytochrome P-450 1B1 (CYP1B1) that unequivocally marks rodent oocyte nuclei, in addition to nuclei of some ovarian granulosa and theca cells. Follicles of all degrees of maturity are easily distinguished from ovarian background; ability to detect and identify primordial follicles is particularly enhanced. High-contrast and high-resolution labeling was achieved with routine immunohistochemical procedures using an avidin-biotin-peroxidase method on rat and mouse tissues fixed in 10% neutral buffered formalin.
Silicosis, an interstitial lung disease prevalent among miners, sand blasters, and quarry workers, is manifested as a chronic inflammatory response leading to severe pulmonary fibrotic changes. Proinflammatory cytokines, such as TNFalpha and IL-1, produced in the lung by type II epithelial cells and
alveolar macrophages, have been strongly implicated in the formation of these lesions. Recently, a number of single nucleotide polymorphisms (SNPs), which quantitatively affect mRNA synthesis, have been identified in the TNFalpha promoter and IL-1 gene cluster and their frequency is associated with certain chronic inflammatory diseases. To assess the role of these SNPs in silicosis, we examined their frequency in 325 ex-miners with moderate and severe silicosis and 164 miners with no lung disease. The odds ratio of disease for carriers of the minor variant, TNFalpha (-238), was markedly higher for severe silicosis (4.0) and significantly lower for moderate silicosis (0.52). Regardless of disease severity, the odds ratios of disease for carriers of the IL-1RA (+2018) or TNFalpha (-308) variants were elevated. There were no significant consistent differences in the distribution of the IL-1alpha (+4845) or IL-1beta (+3953) variants with respect to disease status. In addition, several significant gene-gene and gene-gene-environment interactions were observed. Different associations between moderate cases and controls versus severe cases and controls were also observed in a number of these multigene comparisons. These studies suggest that gene-environment interactions involving cytokine polymorphisms play a significant role in silicosis by modifying the extent of and susceptibility to disease.
Hook SS and Means AR, Annu Rev Pharmacol Toxicol. 2001;41:471-505.
Calmodulin (CaM) is an essential protein that serves as a ubiquitous intracellular receptor for Ca(2+). The Ca(2+)/CaM complex initiates a plethora of signaling cascades that culminate in alteration of cellular functions. Among the many Ca(2+)/CaM-binding proteins to be discovered, the multifunctio
nal protein kinases CaMKI, II, and IV play pivotal roles. Our review focuses on this class of CaM kinases to illustrate the structural and biochemical basis for Ca(2+)/CaM interaction with and regulation of its target enzymes. Gene transcription has been chosen as the functional endpoint to illustrate the recent advances in Ca(2+)/CaM-mediated signal transduction mechanisms.
Smith AG and Elder GH, Chem Res Toxicol. 2010 Apr 19;23(4):712-23.
Many toxicological disorders, in common with numerous human diseases, are probably the consequence of multigene interactions with a variety of chemical and physiological factors. The importance of genetic factors may not be obvious initially from association stu
dies because of their complexity and variable penetrance. The human disease, porphyria cutanea tarda (PCT), is a skin disease caused by the photosensitizing action of porphyrins arising secondary to the decreased activity of an enzyme of heme biosynthesis, uroporphyrinogen decarboxylase (UROD), in the liver. It is triggered by idiosyncratic hepatic interaction between genetic factors and chemicals such as alcohol, estrogenic drugs, and polyhalogenated aromatics. PCT and its animal models are known collectively as the hepatic uroporphyrias. There is strong evidence for the participation of iron in the pathogenesis of these conditions. Mouse models have been used to explore the relative importance of a variety of agents such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), alcohol, and iron in the development of uroporphyria and to elucidate the mechanism of the depression of hepatic UROD activity. Mutations of the UROD and hemochromatosis (HFE) genes are genetic factors in some PCT patients which can be mimicked in mice heterozygous for the Hfe and Urod null genes. Association studies of uroporphyria induced by TCDD or hexachlorobenzene with DNA markers in mouse intercrosses have shown the participation of other, unknown, genetic factors in addition to the strong influence of the Ahr gene. The pathogenesis of hepatic uroporphyrias exemplifies the complexity of the interactions between chemical and genetic factors that can contribute to the hepatotoxicity of chemicals.
Dorger M, etal., Toxicol Appl Pharmacol. 2002 Jun 1;181(2):93-105.
Recent studies have suggested that inducible nitric oxide synthase (iNOS) plays a role in the development of asbestos-related pulmonary disorders. The pulmonary reactions of rats and hamsters upon exposure to asbestos fibers are well known to be disparate. In addition, in vitro experiments have indi
cated that mononuclear phagocytes from hamsters, in contrast to those from rats, lack the iNOS pathway. Therefore, the purpose of this study was to investigate whether rats and hamsters differ in lung iNOS expression in vivo upon exposure to asbestos fibers and whether differences in iNOS induction are associated with differences in the acute pulmonary inflammatory reaction. Body weight, alveolar-arterial oxygen difference, differential cell count in bronchoalveolar lavage fluid, total protein leakage, lung myeloperoxidase activity and lipidperoxidation, wet/dry ratio, iNOS mRNA and protein expression, and nitrotyrosine staining of lung tissue were determined 1 and 7 days after intratracheal instillation of asbestos fibers in CD rats and Syrian golden hamsters. Exposure of rats to asbestos fibers resulted in enhanced pulmonary iNOS expression and nitrotyrosine staining together with an acute inflammation that was characterized by an influx of neutrophils, enhanced myeloperoxidase activity and lipid peroxidation, damage of the alveolar-capillary membrane, edema formation, and impairment of gas exchange. In comparison, instillation of asbestos fibers in hamsters resulted in a significantly milder inflammatory reaction of the lung with no induction of iNOS in pulmonary cells. The data obtained provide important information to understand the underlying mechanisms of species differences in the pulmonary response upon exposure to asbestos fibers.
Jacobs JM, etal., Toxicol Appl Pharmacol. 1999 May 15;157(1):51-9.
In earlier studies, sodium arsenite treatment was shown to decrease induction of enzymatic activities associated with hepatic CYPs in rats. Here we investigated the effect of sodium arsenite on induction of CYP2B, CYP1A, and CYP3A in primary cultures of rat hepatocytes. Arsenite decreased the induct
ion of all three families of CYP, as measured enzymatically and immunochemically. These decreases in CYPs occurred at concentrations of arsenite (2.5-10 microM) at which no toxicity was observed; however, toxicity was observed at 25 microM arsenite. With 3-methylcholanthrene as inducer, 5 microM arsenite caused a 55% decrease in CYP1A1 immunoreactive protein and enzyme activity, but only a 25% decrease in CYP1A1 mRNA. With phenobarbital (PB) as the inducer, 2.5 microM arsenite decreased CYP2B enzyme activity and immunoreactive protein 50%, with only a 25% decrease in CYP2B1 mRNA. 5 microM Arsenite decreased CYP2B enzyme activity and immunoreactive protein 80%, but decreased CYP2B1 mRNA only 50%, while CYP3A protein was decreased greater than 75% with no decrease in CYP3A23 mRNA. With dexamethasone (DEX) as inducer, 5 microM sodium arsenite caused a 50% decrease in immunoreactive CYP3A and a 30% decrease in CYP3A23 mRNA. Although arsenite-mediated increases in heme oxygenase (HO) inversely correlated with decreases in CYP2B or CYP1A activity, inclusion of heme in cultures treated with inducers of CYP1A or CYP2B did not prevent the arsenite-mediated decreases in these CYPs. Even though added heme induced HO to similar levels with and without arsenite, decreases in CYPs were only observed in the presence of arsenite. These results suggest that, in rat hepatocytes, elevated levels of HO alone are not responsible for arsenite-mediated decreases in CYP.
Liu J, etal., Toxicol Sci. 2003 Jul;74(1):174-81. Epub 2003 May 2.
Elemental mercury (Hg0) is a highly toxic chemical with increasing public health concern. Although the lung receives the highest exposure to Hg0 vapor, it is resistant to Hg0 toxicity relative to the kidney and brain. In an
earlier study, exposure of rats to 4 mg Hg0 vapor/m3, 2 h per day for 10 days, did not produce pathological alterations in the lung but increased metallothionein and glutathione S-transferase in the kidney. This study was undertaken to examine pulmonary gene expression associated with Hg0 vapor inhalation. Total RNA was extracted from lung tissues of rats, previously exposed to air or Hg0 vapor, and subjected to microarray analysis. Hg0 vapor exposure increased the expression of genes encoding inflammatory responses, such as chemokines, tumor necrosis factor-alpha (TNFalpha), TNF-receptor-1, interleukin-2 (IL-2), IL-7, prostaglandin E2 receptor, and heat-shock proteins. As adaptive responses, glutathione S-transferases (GST-pi, mGST1), metallothionein, and thioredoxin peroxidase were all increased in response to Hg exposure. Some transporters, such as multidrug resistance-associated protein (MRP), P-glycoprotein, and zinc transporter ZnT1, were also increased in an attempt to reduce pulmonary Hg load. The expression of transcription factor c-jun/AP-1 and PI3-kinases was suppressed, while the expression of protein kinase-C was increased. Expression of epidermal fatty acid-binding protein was also enhanced. Real-time RT-PCR and Western blot analyses confirmed the microarray results. In summary, genomic analysis revealed an array of gene alterations in response to Hg0 vapor exposure, which could be important for the development of pulmonary adaptation to Hg during Hg0 vapor inhalation.
Husain K and Somani SM, J Appl Toxicol. 1997 May-Jun;17(3):189-94.
This study was undertaken in order to investigate the interactive effects of exercise training and chronic ethanol consumption on the antioxidant system in rat liver and plasma. Fisher-344 rats were treated in separate groups as follows: sedentary control (SC); exercise training (ET) for 6.5 weeks;
ethanol 20% (2.0 g kg-1, p.o.) for 6.5 weeks; and ET and ethanol administration. In liver, ET significantly decreased the malondialdehyde (MDA) level (73% of SC). Chronic ethanol significantly increased catalase (CAT) activity and MDA levels (126% and 135% of SC), respectively, and also depleted the reduced glutathione (GSH) level and the reduced to oxidized glutathione (GSH/GSSG) ratio (81% and 38% of SC), respectively. Exercise training plus ethanol significantly increased CAT and glutathione reductase (GR) activity (126% and 118% of SC), respectively, and decreased the MDA level (67% of SC). In plasma, ethanol significantly enhanced CAT activity and MDA levels (173% and 221% of SC), respectively. Ethanol ingestion also increased the CAT/superoxide dismutase (SOD) ratio (216% of SC) in plasma. Training plus ethanol ingestion significantly increased CAT activity and MDA levels (208% and 148% of SC), respectively, and increased CAT/SOD and glutathione peroxidase (GSH-Px)/SOD ratios (279% and 142% of SC), respectively. The data indicate that the combination of exercise and ethanol ingestion resulted in an enhanced hepatic CAT and GR activity to eliminate H2O2 and to maintain endogenous GSH levels. Thus, training ameliorated the ethanol-induced oxidative injury in the liver. The ratio of CAT/SOD in plasma increased twofold due to chronic ethanol intake and threefold due to the combination, which may be used as an index of oxidative stress.
Farina M, etal., Environ Toxicol Pharmacol. 2005 Feb;19(2):249-53.
S100B, a calcium binding protein physiologically produced and released by astrocytes, has been used as a peripheral marker of brain damage. Here, we investigated the effects of subcutaneous injections of methylmercury chloride (MeHg-5mg/kg), an environmental neurotox
span>icant, on S100B protein content in cerebrospinal fluid (CSF) of adult rats. In addition, the performance of animals in an open field (number of squares crossing and rearings) was also analyzed in order to obtain a possible link between alteration in S100B protein content in CSF and parameters related to neurological injury. MeHg treatment increased serum mercury and S100B protein levels in the CSF. A decrease in the numbers of crossings and rearings was observed in MeHg-treated animals when compared to control group, which suggests a possible neurological injury. The present data show, for the first time, increased S100B levels in CSF after exposure to a neurotoxic metal. Authors discuss the possibility of astrocytic involvement in MeHg-induced neurotoxicity.
Bouton CM, etal., Toxicol Appl Pharmacol. 2001 Oct 1;176(1):34-53.
The toxic metal lead is a widespread environmental health hazard that can adversely affect human health. In an effort to better understand the cellular and molecular consequences of lead exposure, we have employed cDNA microarrays to analyze the effects of acute
lead exposure on large-scale gene expression patterns in immortalized rat astrocytes. Our studies identified many genes previously reported to be differentially regulated by lead exposure. Additionally, we have identified novel putative targets of lead-mediated toxicity, including members of the family of calcium/phospholipid binding annexins, the angiogenesis-inducing thrombospondins, collagens, and tRNA synthetases. We demonstrate the ability to distinguish lead-exposed samples from control or sodium samples solely on the basis of large-scale gene expression patterns using two complementary clustering methods. We have confirmed the altered expression of candidate genes and their encoded proteins by RT-PCR and Western blotting, respectively. Finally, we show that the calcium-dependent phospholipid binding protein annexin A5, initially identified as a differentially regulated gene by our microarray analysis, is directly bound and activated by nanomolar concentrations of lead. We conclude that microarray technology is an effective tool for the identification of lead-induced patterns of gene expression and molecular targets of lead.
Narang H, etal., J Environ Pathol Toxicol Oncol. 2004;23(1):45-51.
DNA damage-activated homodimer of PARP-1 binds to single-strand breaks and catalyzes the synthesis and transfer of negatively charged ADP-ribose polymers to nuclear protein acceptors, including itself. It also undergoes site-specific proteolysis during apoptosis. On the other hand, DNA-PK is a heter
otrimeric enzyme that specifically binds to double-strand breaks and phosphorylates its target proteins. Because both DNA breaks and apoptosis are known to occur following irradiation, whole-body irradiation was administered to find out the temporal pattern and dose-response of PARP expression and the activity pattern of DNA-PK. To assess the temporal response, male Wistar rats were subjected to a radiation dose of 3Gy and killed at various time intervals (1-24 hours). Both the PARP activity and expression were enhanced 4 hours after irradiation. Fragmented PARP was not observed until 24 hours after irradiation. The differential expression at DNA-PK various doses (0.1-5.0 Gy) was examined. The maximum expression of PARP was noted at 1 Gy, whereas the activation of DNA-PK was maximally observed at 3 Gy. We did not observe any increase in the expression of PARP until the dose of 3Gy was reached, which contradicted the findings in previous in vitro reports of PARP activation at high radiation doses. DNA-PK, however, showed a dose-dependent increase. Our results indicate that although both the PARP and the DNA-PK are nuclear enzymes with similar roles, the activation of these enzymes is dependent on the dose, and any extrapolation of data from in vitro observations can lead to misinterpretation.
Moon C, etal., J Toxicol Environ Health A. 2010 Jan;73(5):396-409.
Nanoparticles are widely used in nanomedicines, including for targeted delivery of pharmacological, therapeutic, and diagnostic agents. Since nanoparticles might translocate across cellular barriers from the circulation into targeted organs, it is important to obtain information concerning the patho
physiologic effects of these particles through systemic migration. In the present study, acute pulmonary responses were examined after intraperitoneal (ip) administration of ultrafine titanium dioxide (TiO(2), 40 mg/kg) in mice at rest or in lungs primed with lipopolysaccharide (LPS, ip, 5 mg/kg). Ultrafine TiO(2) exposure increased neutrophil influx, protein levels in bronchoalveolar lavage (BAL) fluid, and reactive oxygen species (ROS) activity of BAL cells 4 h after exposure. Concomitantly, the levels of proinflammatory mediators, such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and macrophage inflammatory protein (MIP)-2 in BAL fluid and mRNA expression of TNF-alpha and IL-1beta in lung tissue were elevated post ultrafine TiO(2) exposure. Ultrafine TiO(2) exposure resulted in significant activation of inflammatory signaling molecules, such as c-Src and p38 MAP kinase, in lung tissue and alveolar macrophages, and the nuclear factor (NF)-kappaB pathway in pulmonary tissue. Furthermore, ultrafine TiO(2) additively enhanced these inflammatory parameters and this signaling pathway in lungs primed with lipopolysaccharide (LPS). Contrary to this trend, a synergistic effect was found for TNF-alpha at the level of protein and mRNA expression. These results suggest that ultrafine TiO(2) (P25) induces acute lung inflammation after ip administration, and exhibits additive or synergistic effects with LPS, at least partly, via activation of oxidant-dependent inflammatory signaling and the NF-kappaB pathway, leading to increased production of proinflammatory mediators.
Previous studies have shown selective binding of the neurotoxicant 2,5-hexanedione (2,5-HD) to carboxyl-terminal domains of rat neurofilament (NF) M and H proteins in vitro. The present study was designed to further localize this binding in native rat NF prepar
ations exposed to [14C]2,5-HD. Purified M and H proteins from 2,5-HD-treated NFs were subjected to cyanogen bromide (CNBr) cleavage, and the resultant peptides were separated by Tris-tricine SDS-PAGE and electroblotted to PVDF membranes. Peptides were identified by direct sequencing of stained bands and the relative radiolabeling of each peptide was determined by comparing band intensities in fluorographed blots. For NF-M, the highest label was found in CNBr 10, a peptide corresponding to residues 678-846 at the extreme carboxyl terminus. This region of the protein includes three highly conserved lysine-containing sequences believed to be critical to its function. For NF-H, the greatest binding was localized in CNBr 7 + 8, representing an incomplete cleavage product of residues 390-810. This peptide contains essentially all of the phosphorylation sites in the carboxyl terminus of NF-H, a domain believed to control NF interactions in the axon. Only minor radiolabeling was observed in other M or H peptides. Extensive dephosphorylation of NFs prior to 2,5-HD exposure had no effect on relative adduct levels in each protein. These results provide additional support for limited and specific binding of 2,5-HD to neurofilaments and indicate that the phosphorylation state of the protein may not substantially influence this binding.
Hanoune J and Defer N, Annu Rev Pharmacol Toxicol. 2001;41:145-74.
At least nine closely related isoforms of adenylyl cyclases (ACs), the enzymes responsible for the synthesis of cyclic AMP (cAMP) from ATP, have been cloned and characterized in mammals. Depending on the properties and the relative levels of the isoforms expressed in a tissue or a cell type at a spe
cific time, extracellular signals received through the G-protein-coupled receptors can be differentially integrated. The present review deals with various aspects of such regulations, emphasizing the role of calcium/calmodulin in activating AC1 and AC8 in the central nervous system, the potential inhibitory effect of calcium on AC5 and AC6, and the changes in the expression pattern of the isoforms during development. A particular emphasis is given to the role of cAMP during drug and ethanol dependency and to some experimental limitations (pitfalls in the interpretation of cellular transfection, scarcity of the invalidation models, existence of complex macromolecular structures, etc).
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have ma
inly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics.
Chronic measurements of systemic arterial blood pressure and heart rate via a chronically implanted telemetric transmitter in unrestrained rats, was validated in a three-phase study. In the first part, week-to-week variability of systolic, diastolic, and mean arterial pressures, and heart rate was f
ound to be minimal over the course of nine weeks. In the second part, the reproducibility of cardiovascular response to three successive administration of sotalol, an antihypertensive agent, was studied. In the last part, cardiovascular parameters determined by telemetry were compared to those obtained by direct arterial catheterization and showed a good linear correlation between those two methods.
Abbott BD, etal., Toxicol Appl Pharmacol. 1999 Feb 15;155(1):62-70.
The aryl hydrocarbon receptor (AHR) is a transcriptional regulatory protein that binds to upstream DNA response elements of target genes. Activation of the AHR by binding of ligands such as polyhalogenated dioxins, furans, and PCBs is associated with a wide range of adverse biological outcomes, incl
uding cancer, immune deficiencies, embryo/fetotoxicity, and reproductive toxicity. Investigations of the diverse biological responses mediated by the AHR led to production of a transgenic mouse in which the gene coding for the AhR was inactivated. AHR-deficient mice were fertile and at maturity exhibited immune system impairment and hepatic fibrosis. Our laboratory received several of these homozygous knockout (-/-) mice and mated them with wild-type (+/+) C57BL/6N mice to generate large numbers of heterozygotes (+/-). The -/- males were then mated with a total of 45 heterozygous +/- females. Offspring of these matings were genotyped and mated in all genotypic combinations. Although male and female -/- adults were fertile, the -/- females had difficulty maintaining conceptuses during pregnancy, surviving pregnancy and lactation, and rearing pups to weaning. Only 46% of the 39 pregnant -/- females successfully raised pups to weaning. The -/- pups showed poor survival during lactation (average death rate per litter was 16%) and after weaning (26.5% of the 230 weaned -/- pups died within 2 weeks). Only 39% of the implantations in uteri of -/- dams resulted in offspring surviving to Postnatal Day 45. Across all litters the sex ratios and genotypic frequencies were comparable to expected values. Reproductive success was adversely affected in Ahr-null females and conceptuses. Additional study is needed to reveal the etiology of these effects.
Shi Z, etal., Toxicol Sci. 2007 Jul;98(1):206-15. Epub 2007 Mar 30.
Perfluorododecanoic acid (PFDoA, C12), a synthetic perfluorinated chemical containing 12 carbons, has broad industrial applications and has been detected in sera from humans and other animals; however, few reports have addressed the effects of PFDoA exposure on male reproduction. In the present stud
y, the effects of PFDoA exposure on testes ultrastructure, testosterone levels, and steroidogenic gene expression were investigated. Male rats were orally dosed for 14 days with 1, 5, or 10 mg PFDoA/kg/day or with vehicle. Absolute testis weight was diminished at the highest dose while relative testes weight was markedly increased at doses of 5 and 10 mg/kg/day. Total serum cholesterol levels were significantly increased at the highest dose. While luteinizing hormone was significantly decreased at the highest dose, testosterone was markedly decreased at doses of 5 and 10 mg PFDoA/kg/day. Serum levels of follicle-stimulating hormone were not significantly affected by PFDoA, and estradiol levels were markedly decreased only at 5 mg/kg/day. Leydig cells, Sertoli cells, and spermatogenic cells from rats that received 5 or 10 mg PFDoA/kg/day, exhibited apoptotic features including dense irregular nuclei, condensed chromatin, ill-defined nuclear membranes, and abnormal mitochondria. PFDoA exposure resulted in significant declines in mRNA expression of several genes involved in cholesterol transport and steroid biosynthesis at doses of 5 and 10 mg PFDoA/kg/day, while the gene expression of luteinizing hormone receptor and aromatase was not significantly changed. Our results demonstrate that PFDoA affects the reproduction function of male rats via alterations in steroidogenesis genes, testosterone levels, and testes ultrastructure.
Yamano T, etal., Toxicol Appl Pharmacol. 1999 Dec 15;161(3):225-30.
The influence of aging on the sensitivity of the liver to the acute toxicity of cadmium has not been studied previously in adult rats. In this study hepatotoxicity caused by a single sc injection of CdCl(2) was compared in 5
-, 18-, and 28-month-old male Fischer 344 rats. Doses of Cd were adjusted on the basis of the mean lean body mass for each age group of rats, and liver injury was evaluated 24 h after treatment. Cd treatment produced substantial increases in serum alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities in 5- and 18-month-old rats, whereas no significant increases were observed in 28-month-old rats. Histologic examination of representative livers from each age group confirmed the findings for serum enzyme activity; hepatocellular necrosis was observed only in livers from 5- and 18-month-old rats. The attenuation of Cd hepatotoxicity in senescent rats did not appear to be related to pretreatment levels of metallothionein or glutathione. Likewise, resistance to Cd could not be explained on the basis of metallothionein induction, which decreased as a function of aging. Thus, the mechanisms that account for the postmaturational decline in sensitivity to Cd do not appear to be associated with alterations in levels of the major factors that protect against Cd-induced hepatotoxicity.
Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fi
scher-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.
Thomas DJ, etal., Toxicol Appl Pharmacol. 2004 Aug 1;198(3):319-26.
Although biomethylation of arsenic has been studied for more than a century, unequivocal demonstration of the methylation of inorganic arsenic by humans occurred only about 30 years ago. Because methylation of inorganic arsenic activates it to more reactive and tox
an>ic forms, elucidating the pathway for the methylation of this metalloid is a topic of considerable importance. Understanding arsenic metabolism is of public health concern as millions of people chronically consume drinking water that contains high concentrations of inorganic arsenic. Hence, the focus of our research has been to elucidate the molecular basis of the steps in the pathway that leads from inorganic arsenic to methylated and dimethylated arsenicals. Here we describe a new S-adenosylmethionine (AdoMet)-dependent methyltransferase from rat liver cytosol that catalyzes the conversion of arsenite to methylated and dimethylated species. This 42-kDa protein has sequence motifs common to many non-nucleic acid methyltransferases and is closely related to methyltransferases of previously unknown function that have been identified by conceptual translations of cyt19 genes of mouse and human genomes. Hence, we designate rat liver arsenic methyltransferase as cyt19 and suggest that orthologous cyt19 genes encode an arsenic methyltransferase in the mouse and human genomes. Our studies with recombinant rat cyt19 find that, in the presence of an exogenous or a physiological reductant, this protein can catalyze the entire sequence of reactions that convert arsenite to methylated metabolites. A scheme linking cyt19 and thioredoxin-thioredoxin reductase in the methylation and reduction of arsenicals is proposed.
Langley RJ, etal., J Toxicol Environ Health A. 2011;74(19):1261-79.
Silicosis, a fibrotic granulomatous lung disease, may occur through accidental high-dose or occupational inhalation of silica, leading to acute/accelerated and chronic silicosis, respectively. While chronic silicosis has a long asymptomatic latency, lung inflammation and apoptosis are hallmarks of
acute silicosis. In animal models, histiocytic granulomas develop within days after high-dose intratracheal (IT) silica instillation. However, following chronic inhalation of occupationally relevant doses of silica, discrete granulomas resembling human silicosis arise months after the final exposure without significant lung inflammation/apoptosis. To identify molecular events associated with chronic silicosis, lung RNA samples from controls or subchronic silica-exposed rats were analyzed by Affymetrix at 28 wk after silica exposures. Results suggested a significant upregulation of 144 genes and downregulation of 7 genes. The upregulated genes included complement cascade, chemokines/chemokine receptors, G-protein signaling components, metalloproteases, and genes associated with oxidative stress. To examine the kinetics of gene expression relevant to silicosis, quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), Luminex-bead assays, Western blotting, and/or zymography were performed on lung tissues from 4 d, 28 wk, and intermediate times after subchronic silica exposure and compared with 14-d acute silicosis samples. Results indicated that genes regulating fibrosis (secreted phosphoprotein-1, Ccl2, and Ccl7), redox enzymes (superoxide dismutase-2 and arginase-1), and the enzymatic activities of matrix metalloproteinases 2 and 9 were upregulated in acute and chronic silicosis models. However, proinflammatory cytokines were strongly upregulated only in acute silicosis. Thus, inflammatory cytokines are associated with acute but not chronic silicosis. Data suggest that genes regulating fibrosis, oxidative stress, and metalloproteases may contribute to both acute and chronic silicosis.
Serum samples collected from individuals of a wide range of ages in South Yorkshire between 1969 and 1990 provided the basis for a longitudinal seroprevalence survey of Toxoplasma gondii antibodies. Sera numbering 3868 were screened for T. gondii specific antibo
dies using a commercial latex agglutination test. The resultant temporal series of serological profiles revealed a rise, with age, in seroprevalence, the rate of which showed a decrease through time. A plateau of around 40-50% prevalence was attained by the 41- to 45-year age-class in 1969 which was not approached until the 66- to 70-year class in the 1988-90 data set. This trend for decline in seroprevalence was confirmed by statistical analysis for the age range 21-60 years. These results may be indicative of a decrease in the rate of toxoplasma exposure in this study community over the 20-year period. The survey of 1988-90 provides a base-line profile of present-day seroprevalence in which 11% of individuals in the age range 16-45 years (roughly corresponding to the childbearing age-range) show evidence of past infection. The representative nature of the serum collection and public-health implications of these results are discussed.
Gennari A, etal., Toxicol Appl Pharmacol. 2000 Dec 1;169(2):185-90.
Di-n-butyltin dichloride (DBTC) and tri-n-butyltin chloride (TBTC) cause thymus atrophy in rodents. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of thymotoxicity by th
ese chemicals. In vitro, a similar concentration-dependency has been observed. The purpose of the present research was to investigate the mechanisms underlying DNA fragmentation induced by these organotin compounds in freshly isolated rat thymocytes. As previously shown for TBTC, DBTC is also able to significantly increase intracellular Ca(2+) level ([Ca(2+)](i)). The rise in [Ca(2+)](i), already evident 5 min after treatment, was followed by a dose- and time-dependent generation of reactive oxygen species (ROS) at the mitochondrial level. Simultaneously, organotins induced the release of cytochrome c from the mitochondrial membrane into the cytosol. ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular Ca(2+) chelator, or rotenone, an inhibitor of the electron entry from complex I to ubiquinone, indicating the important role of Ca(2+) and mitochondria during these early intracellular events. Furthermore, we demonstrated that rotenone prevents apoptosis induced by 3 microM DBTC or TBTC and, in addition, that both BAPTA and Z-DEVD FMK (mainly a caspase-3 inhibitor) decreased apoptosis by DBTC (already shown for TBTC). Taken together these data show the apoptotic pathway followed by organotin compounds starts with an increase of [Ca(2+)](i), then continues with release of ROS and cytochrome c from mitochondria, activation of caspases, and finally results in DNA fragmentation.
Esposito G, etal., Gene. 1994 Oct 11;148(1):167-8.
9F12, a human antibody capable of neutralising tetanus toxin in an animal model, has been expressed as a Fab fragment in a phagemid system. The nucleotide sequence for the variable domain of both chains has been determined and compared to germline sequences.
The aim of the present study was to evaluate the sub-acute oral toxicity of acetaminophen in Sprague Dawley (SD) rats at 250 to 1000 mg/kg body weight. The following observations were noticed during the study. No mortality in male and female rats, at and up to t
he dose of 1000 mg/kg body weight (b.wt.). There were abnormal clinical signs observed on female animals at 1000mg/kg b.wt. dose level. There were no difference in body weight gain and no effect on the daily feed consumption. No toxicologically significant effect on the haematological parameters but liver and kidney related biochemical parameter showed significant difference at 1000mg/kg b.wt. in females. No toxicologically significant effect on the urinalysis parameters, absolute and relative organ weights and gross pathological alterations; whereas histopathological alterations were observed in female liver at dose level of 1000mg/kg b.wt. were observed. Based on the findings of this study, the No Observed Adverse Effect Level (NOAEL) of acetaminophen in SD rats, following oral administration at the doses of 250, 500 and 1000 mg/kg on daily basis was found to be 500 mg/kg body weight.
Ozoh PT and Jones NV, Ecotoxicol Environ Saf. 1990 Feb;19(1):24-32.
The effects of salinity and temperature on the toxicity of copper to 1-day and 7-day-old larvae of Hediste diversicolor were tested using factorial analysis. Mortality of larvae was influenced by salinity, temperature, and copper, but 1-day-old larvae were more
susceptible than the 7-day-old larvae. Resistance to copper increased with age. Low concentrations of 5 and 20 micrograms/liter copper were more inhibitory to 1-day and 7-day old larvae, respectively, than were higher copper levels. The responses of 1-day-old larvae to copper levels from 0 to 20 micrograms/liter and 7-day-old to copper levels from 0 to 100 micrograms/liter copper were complex. Increasing salinity 7.6 to 30.5% reduced both copper toxicity and protozoa/bacteria attacks.
Dietrich C, etal., Toxicol Appl Pharmacol. 2002 Sep 1;183(2):117-26.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent tumor promoter ever tested in rodents. Although it is known that most of TCDD actions are mediated by binding to the aryl hydrocarbon receptor (AhR), the mechanisms leading to tumor promotion still remain to be elucidated. Loss of contact
inhibition is one characteristic hallmark in tumorigenesis. In rat liver epithelial WB-F344 cells, TCDD induces a release from contact inhibition, which is manifested by a twofold increase in cell number when TCDD (1 nM for 48 h) is added to confluent cells in the presence of serum, but not when given to exponentially growing or subconfluent, serum-deprived WB-F344 cells. Loss of G1 arrest was also shown by flow cytometric analysis. We demonstrate that TCDD treatment significantly increases cyclin D2 and cyclin A protein levels and show by immunofluorescence that these proteins accumulate in the nucleus. Although TCDD treatment leads to a strong increase in cyclin D2/cdk4 and cyclin A/cdk2 complex formation, we could only detect an elevation of cyclin A/cdk2 activity. In accordance with a lack of elevated cdk4 activity, no decrease in the amount of hypophosphorylated retinoblastoma protein could be shown after TCDD treatment. The importance of increased cyclin A/cdk2 activity for TCDD-dependent release from contact inhibition was shown by the fact that the cdk2/cdc2-specific inhibitor olomoucine (25 microM) abolished TCDD response. These data indicate cyclin A-dependent loss of G1 arrest after TCDD treatment mainly downstream of the retinoblastoma protein.
Acute exposure to low concentrations of methylmercury (MeHg) causes a severe loss of intracellular calcium (Ca2+(i)) homeostasis, which apparently contributes to neuronal death of cerebellar granule cells in culture. We examined the role of muscarinic receptors in MeHg-induced Ca2+ dysregulation and
cell death in rat cerebellar granule cells in vitro using fura-2 single-cell microfluorimetry and viability assays, respectively. The nonspecific muscarinic receptor antagonist atropine significantly delayed the onset of MeHg-induced Ca2+ elevations and reduced the amount of Ca2+ released into the cytosol. Depletion of the smooth endoplasmic reticulum (SER) Ca2+ pool with thapsigargin or down-regulation of muscarinic receptors and inositol-1,3,4-triphosphate (IP3) receptors with bethanechol (BCh) caused similar reductions in the amplitude of the MeHg-induced Ca2+ increase, suggesting that MeHg interacts with muscarinic receptors to cause Ca2+ release from the SER through activation of the IP3 receptors. To determine whether this Ca2+ release plays a role in MeHg-induced cell death, cells were exposed to MeHg in the presence of specific muscarinic receptor inhibitors. Acute exposure to increasing concentrations of MeHg (0.2-1.0 microM) caused a corresponding increase in cell death at 24.5 h post-exposure. Prior down-regulation of muscarinic and IP3receptors with BCh protected against cell death. Protection was ablated by atropine and the M3 receptor antagonist 4-diphenylacetoxyl-N-methylpiperidine methiodide (DAMP), but not by the neuronal nicotinic receptor antagonist dihydro-beta-erythroidine hydrobromide (DHE). Thus activation of M3 muscarinic receptors with subsequent generation of IP3 evidently contributes to elevated [Ca2+]i and subsequent cytotoxicity of cerebellar granule cells by MeHg.
Inhibition of pulmonary CYP4B1 activity by pretreatment of rats with p-xylene decreased the ability of lung microsomes to N-hydroxylate 2-aminofluorene and prevented the lung damage normally seen after dosing with ipomeanol. The toxicity of ipomeanol, as assesse
d by acute lethality, was decreased by a factor of eight. In contrast, induction of CYP1A1 by Aroclor or beta-naphthoflavone, or inhibition of CYP2B1 by O,O,S-trimethyl-phosphorodithioate, as assessed by measurement of lung microsomal dealkylation of ethoxyresorufin or pentoxyresorufin, did not change ipomeanol toxicity. A polyclonal antibody raised against CYP4B1 prevented the covalent binding of [14C]-ipomeanol to lung microsomal protein in vitro. Antibodies raised against the other major P450 isozymes of rat lung, CYP2B1 and CYP1A1, had no effect on this binding. Aroclor, beta-naphthoflavone, and O,O,S-trimethylphosphorodithioate failed to affect binding of radiolabeled ipomeanol in vivo, but pretreatment with p-xylene resulted in a significant reduction in this binding. The CYP4B1 substrate 2-aminofluorene, when dosed to rats, caused a sixfold decrease in ipomeanol toxicity. These results indicate that in the rat, unlike the rabbit, pulmonary bioactivation of ipomeanol is predominantly dependent upon CYP4B1.
Yoon M, etal., Toxicol Sci. 2006 Feb;89(2):386-98. Epub 2005 Nov 16.
Metabolism is one of the major determinants for age-related changes in susceptibility to chemicals. Aldehydes are highly reactive molecules present in the environment that also can be produced during biotransformation of xenobiotics and endogenous metabolism. Although the lung is a major target for
aldehyde toxicity, early development of aldehyde dehydrogenases (ALDHs) in lung has been poorly studied. The expression of ALDH in liver and lung across ages (postnatal day 1, 8, 22, and 60) was investigated in Wistar-Han rats. In adult, the majority of hepatic ALDH activity was found in mitochondria, while cytosolic ALDH activity was the highest contributor in lung. Total aldehyde oxidation capability in liver increases with age, but stays constant in lung. These overall developmental profiles of ALDH expression in a tissue appear to be determined by the different composition of ALDH isoforms within the tissue and their independent temporal and tissue-specific development. ALDH2 showed the most notable tissue-specific development. Hepatic ALDH2 was increased with age, while the pulmonary form did not. ALDH1 was at its maximum value at postnatal day 1 (PND1) and decreased thereafter both in liver and lung. ALDH3 increased with age in liver and lung, although ALDH3A1 was only detectible in lung. Collectively, the present study indicates that, in the case of aldehyde exposure, the in vivo responses would be tissue and age dependent.
Zhang J, etal., Toxicol Pathol. 2009;37(5):629-43. Epub 2009 Jun 17.
The present study compared the immunolocalization of Kim-1, renal papillary antigen (RPA)-1, and RPA-2 with that of inducible nitric oxide synthase (iNOS) and nitrotyrosine in kidneys of gentamicin sulfate (Gen)- and cisplatin (Cis)-treated rats. The specificity of acute kidney injury (AKI) biomarke
rs, iNOS, and nitrotyrosine was evaluated by dosing rats with valproic acid (VPA). Sprague-Dawley (SD) rats were injected subcutaneously (sc) with 100 mg/kg/day of Gen for six or fourteen days; a single intraperitoneal (ip) dose of 1, 3, or 6 mg/kg of Cis; or 650 mg/kg/day of VPA (ip) for four days. In Gen-treated rats, Kim-1 was expressed in the epithelial cells, mainly in the S1/S2 segments but less so in the S3 segment, and RPA-1 was increased in the epithelial cells of collecting ducts (CD) in the cortex. Spatial expression of iNOS or nitrotyrosine with Kim-1 or RPA-1 was detected. In Cis-treated rats, Kim-1 was expressed only in the S3 segment cells, and RPA-1 and RPA-2 were increased in the epithelial cells of medullary CD or medullary loop of Henle (LH), respectively. Spatial expression of iNOS or nitrotyrosine with RPA-1 or RPA-2 was also identified. These findings suggest that peroxynitrite formation may be involved in the pathogenesis of Gen and Cis nephrotoxicity and that Kim-1, RPA-1, and RPA-2 have the potential to serve as site-specific biomarkers for Gen or Cis AKI.
In the present work, we studied the effect of the selective cyclooxygenase-2 (COX-2) inhibitors, compound 11 g, celecoxib and selective COX-1 inhibitor SC-560 (intraperitoneally and acutely) on striatal glutamatergic and dopaminergic neurotransmission in normal and substantia nigra pars compacta (SN
c)-lesioned rats using the microdialysis technique. We also investigated the effect of acute COX inhibition on the damaged SNc neurons. Our results indicate a significant increase in dopaminergic neurotransmission and a decrease in glutamatergic neurotransmission (P < 0.05) only after selective COX-2 inhibition in the striatum of normal and hemiparkinsonian rats. Nonetheless, neither COX-1 nor COX-2 inhibitors showed any improvement in the damaged SNc neurons.
Lysyl oxidase (LO), a copper-dependent enzyme, plays a critical role in the formation and repair of the extracellular matrix (ECM) by catalyzing the crosslinking of elastin and collagen. To better understand mechanisms of cigarette smoke (CS)-induced emphysema, we examined changes in LO and its subs
trates, i.e., elastin and collagen type I, the major components of cellular thiols, i.e., metallothionein (MT) and glutathione (GSH), and gamma-glutamylcysteine synthetase (gamma-GCS), a key enzyme for GSH biosynthesis, in cigarette smoke condensate (CSC)-treated rat fetal lung fibroblasts (RFL6). Exposure of RFL6 cells to CSC decreased levels of LO catalytic activity, mRNA, and protein, i.e., the 46 kDa preproenzyme, the 50 kDa proenzyme and the 32 kDa mature enzyme in a dose-dependent manner. In addition, CSC also inhibited the expression of collagen type I and elastin, substrates of LO and important components of the lung ECM. Meanwhile, cellular thiols including MT and GSH as well as gamma-GCS were markedly upregulated in CSC-treated cells. To evaluate modulation of LO expression by cellular thiols, we further examined the effect of increased levels of GSH on LO expression at protein and catalytic levels. Interestingly, exposure of cells to glutathione monoethyl ester, a GSH delivery system, effectively elevated cellular GSH levels and induced a dose-dependent decrease in levels of the protein species and catalytic activity of LO. These results suggest that upregulation by CSC of cellular thiols may play an important role in the downregulation of LO and subsequently destabilization of the lung ECM in CS-induced emphysema.
Wang YR, etal., Toxicon. 2007 Dec 15;50(8):1085-94. Epub 2007 Aug 7.
Neuronal injury is the most important reason for various brain injuries. Cytosolic Ca(2+) overloading has been proposed as one of the main cellular processes leading to neuronal death during cerebral ischemia. It is well accepted that Ca(2+) channel blockers can protect cerebral neurons from ischemi
c injury. In the present studies, we investigated the molecular mechanism for the neuro-protective effect of Huwentoxin-I (HWTX-I), a spider toxin selectively blocking N-type voltage-dependent Ca((2+)) channel, on rat models with global cerebral ischemia-reperfusion injury. Our studies demonstrated that HWTX-I could maintain the morphological stability of pyramidal cells in this model. Furthermore, HWTX-I could decrease the concentration of malon-dialdehyde, but increase the activity of superoxide dismutase and glutathione peroxidase. It also reduced the expression level of related factors of Fas and tumor necrosis factor death receptor apoptosis pathways in the hippocampus. In summary, HWTX-I has an obvious neuroprotective effect, which may act through its inhibition on a certain apoptosis pathway.
Ferioli ME, etal., Toxicol Appl Pharmacol. 2004 Dec 1;201(2):105-11.
Mitoguazone is a known inhibitor of polyamine biosynthesis through competitive inhibition of S-adenosylmethionine decarboxylase. A recent renewed interest in mitoguazone as an antineoplastic agent prompted us to investigate the effect of the drug on polyamine catabolism in rat liver, since the organ
plays an important role in detoxification mechanisms. Thus, the purpose of this work was to evaluate the effect of in vivo mitoguazone administration on polyamine catabolic enzymes. In particular, our interest was directed to the changes in polyamine oxidase activity, since this enzyme has been recently confirmed to exert important functions that until now were underestimated. Mitoguazone administration induced hepatic polyamine oxidase activity starting at 4 h after administration, and the enzyme returned to basal levels 96 h after treatment. The changes in enzyme activity were accompanied by changes in putrescine concentrations, which increased starting at 4 h until 72 h after treatment. We also evaluated the activity of the newly identified spermine oxidase, which was not significantly changed by mitoguazone treatment. Therefore, we hypothesized that the enzyme involved in mitoguazone response of the liver is the polyamine oxidase, which acts on acetylated polyamines as substrate.
Shukla GS, etal., Toxicol Appl Pharmacol. 2000 Mar 15;163(3):249-59.
This investigation sought to determine the effect of cadmium (Cd) aerosol exposure on the pulmonary expression of the heavy subunit (HS) of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in de novo synthesis of glutathione (GSH). Using Northern hybridization analysis, we dem
onstrated that CdO inhalation caused time- and dose-dependent increases in the steady-state levels of gamma-GCS-HS mRNA that were highly correlated with lung Cd burden. Observed increases in gamma-GCS-HS gene expression were maximal 2 h following a single aerosol exposure to Cd and appeared to be triggered by an oxidant stress, characterized by a decline in the reduced to oxidized glutathione ratio. Immunoblotting of proteins in lung extracts from treated and untreated animals produced a single protein band corresponding to a molecular weight of 73 kDa. Elevated levels of gamma-GCS-HS mRNA and gamma-GCS-HS protein in lungs of Cd-exposed animals were also accompanied by higher gamma-GCS enzymatic activity and elevations in glutathione (GSH). Immunohistochemical and in situ hybridization studies were used to identify compartments in the lung where Cd-induced expression of gamma-GCS-HS was localized. The most prominent staining for gamma-GCS-HS protein and gamma-GCS-HS mRNA was observed in the alveolar epithelium of Cd-exposed animals. Quantitative image analysis confirmed a good agreement between relative levels of protein and mRNA transcripts for gamma-GCS-HS. These observations suggest that resistance to Cd toxicity in the lung may reflect the ability of specific lung cells to upregulate gamma-GCS expression and increase de novo GSH synthesis as an adaptive response.
Fei J, etal., Toxicology. 2010 Jan 12;267(1-3):1-6. Epub 2009 Nov 3.
Fenvalerate is a widely used synthetic pyrethroid insecticide and is reported to disrupt reproductive function in humans and animals. However, little is known about its influence on follicular development. In this study, rat preantral follicles were primary cultured to investigate the effects of fen
valerate on follicular survival rate, morphological change, steroid hormone levels and steroidogenesis related gene mRNA expression. Follicles were cultured with 0, 1, 5 and 25 micromol/L fenvalerate for 72 h. And then the morphous was assessed by conventional light microscopy, steroid hormones were measured by RIA, and the expressions of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side-chain cleavage enzyme (P450scc) were monitored by real-time quantitative PCR analysis. Results showed that fenvalerate inhibited the augmentation of follicular diameters but did not have detectable effects on follicular survival rates. The level of steroid hormones, such as progesterone, testosterone and estradiol, was inhibited. The inhibition might be due to the decreased expression levels of StAR and P450scc. These results suggested that fenvalerate restrained the follicular growth, and inhibited steroidogenesis by reducing StAR and P450scc gene expression, which might further contribute to the fenvalerate-induced reproductive dysfunction.
Chung YJ, etal., J Toxicol Environ Health A. 2007 Jun;70(12):1020-6.
Neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin (NT)-3, have been implicated in the pathogenesis of many features and symptoms of asthma. The role of neurotrophins in fungal allergic asthma, however, is unknown. Repeated pulmonary challe
nge with Penicillium chrysogenum extract (PCE) induces dose-dependent allergic asthma-like responses in mice. The aim of this study was to investigate whether neurotrophins are involved in the PCE-induced allergic airway response in mice. Mice were exposed to 10, 20, 50, or 70 microg PCE by involuntary aspiration 4 times over 1 mo. Bronchial alveolar lavage fluid (BALF) was collected immediately before and after the final exposure. The levels of NGF, NT-3, and NT-4 were determined by enzyme-linked immunosorbent assay (ELISA). The lungs were fixed and processed for immunohistochemical examination of NGF production. PCE-exposed mice had dose-dependent increases in NGF, NT-3, and NT-4 in both BALF and sera. Exposures to PCE produced elevation in positive immunohistochemical staining for NGF in the airway epithelium and smooth muscle cells, in addition to infiltrated cells such as mononuclear cells, eosinophils, and macrophages. Taken together, this is the first study to link fungal allergic asthma in an experimental model with enhanced production of neurotrophins in the airways, and suggests that neurotrophins may play a role in the etiology of mold-induced asthma in humans.
Zhao Y, etal., Toxicol Sci. 2006 Apr;90(2):478-89. Epub 2006 Jan 23.
Copper (Cu)-dependent lysyl oxidase (LO) catalyzes crosslinking of collagen and elastin stabilizing the extracellular matrix (ECM). Chronic inhalation of cadmium (Cd), a toxic metal, induces emphysema. To probe mechanisms of Cd injury to the lung, we developed C
d-resistant (CdR) cells from rat fetal lung fibroblasts (RFL6) by chronic exposure to CdCl(2) from 1 to 40 microM and further examined their expressions of LO, LO substrates, and Cu-scavenging thiols. Levels of cellular thiols, metallothionein, and glutathione in CdR cells were elevated to 13.0- and 3.2-fold of parental controls, respectively, whereas LO mRNA and protein levels were markedly reduced in these cells, with catalytic activity declining to only 16% of the parental control. A conspicuous 52 kDa species rather then the normal 50 kDa proenzyme appeared in the CdR cell extract but not in the conditioned medium, which was codistributed with the endoplasmic reticulum marker [DiOC5(3)] within the cell, implying the Cd-induced 52 kDa species as a product of an abnormal LO-processing defect in secretion. Addition of Cu into CdR cell cultures enhanced the expression of LO mRNA, protein and catalytic activities reflecting limitation of Cu bioavailability for LO in these cells. With inhibition of LO, CdR cells also displayed downregulation of collagen and elastin, substrates of LO. Restoration of collagen synthesis by exposure of CdR cells to purified LO or Cu suggests that inhibition of LO and limitation of Cu cofactor by Cd, as key phenotype changes, accelerated collagen and elastin damage, a critical event pertinent to emphysema pathogenesis.
Hong JT, etal., J Toxicol Environ Health A. 2002 Mar;65(5-6):407-18.
The effects of 15-deoxy-delta12,14-prostaglandin J2 (15-deoxy PGJ2) on ochratoxin A (OTA)-induced neurotoxicity and on the activation of transcription factors activator protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB)
were investigated in cultured rat embryonic midbrain cells. Twelve-day rat embryo midbrain cells were cultured for 48 h. OTA (0.5 or 1 microg/ml) and/or 1.5-deoxy PGJ2 (0.5 microM) were then added for 48 h. Cell number and neurite outgrowth were determined to assess the neurotoxicity of OTA. AP-1 and NF-kappaB activation was determined by gel mobility shift assay after 3 h of exposure to OTA and/or 15-deoxy PGI2. OTA caused concentration-dependent reductions in neurite outgrowth and cell number, and induced AP-1 and NF-kappaB activation. Cotreatment with 15-deoxy PGJ2 (0..5 microM) blocked OTA-induced decrease in neurite outgrowth and cell number and inhibited AP-1 and NF-kappaB activation. 15-Deoxy PGJ2 (0.5 microM) caused the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the cells. Results show that 1.5-deoxy PGJ2 blocked OTA-induced neurotoxicity by inhibiting AP-1 and NF-kappaB activation in cultured rat embryonic midbrain cells.
Crosby LM, etal., Toxicol Appl Pharmacol. 2000 Dec 15;169(3):205-21.
The gene expression pattern of mesothelial cells in vitro was determined after 4 or 12 h exposure to the rat mesothelial, kidney, and thyroid carcinogen and oxidative stressor potassium bromate (KBrO(3)). Gene expression changes observed using cDNA arrays indicated oxidative stress, mitotic arrest,
and apoptosis in treated immortalized rat peritoneal mesothelial cells. Increases occurred in oxidative stress responsive genes HO-1, QR, HSP70, GADD45, GADD153, p21(WAF1/CIP16), GST's, GAPDH, TPX, and GPX-1(0); transcriptional regulators c-jun, c-fos, jun B, c-myc, and IkappaB; protein repair components Rdelta, RC10-II, C3, RC-7, HR6B ubiquitin-conjugating enzyme and ubiquitin; DNA repair components PCNA, msh2, and O-6 methylguanine DNA methyltransferase; lipid peroxide excision enzyme PLA2; and apoptogenic components TNFalpha, iNOS1 and FasL. Decreases occurred in bcl-2 (antiapoptotic), bax alpha, bad, and bok (proapoptotic) and cell cycle control elements (cyclins). Cyclin G and p14ink4b (which inhibit entry into cell cycle) were increased. Numerous signal transduction, cell membrane transport, membrane-associated receptor, and fatty acid biosynthesis and repair components were altered. Morphologic endpoints examined were number of mitotic figures, number of apoptotic cells, and antibody-specific localization of HO-1 (which demonstrated increased HO-1 protein expression). PCR analysis confirmed HO-1, p21(waf1/cip1), HSP70, GPX1, GADD45, QR, mdr1, PGHS, and cyclin D1 changes. A model for KBrO(3)-induced carcinogenicity in the F344 rat mesothelium is proposed, whereby KBrO(3) generates a redox signal that activates p53 and results in transcriptional activation of oxidative stress and repair genes, dysregulation of growth control, and imperfect DNA repair leading to carcinogenesis.
We have shown that Ca2+-mediated protein kinase C (PKC) activation induces impairment of bile salt secretory function and F-actin redistribution in hepatocyte couplets. Because oxidative stress induces Ca2+ elevation, we tested here whether PKC inhibition or protein kinase A (PKA) activation, which
often counteracts PKC-dependent effects, can prevent and reverse these alterations. The pro-oxidant compounds tert-butylhydroperoxide (tBOOH, 100 microM) and 2,3-dimethoxy-1,4-naphthoquinone (30 microM), reduced by -41% and -29%, respectively, the percentage of couplets accumulating the fluorescent bile salt analog, cholyl-lysylfluorescein in their canalicular vacuoles (p < 0.01). tBOOH-induced bile salt secretory failure was accompanied by internalization of the canalicular bile salt export pump (Bsep), and disarrangement of cytoskeletal F-actin. All these deleterious effects were fully prevented by the intracellular Ca2+ chelator BAPTA/AM (20 microM), the pan-specific PKC inhibitors H7 (100 microM) and staurosporine (1 microM), the inhibitor of Ca2+-dependent PKCs, Go6976 (2 microM), and the PKA activator dibutyryl-cAMP (500 microM). H7, Go6976, and dibutyryl-cAMP not only prevented but also fully reversed the decrease in the cholyl-lysyl-fluorescein accumulation. In conclusion, these results suggest that low levels of oxidative stress impair bile salt secretion by internalizing Bsep through a Ca2+-dependent, PKC-mediated mechanism, and that inhibition of PKC, or activation of PKA, prevents and reverses these effects. Alterations in actin organization may be a causal factor.
Ni H, etal., Toxicol Lett. 2009 Dec 1;191(1):26-32. Epub 2009 Aug 8.
For the purpose of investigating the role of physical exercise in developmental seizure-induced cognitive deficit, hippocampal mossy fiber sprouting and related gene expression, a seizure was induced by penicillin every other day in Sprague-Dawley rats from postnatal day 24 (P24). The authors assign
ed ten rats each randomly into the control group (CONT1), the control plus exercise group (CONT2), the seizure group (EXP1) and the seizure plus exercise group (EXP2). Morris water maze test was used respectively during P39-P45 and P61-P66. Treadmill exercise was performed daily by CONT2 and EXP2 rats during P49-P54. On P66, mossy fiber sprouting and gene expression in hippocampus were assessed by Timm staining and real-time RT-PCR. EXP2 rats performed better than EXP1 rats in the second water maze navigation test. In the entire two spatial probe tests, both EXP1 and EXP2 rats performed worse than the two control rats. Physical exercise remarkably reduced the aberrant mossy fiber sprouting in the supragranular region of dentate gyrus and CA3 subfield of hippocampus. Both EXP1 and EXP2 rats had a higher amount of glutamate receptor 1 (GluR1) and lower amount of the ratio of GluR2/GluR1 in hippocampus when compared with CONT rats. In addition, there was long-term enhancement of both gamma-aminobutyric acid receptor A-alpha3 (GABA-Aalpha3) and cholecystokinin (CCK) of EXP2 rats compared with the other three groups. These results showed that physical exercise improved learning capacity by modulating hippocampal regenerative sprouting and related gene expression in a developmental rat model of penicillin-induced recurrent epilepticus.
The possible mechanism of the underlying nephropathy found in the rat toxicity study of FYX-051, a xanthine oxidoreductase inhibitor, was investigated. Rats received oral treatment of either 1 or 3 mg/kg of FYX-051, with and without citrate for four weeks to elu
cidate whether nephropathy could be caused by materials deposited in the kidney. Furthermore, analysis of the renal deposits in rats was also performed. Consequently, interstitial nephritis comprising interstitial inflammatory cell infiltration, dilatation, basophilia and epithelial necrosis of renal tubules and collecting ducts, deposits in renal tubules and collecting ducts, and so forth was seen in six of the eight rats and in all eight rats in the 1 and 3 mg/kg FYX-051 alone groups, respectively, with the intensity in the 3 mg/kg group being moderate to severe. In the simultaneous treatment with citrate group, however, no alterations were observed in the kidney, except for minimal interstitial nephritis in one instance in the 3 mg/kg FYX-051 + citrate group along with an increased urinary pH, leading to an increase in xanthine solubility. Analysis of intrarenal deposits showed that the entity would be composed of xanthine crystals. The present study, therefore, showed that nephropathy in rats occurring after the administration of FYX-051 was a secondary change caused by xanthine crystals being deposited in the kidney, and no other causes could be implicated in this kidney lesion.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear receptor superfamily whose ligands, the peroxisome proliferators (PPs), are liver tumor promoters in rodents. Interaction cloning was performed using bacterially expressed PPARalpha to identify proteins involved
in PP signaling. The ribosomal protein L11 (rpL11), a component of the large 60S subunit, was identified as a PPARalpha-associated protein. Since rpL11 is a regulator of p53 and the cell cycle, the association between this protein and PPARalpha was examined in detail. PPARalpha-rpL11 interaction was confirmed using yeast and mammalian two-hybrid systems as well as in vitro pull-down assays. The association with rpL11 occurs within the D-domain (hinge-region) of PPARalpha. Unlike PPARalpha, the two closely related isoforms PPARbeta and gamma do not interact with rpL11. Cotransfection of mammalian cells with rpL11 resulted in ligand-dependent inhibition of transcriptional activity of PPARalpha. Ribosomal protein L11-mediated inhibition of gene expression is associated with decreased binding to the PPAR-response element (PPRE) DNA sequence. Release of rpL11 from the ribosome by serum deprivation or low-dose actinomycin D did not dramatically affect PPRE-driven luciferase activity when PPARalpha was overexpressed by cotransfection. However, when endogenous levels of PPARalpha are examined and rpL11 concentration is manipulated by expression by small interference RNA, the ability of peroxisome proliferator to induce PPRE-driven reporter activity and target gene mRNA is affected. These studies show that rpL11 inhibits PPARalpha activity and adds further evidence that ribosomal proteins play roles in the control of transcriptional regulation.
AIM: To evaluate whether impaired Treg/Th17 balance exists in the pregnant mice infected with Toxoplasma gondii. METHOD OF STUDY: Regulatory T (Treg) and T-helper type 17 (Th17) cells were measured in both placenta and spleens of the pregnan
t mice infected with and without T. gondii by flow cytometry. The mRNA and protein expression levels of transforming growth factor-β (TGF-β) and interleukin-17A (IL-17A) were analyzed using real-time PCR and enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of forkhead box P3 (Foxp3), retinoic acid-related orphan receptor γt (RORγt), and IL-6 were also analyzed using real-time PCR. The correlations of the ratio of Treg/Th17 to the mRNA or protein expression level of those factors were analyzed by Spearman's correlation analysis. Data were analyzed by unpaired t-test and paired t-test. RESULTS: The proportion of Tregs or Th17 cells in the placenta and spleens of the T. gondii-infected pregnant mice was significantly lower or higher than in those of non-infected mice, respectively. Upregulation of TGF-β and downregulation of IL-17A were found in the placenta of T. gondii-infected pregnant mice. The ratio of Treg to Th17 was significantly lower in the infected mice than that in the non-infected mice (P<0.01).The ratio of Treg to Th17 positively or negatively correlated with the protein expression level of TGF-β (r=0.6204, P<0.05) or IL-17A (r=-0.6296, P<0.05), respectively. The ratio also positively correlated with the mRNA expression level of Foxp3 (r=0.7985, P<0.01), but negatively correlated with the mRNA expression level of RORγt (r=-0.6153, P<0.05), and IL-6 (r=-0.7492, P<0.01). CONCLUSION: TheTreg/Th17 imbalance exists in the pregnant mice infected with T. gondii, which is associated with the expression of related cytokine and key transcription factors. This result suggests that the embryo loss caused by this parasite may be associated with a reduced ratio of Treg to Th17 cell number.
Yu Q, etal., Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15420-5. doi: 10.1073/pnas.1516362112. Epub 2015 Dec 1.
The great preclinical promise of the pancreatic endoplasmic reticulum kinase (PERK) inhibitors in neurodegenerative disorders and cancers is marred by pancreatic injury and diabetic syndrome observed in PERK knockout mice and humans lacking PERK function and suffering from Wolcott-Rallison syndrome.
PERK mediates many of the unfolded protein response (UPR)-induced events, including degradation of the type 1 interferon (IFN) receptor IFNAR1 in vitro. Here we report that whole-body or pancreas-specific Perk ablation in mice leads to an increase in IFNAR1 protein levels and signaling in pancreatic tissues. Concurrent IFNAR1 deletion attenuated the loss of PERK-deficient exocrine and endocrine pancreatic tissues and prevented the development of diabetes. Experiments using pancreas-specific Perk knockouts, bone marrow transplantation, and cultured pancreatic islets demonstrated that stabilization of IFNAR1 and the ensuing increased IFN signaling in pancreatic tissues represents a major driver of injury triggered by Perk loss. Neutralization of IFNAR1 prevented pancreatic toxicity of PERK inhibitor, indicating that blocking the IFN pathway can mitigate human genetic disorders associated with PERK deficiency and help the clinical use of PERK inhibitors.
Sinha A, etal., Toxicol Sci. 2005 Sep;87(1):204-12. Epub 2005 Jun 15.
Supplemental oxygen, frequently used in premature infants, has been implicated in the development of bronchopulmonary dysplasia (BPD). While the mechanisms of oxygen-induced lung injury are not known, reactive oxygen species (ROS) are most likely involved in the process. Here, we tested the hypothes
is that upregulation of cytochrome P450 (CYP) 1A isoforms in lung and liver may lead to protection against hyperoxic lung injury. Adult male Sprague-Dawley rats were pretreated with the CYP1A inducer beta-naphthoflavone (beta-NF) (80 mg/kg/day), once daily for 4 days, followed by exposure to hyperoxic environment (O2 > 95%) or room air (normoxia) for 60 h. Pleural effusions were measured as estimates of lung injury. Activities of hepatic and pulmonary CYP1A1 were determined by measurement of ethoxyresorufin O-deethylation (EROD) activity. Northern hybridization and Western blot analysis of lung and liver were performed to assess mRNA and protein levels, respectively. Our results showed that beta-NF-treated animals, which displayed the highest pulmonary and hepatic induction in EROD activity (10-fold and 8-fold increase over corn oil (CO) controls, respectively), offered the most protective effect against hyperoxic lung injury, p < 0.05. Northern and Western blot analysis correlated well with enzyme activities. Our results showed an inverse correlation between pulmonary and hepatic CYP1A expression and the extent of lung injury, which supports the hypothesis that CYP1A enzyme plays a protective role against oxygen-mediated tissue damage.
Blood gene expression profiling was investigated as a minimally invasive surrogate approach to detect silica exposure and resulting pulmonary toxicity. Rats were exposed by inhalation to crystalline silica (15 mg/m³, 6 h/day, 5 days), and pulmonary damage and bl
ood gene expression profiles were determined after latency periods (0-16 weeks). Silica exposure resulted in pulmonary toxicity as evidenced by histological and biochemical changes in the lungs. The number of significantly differentially expressed genes in the blood, identified by microarray analysis, correlated with the severity of silica-induced pulmonary toxicity. Functional analysis of the differentially expressed genes identified activation of inflammatory response as the major biological signal. Induction of pulmonary inflammation, as suggested by the blood gene expression data, was supported by significant increases in the number of macrophages and infiltrating neutrophils as well as the activity of pro-inflammatory chemokines observed in the lungs of the silica-exposed rats. A gene expression signature developed using the blood gene expression data predicted the exposure of rats to lower, minimally toxic and nontoxic concentrations of silica. Taken together, our findings suggest the potential application of peripheral blood gene expression profiling as a minimally invasive surrogate approach to detect pulmonary toxicity induced by silica in the rat. However, further research is required to determine the potential application of our findings specifically to monitor human exposure to silica and the resulting pulmonary effects.
Clara cell 10 kDa protein (CC10) is the major secretory protein of Clara cells and is thought to play a protective role in the lung owing to its anti-inflammatory properties. There is little information on the anatomical distribution of CC10-positive cells in rat lung following lipopolysaccharide (L
PS) challenge. We have determined the expression of CC10 along the tracheobronchial tree in saline-treated and LPS-treated rats. Saline-treated rats showed sporadic CC10 staining in central airways and abundant staining in bronchioles. In transitional airways, most cells were positive except for squamous cells. Following LPS challenge, there was a reduction in staining in the upper airways but little change within bronchioles. Squamous epithelia within the transitional airways now showed positive staining. These cells also co-stained for pancytokeratin and appeared to co-localize with surfactant D- and Ki67-positive cells, indicating the presence of a dedifferentiated cell type with both epithelial and pneumocyte phenotypes. These data show that diffuse inflammatory injury results in generalized loss of CC10 in central airways. Conversely, the transitional airways showed evidence of a dedifferentiated population of squamous cells that now stained for CC10. We hypothesize that this is an attempt by peripheral lung to maintain alveolar sac integrity during an inflammatory episode.
Kojima C, etal., Toxicol Sci. 2006 May;91(1):70-81. Epub 2006 Jan 25.
Although inorganic arsenicals are toxic and carcinogenic in humans, inorganic arsenite has recently emerged as a highly effective chemotherapeutic agent for acute promyelocytic leukemia (APL). Inorganic arsenicals are enzymatically methylated to monomethylarsoni
c acid (MMAs(V)), dimethylarsinic acid (DMAs(V)), and trimethylarsine oxide (TMAs(V)O) in mammals. We examined the effects of chronic exposure to methylated arsenicals on arsenic tolerance by using rat normal liver TRL 1215 cells. TRL 1215 cells were exposed for 20 weeks to MMAs(V), DMAs(V), or TMAs(V)O at levels that produced submicromolar cellular concentrations of arsenic. On chronic exposure to these methylated arsenicals, the cells acquired tolerance to acute arsenic cytolethality. Cellular arsenic uptake was reduced in these cells compared to passage-matched control cells. The long-term arsenic exposure increased glutathione S-transferase (GST) activity and cellular glutathione (GSH) levels. Glutathione S-transferase, multidrug resistance-associated proteins (Mrps; efflux transporters encoded by Mrp genes), and P-glycoprotein [P-gp; efflux transporter encoded by multidrug resistance gene (MDR)] had also increased in these cells at the transcript and protein levels. The depletion of cellular GSH and the inhibition of Mrps and P-gp functions increased cellular arsenic uptake and reduced arsenic tolerance in these cells. These results indicate that chronic exposure to methylated arsenicals induces a generalized arsenic tolerance that is caused by increased arsenic excretion. Because accumulation of methylated arsenicals may occur in patients with chronic arsenic poisoning and arsenic-treated APL patients, this study may provide important information regarding chronic arsenic poisoning and the latent risk of developing multidrug resistance in APL therapy using inorganic arsenite.
In order to gain insight into the effects of aging on susceptibility to environmental toxins, we characterized the expression of xenobiotic metabolizing enzymes (XMEs) from the livers of male F344 and Brown Norway (BN) rats across the adult lifespan. Using full-
genome Affymetrix arrays, principal component analysis showed a clear age-dependent separation between young and old animals in both rat strains. Out of 1135 or 1435 genes altered between the old and young groups in the F344 or BN rats, 7 or 3% were XMEs and included members of the phase I, II, and III classes of genes. There was a 20 or 32% overlap in the gene expression profile between the two strains for F344 or BN, respectively. Lipid, ergosterol, alcohol, and fatty acid metabolism genes were also altered with age in both strains. Some of the genes altered by age exhibited a gender-dependent expression pattern in young adult rats, suggesting an increasingly feminized pattern of gene expression with age in male rats. To examine transcriptional responses across lifespan after challenge with a xenobiotic compound, BN rats were exposed to toluene by oral gavage. Toluene exposure decreased the expression of glutathione synthetase, and dramatically increased the number of phase III genes being downregulated. The expression of CYP2B2 and glutathione-S-transferase decreased with age but increased in all age groups after toluene exposure. Decreased ability to detoxify and transport chemicals out of the body with age could result in increased susceptibility to some classes of chemicals in the aging population.
Giammona CJ, etal., Toxicol Appl Pharmacol. 2002 Dec 1;185(2):119-27.
Apoptosis of testicular germ cells is critical for the maintenance of functional spermatogenesis. Previously, we have demonstrated that the Fas (Apo-1, CD95) receptor participates in the regulation of germ cell apoptosis, particularly after toxicant-induced Sert
oli cell injury. In this study, we show that germ cells from B6.SMNC3H-Fas(gld,gld) (gld) mice that express a dysfunctional form of FasL still undergo significant apoptosis, albeit at a lower incidence than seen in B6 mice, following mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury. In addition, we show the presence of Fas, TRAIL-R1 (Death Receptor-4, DR4), and TRAIL-R2 (DR5) in the testis of C57BL/6 (B6) and gld mice (4 weeks old), and Sprague-Dawley rats (5 weeks old) and their responsiveness after MEHP treatment. More importantly, Western blot analysis of cellular fractions showed an increase in death receptor localization on the membrane fractions taken from Sprague-Dawley rats. Immunohistochemical analysis indicated localization of Fas and DR5 primarily to the spermatocyte subpopulation of germ cells. Examination of downstream receptor-mediated signals (i.e., cleavage of procaspase-8 and NFkappaB activation) revealed an early increase in NFkappaB-DNA binding and an increase in procaspase-8 processing in mutant gld mice. In summary, germ cell-associated death receptors, as well as downstream signaling elements, appear to be responsive to MEHP-induced Sertoli cell injury. Whether this is directly responsible for the increases in germ cell apoptosis after MEHP exposure is yet to be determined. The observed robust and early increase in Fas in wild-type testis and diminished rates of germ cell apoptosis in mutant testis (gld and lpr(cg)) reiterates the importance of the Fas signaling pathway.
Stroombergen MC and Waring RH, Hum Exp Toxicol. 1999 Mar;18(3):141-5.
1. Correlations between deletions in two glutathione S-transferase (GST) genes, GSTM1 and GSTT1 and susceptibility to Alzheimer's disease (AD), motor neuron disease (MND) and Parkinson's disease (PD) have been investigated by PCR, using primers specific for both genes. 2. It was found that males wit
h a deletion of the GSTM1 gene were more susceptible to PD and males with a deletion of the GSTT1 gene more susceptible to MND and PD, possibly implying that environmental factors which specifically target men may be involved. Furthermore, subjects with a deletion of the GSTT1 gene were more susceptible to AD.
Wu JJ, etal., Toxicology. 2010 Jan 31;268(1-2):1-7. Epub 2009 Oct 31.
Nonylphenol (NP), a final metabolite of nonylphenol polyethoxylate, has been reported to interfere with male reproduction. However, its mechanisms are not fully understood. In the present study, we examined the effects of NP on steroidogenesis of testosterone in rat Leydig cells. The testosterone co
ncentrations in rat plasma were examined after intravenous injection of NP (100 microg/kg) at different time intervals. In addition, rat Leydig cells were challenged with different concentrations of NP (4.25-127.5 microM) to evaluate its influences on testosterone steroidogenesis. Administration of NP showed a decrease of hCG-induced plasma testosterone. Moreover, in vitro experiments revealed that NP (127.5 microM) alone stimulated testosterone release through increase of both protein levels and activities of the StAR and P450(SCC). In contrast, NP inhibited hCG-induced testosterone release in rat Leydig cells. The inhibitory effect was also observed after incubation of the Leydig cells in the presence of different precursors. These results suggested that NP had differential effects on testosterone synthesis.
Inorganic mercury is a toxic metal that accumulates in the proximal tubules of the kidney, causing apoptosis. Arginase II is known to inhibit apoptosis, but its role in the renal apoptosis caused by inorganic mercury is poorly understood. In the present study, w
e examined the involvement of arginase II in inorganic mercury-dependent apoptosis. A single exposure to mercuric chloride (HgCl(2), 1 mg/kg) in rats resulted in a dramatic time-dependent reduction in the activity of arginase II in the kidney; for example, the activity at 48 h after exposure was 31% of the control level. The decrease in arginase II activity was due to a decrease in the protein level, not to a reduction in gene expression or to direct inhibition of the activity itself. More interestingly, diminished arginase II activity was well correlated with the induction of apoptosis as evaluated by renal DNA fragmentation (r = 0.99). Overexpression of arginase II in LLC-PK(1) cells blocked cell death during exposure to inorganic mercury. These results suggest that inorganic mercury causes a reduction in protein levels of arginase II, and that impaired arginase II activity is, at least in part, associated with the apoptotic cell damage caused by this heavy metal.
Haag M, etal., Arch Toxicol. 2002 Nov;76(11):621-7. Epub 2002 Aug 21.
In the lung, cytochromes P450 (CYP) may be affected by inhaled pollutants. In a previous study, we showed that acute inhalation of toluene diisocyanate (TDI), a low molecular weight chemical known to cause occupational asthma, decreased CYP2B1 expression in rat lung. In the present work, we investig
ated the effect of TDI in a murine model of TDI-induced asthma. Mice were skin-sensitized with TDI on 2 consecutive days and challenged intranasally 8 days later. Lung expression and activity of CYP were assessed 24 h after the challenge. A significant increase in Cyp1a1 protein expression was detected by western blotting in lung from mice sensitized and challenged with TDI, whereas no modification of expression of other CYP, namely Cyp2b, Cyp2e1 and Cyp3a was observed. Increase in Cyp1a1 protein was associated with an increase in Cyp1a1 mRNA, as assessed by polymerase chain reaction after reverse transcription of total lung RNA. However, a decreased Cyp1a1 activity, as measured by O-deethylation of ethoxyresorufin was observed in lung from TDI-sensitized and challenged mice, suggesting that TDI may inhibit Cyp1a1 function. In agreement with this hypothesis, in vitro experiments conducted on liver microsomes overexpressing Cyp1a1 after treatment of mice with 3-methylcholanthrene showed that TDI markedly inhibited in a concentration-dependent manner Cyp1a1 activity. In conclusion, expression of Cyp1a1, known to exhibit rather negative functions in the lung, is increased in mice sensitized and challenged with TDI. However, this effect is associated with a decreased enzyme activity, which might limit the toxicological consequences of increased Cyp1a1 expression.
Guan L, etal., Toxicology. 2009 Aug 3;262(2):146-52. Epub 2009 Jun 9.
Carbon monoxide (CO) poisoning is a major cause of brain injury and mortality; delayed neurological syndrome (DNS) is encountered in survivors of acute CO exposure. The toxic effects of CO have been attributed to oxidative stress induced by hypoxia. Heme oxygena
se-1 (HO-1) is the inducible heme oxygenase isoform, and its induction acts as an important cellular defense mechanism against oxidative stress, cellular injury and disease. In this study, we examined the functional roles of HO-1 induction in a rat model of CO-exposured hippocampal injury. We report that acute CO exposure produces severe hippocampal injury in rats. However, hemin pretreatment reduced both the CO-induced rise in hippocampal water content and levels of neuronal damage in the hippocampus; survival rates at 24 h were significantly improved. Upregulation of HO-1 by hemin pretreatment resulted in a significant decrease in hippocampal levels of malondialdehyde (MDA), a marker of oxidative stress; levels of pro-apoptotic caspase-3 were also reduced. In contrast, inhibition of HO activity by administration of tin protoporphyrin IX (SnPP, a specific inhibitor of HO) abolished the neuroprotective effects of HO-1 induction. These data suggested that the upregulation of endogenous HO-1 expression therefore plays a pivotal protective role in CO neurotoxicity. Though the precise mechanisms underlying hemin-mediated HO-1 induction and neuroprotection are not known, these may involve the anti-oxidant and anti-apoptotic effects of HO-1 enzyme activity.
Son DJ, etal., J Toxicol Environ Health A. 2007 Aug;70(15-16):1350-5.
Studies previously reported that melittin, a major bioactive component of bee venom, inhibits vascular smooth muscle cell (VSMC) proliferation through suppression of nuclear factor (NF)-kappaB and Akt activation and through enhancement of proapoptotic protein expression. In this study, the effects o
f melittin were investigated on the tyrosine phosphorylation of platelet-derived growth factor (PDGF) beta receptor (Rbeta) and its downstream intracellular signal transduction. When combined with PDGF-Rbeta inhibitor, melittin exhibited a synergic inhibitory effect on PDGF-BB-induced rat aortic VSMC proliferation. In addition, melittin inhibited PDGF-Rbeta phosphorylation in a concentration-dependent manner. Accordingly, the downstream signal transduction of PDGF-Rbeta, such as ERK1/2, Akt, and PLCgamma1 phosphorylation, was also inhibited by melittin in the same manner. These findings suggest that, in addition to suppressing NF-kappaB activation, the antiproliferative effect of melittin in VSMC may be mediated, at least in part, by the inhibition of PDGF-Rbeta tyrosine phosphorylation and its downstream intracellular signal transduction.
Jana K, etal., Toxicol Sci. 2010 Aug;116(2):647-59. Epub 2010 May 24.
The present study was done to evaluate the pituitary-testicular activities of rats subjected to chronic nicotine treatment. The testicular key androgenic enzymes activities, plasma and intratesticular testosterone (ITT) concentrations, and plasma concentration of gonadotropin were significantly redu
ced by nicotine treatment along with the decreased sperm counts and the disruption of spermatogenesis indicated by significant reduction in the number of different generations of germ cells at stage VII of the spermatogenesis cycle with increased sperm head abnormalities. The Western blot and the reverse transcriptase-PCR analysis revealed that the nicotine induced a marked decrease in the expression of testicular steroidogenic acute regulatory (StAR) protein, which helps in the transfer of cholesterol in mitochondria for the testosterone biosynthesis. The increased testicular lipid peroxidation, plasma concentration of corticosterone, with enhanced hydrogen peroxide and hydroxyl radical generations, as well as decreased glutathione level, reduced antioxidant enzymes activities, and mitochondrial membrane potential (Deltapsi(m)) of testis, were noted after nicotine treatment in rats. Human chorionic gonadotropin or taurine supplementation with nicotine prevented the degeneration of germ cells to some extent, restored spermatogenesis moderately with decreased sperm head abnormalities, and enhanced sperm counts, accompanied with increase in plasma and ITT concentrations, testicular StAR gene expression, and key androgenic enzymes activities. Moreover, taurine supplementation to nicotine-treated animals resulted in the diminution of testicular lipid peroxidation, hydrogen peroxide and hydroxyl radical generations, with the elevation in glutathione level as well as different antioxidant enzymes activities and Deltapsi(m) in testis. The results indicated that nicotine caused testicular toxicity by germ cell degeneration, inhibition of StAR gene expression along with androgen production in adult male rats probably by affecting pituitary gonadotropin, and/or modulating the extent of testicular antioxidant status.
To probe mechanisms of cadmium (Cd) damage to the lung extracellular matrix (ECM), we developed Cd-resistant (CdR) rat lung fibroblasts (RFL6) by incubation with graded concentrations of Cd. CdR cells downregulated lysyl oxidase (LO), a copper (Cu)-dependent enzyme essential for crosslinking of col
lagen and elastin in the ECM, in conjunction with upregulation of other Cu-binding proteins including Cu,Zn-superoxide dismutase (SOD1), copper chaperone for SOD1 (CCS1), metallothionein (MT), and Menkes P-type ATPase (ATP7A), a Cu transporter in the membrane of the Golgi apparatus, as well as gamma-glutamylcysteine synthetase (gamma-GCS), an enzyme for glutathione biosynthesis. Reduction and loss of cytoplasmic distribution of LO in CdR cells were accompanied by its dislocation with the Menkes P-type ATPase and the endoplasmic reticulum marker. CdR cells displayed a defect in LO catalytic activity but an enhancement in Cu,Zn-SOD catalytic activity consistent with the protein expression levels of these enzymes. Although long-term Cd exposure of cells enhanced the Menkes P-type ATPase protein expression, actually, it reduced Cu-dependent catalytic activity of this enzyme in parallel with the deficiency of LO. The low level of 64Cu bound to the LO fraction and the high level of 64Cu bound to the MT fraction provide direct evidence for limitation of Cu bioavailability for LO existing in the CdR cells. These results suggest that downregulation of LO is linked with upregulation of other Cu-binding proteins and with alteration in Cu homeostasis in the CdR phenotype.
Sanchez-Ortiz E, etal., J Neurochem. 2009 Oct;111(2):391-402. doi: 10.1111/j.1471-4159.2009.06337.x. Epub 2009 Aug 17.
Amyloid-beta (Abeta) is thought to promote neuronal cell loss in Alzheimer's disease, in part through the generation of reactive oxygen species (ROS) and subsequent activation of mitogen-activated protein kinase (MAPK) pathways. Protein phosphatase 5 (PP5) is a ubiquitously expressed serine/threonin
e phosphatase which has been implicated in several cell stress response pathways and shown to inactivate MAPK pathways through key dephosphorylation events. Therefore, we examined whether PP5 protects dissociated embryonic rat cortical neurons in vitro from cell death evoked by Abeta. As predicted, neurons in which PP5 expression was decreased by small-interfering RNA treatment were more susceptible to Abeta toxicity. In contrast, over-expression of PP5, but not the inactive mutant, PP5(H304Q), prevented MAPK phosphorylation and neurotoxicity induced by Abeta. PP5 also prevented cell death caused by direct treatment with H(2)O(2), but did not prevent Abeta-induced production of ROS. Thus, the neuroprotective effect of PP5 requires its phosphatase activity and lies downstream of Abeta-induced generation of ROS. In summary, our data indicate that PP5 plays a pivotal neuroprotective role against cell death induced by Abeta and oxidative stress. Consequently, PP5 might be an effective therapeutic target in Alzheimer's disease and other neurodegenerative disorders in which oxidative stress is implicated.
Lelli SM, etal., Toxicology. 2005 Dec;216(1):49-58. Epub 2005 Aug 24.
Acute hepatic porphyrias are human metabolic diseases characterized by the accumulation of heme precursors, such as 5-aminolevulinic acid (ALA). The administration of glucose can prevent the symptomatology of these diseases. The aim of this work was to study the relationship between glucose metaboli
sm disturbances and the development of experimental acute hepatic porphyria, as well as the role of reactive oxygen species (ROS) through assays on hepatic key gluconeogenic and glycogenolytic enzymes; phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP), respectively. Female Wistar rats were treated with three different doses of the porphyrinogenic drug 2-allyl-2-isopropylacetamide (AIA) and with a single dose of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Thus, rats were divided into the following groups: group L (100 mg AIA + 50 mg DDC/kg body wt.); group M (250 mg AIA + 50 mg DDC/kg body wt.) and group H (500 mg AIA + 50 mg DDC/kg body wt.). The control group (group C) only received vehicles (saline solution and corn oil). Acute hepatic porphyria markers ALA-synthase (ALA-S) and ferrochelatase, heme precursors ALA and porphobilinogen (PBG), and oxidative stress markers superoxide dismutase (SOD) and catalase (CAT) were also measured in hepatic tissue. On the other hand, hepatic cytosolic protein carbonyl content, lipid peroxidation and urinary chemiluminescence were determined as in vivo oxidative damage markers. All these parameters were studied in relation to the different doses of AIA/DDC. Results showed that enzymes were affected in a drug-dose-dependent way. PEPCK activity decreased about 30% in group H with respect to groups C and L, whereas GP activity decreased 53 and 38% in group H when compared to groups C and L, respectively. On the other hand, cytosolic protein carbonyl content increased three-fold in group H with respect to group C. A marked increase in urinary chemiluminescence and a definite increase in lipid peroxidation were also detected. The activity of liver antioxidant enzyme SOD showed an induction of about 235% in group H when compared to group C, whereas CAT activity diminished due to heme depletion caused by both drugs. Based on these results, we can speculate that the alterations observed in glucose metabolism enzymes could be partly related to the damage caused by ROS on their enzymatic protein structures, suggesting that they could be also linked to the beneficial role of glucose administration in acute hepatic porphyria cases.
Susceptibility to renal injury induced by inorganic mercury (Hg(2+)) increases significantly as a result of compensatory renal growth (following reductions of renal mass). We hypothesize that this phenomenon is related in part to increased basolateral uptake of Hg(2+) by proximal tubular cells. To d
etermine the mechanistic roles of various transporters, we studied uptake of Hg(2+), in the form of biologically relevant Hg(2+)-thiol conjugates, using basolateral membrane (BLM) vesicles isolated from the kidney(s) of control and uninephrectomized (NPX) rats. Binding of Hg(2+) to membranes, accounted for 52-86% of total Hg(2+) associated with membrane vesicles exposed to HgCl(2), decreased with increasing concentrations of HgCl(2), and decreased slightly in the presence of sodium ions. Conjugation of Hg(2+) with thiols (glutathione, L-cysteine (Cys), N-acetyl-L-cysteine) reduced binding by more than 50%. Under all conditions, BLM vesicles from NPX rats exhibited a markedly lower proportion of binding. Of the Hg(2+)-thiol conjugates studied, transport of Hg-(Cys)(2) was fastest. Selective inhibition of BLM carriers implicated the involvement of organic anion transporter(s) (Oat1 and/or Oat3; Slc22a6 and Slc22a8), amino acid transporter system ASC (Slc7a10), the dibasic amino acid transporter (Slc3a1), and the sodium-dicarboxylate carrier (SDCT2 or NADC3; Slc13a3). Uptake of each mercuric conjugate, when factored by membrane protein content, was higher in BLM vesicles from uninephrectomized (NPX) rats, with specific increases in transport by the carriers noted above. These results support the hypothesis that compensatory renal growth is associated with increased uptake of Hg(2+) in proximal tubular cells and we have identified specific transporters involved in the process.
Islam Z, etal., Toxicol Sci. 2008 Sep;105(1):142-52. Epub 2008 Jun 4.
Satratoxin G (SG) is a macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum, a mold suggested to play an etiologic role in damp building-related illnesses. Acute intranasal exposure of mice to SG specifical
ly induces apoptosis in olfactory sensory neurons of the nose. The PC-12 rat pheochromocytoma cell model was used to elucidate potential mechanisms of SG-induced neuronal cell death. Agarose gel electrophoresis revealed that exposure to SG at 10 ng/ml or higher for 48-h induced DNA fragmentation characteristic of apoptosis in PC-12 cells. SG-induced apoptosis was confirmed by microscopic morphology, hypodiploid fluorescence and annexin V-fluorescein isothiocyanate (FITC) uptake. Messenger RNA expression of the proapoptotic genes p53, double-stranded RNA-activated protein kinase (PKR), BAX, and caspase-activated DNAse was significantly elevated from 6 to 48 h after SG treatment. SG also induced apoptosis and proapoptotic gene expression in neural growth factor-differentiated PC-12 cells. Although SG-induced caspase-3 activation, caspase inhibition did not impair apoptosis. Moreover, SG induced nuclear translocation of apoptosis-inducing factor (AIF), a known contributor to caspase-independent neuronal cell death. SG-induced apoptosis was not affected by inhibitors of oxidative stress or mitogen-activated protein kinases but was suppressed by the PKR inhibitor C16 and by PKR siRNA transfection. PKR inhibition also blocked SG-induced apoptotic gene expression and AIF translocation but not caspase-3 activation. Taken together, SG-induced apoptosis in PC-12 neuronal cells is mediated by PKR via a caspase-independent pathway possibly involving AIF translocation.
This laboratory has shown that MT-3 expression determines the choice between apoptotic or necrotic cell death in Cd(+2)-exposed human proximal tubule cells. Human proximal tubule cells that express MT-3 undergo necrosis when exposed to Cd(+2), while cells that have no basal expression of MT-3 underg
o apoptotic cell death. It was also shown that cells which express MT-3 were more sensitive to Cd(+2)-induced cell death than those having no basal expression. In the present study, site directed mutagenesis was used to determine if the unique N-terminal sequence of MT-3 was required for these activities regarding toxicity and cell death. The results demonstrated that HK-2 cells stably transfected with MT-3 that had been modified by converting the 2 prolines at amino acid positions 7 and 9 to threonines was no longer active in promoting necrotic cell death at lower levels of Cd(+2) exposure. This was shown in comparison to cells containing the wild type MT-3 sequence and blank vector controls as regards the % of DAPI-stained fragmented nuclei, DNA laddering, LDH release, caspase-9, and caspase-3 activation. This study demonstrates that the unique N-terminal sequence of MT-3 is required to elicit an effect on the mechanism of Cd(+2)-induced death of the proximal tubule cell. This is the identical sequence that has been shown to be responsible for the growth inhibitory activity of MT-3 in the neural system.
Streptozotocin (STZ)-induced diabetic (DB) mice challenged with single ordinarily lethal doses of acetaminophen (APAP), carbon tetrachloride (CCl4), or bromobenzene (BB) were resistant to all three hepatotoxicants. Mechanisms of protection against APAP hepato... (more)
an style='font-weight:700;'>toxicity were investigated. Plasma alanine aminotransferase, aspartate aminotransferase, and liver histopathology revealed significantly lower hepatic injury in DB mice after APAP administration. HPLC analysis of plasma and urine revealed lower plasma t1/2, increased volume of distribution (Vd), and increased plasma clearance (CLp) of APAP in the DB mice and no difference in APAP-glucuronide, a major metabolite in mice. Interestingly, covalent binding of 14C-labeled APAP to liver target proteins; arylation of APAP to 58, 56, and 44 kDa acetaminophen binding proteins (ABPs); and glutathione (GSH) depletion in the liver did not differ between nondiabetic (non-DB) and DB mice in spite of downregulated hepatic microsomal CYP2E1 and 1A2 proteins in the DB mice, known to be involved in bioactivation of APAP. Compensatory cell division measured via 3H-thymidine pulse labeling and immunohistochemical staining for proliferating cell nuclear antigen (PCNA) indicated earlier onset of S-phase in the DB mice after exposure to APAP. Antimitotic intervention of liver cell division by colchicine (CLC) after administration of APAP led to significantly higher mortality in the DB mice suggesting a pivotal role of liver cell division and tissue repair in the protection afforded by diabetes. In conclusion, the resistance of DB mice against hepatotoxic and lethal effects of APAP appears to be mediated by a combination of enhanced APAP clearance and robust compensatory tissue repair.
Chlorpyrifos and diazinon are two commonly used organophosphorus insecticides (OPs), and their primary mechanism of action involves the inhibition of acetylcholinesterase by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vi
tro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) for CPO and DZO by estimating the bimolecular inhibitory rate constant (k(i)) values. Brain ChE inhibition and k(i) values following CPO and DZO incubation with neonatal Sprague-Dawley rat brain homogenates were determined at postnatal day (PND) 5, 12, and 17 and compared with the corresponding inhibition and k(i) values obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. CPO caused a greater ChE inhibition than DZO as evidenced from the estimated k(i) values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, with the order of ChE inhibition being PND 5 > PND 7 > PND 17 with k(i) values of 0.95, 0.50, and 0.22 nM(-1)hr(-1), respectively. In contrast, DZO ChE inhibition was not age related in the neonatal brain, and the estimated k(i) value at all PND ages was 0.02 nM(-1)hr(-1). These results demonstrated an age- and OP-selective inhibition of rat brain ChE, which may be critically important in understanding the potential sensitivity of juveniles to specific OPs exposures.
Linuron is an herbicide with weak androgen receptor (AR) antagonist activity. Exposure to linuron from gestation days (GD) 12 to 21 perturbs androgen-dependent male reproductive development. In utero exposure to 50-mg/kg/day linuron induces malformations of the epididymis and the vas deferens. The o
bjective of this study was to identify alterations in gene expression within the testis and epididymis associated with abnormal Wolffian duct development and to correlate changes in gene expression with the gross morphology of the affected epididymides. Pregnant Sprague-Dawley rats were administered either corn oil vehicle or linuron (50 mg/kg/day) by gavage from GD 12 to 21 (n = 3-6 controls, n = 5-10 linuron-treated dams per time point). Changes in gene expression were evaluated in testes on GD 21 and in epididymides on GD 21 and postnatal day (PND) 7, using cDNA microarrays and confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses. RNA was isolated from intact epididymides with reduced or no ductal coiling from the linuron groups, and epididymides with noncontiguous ducts were excluded. In the fetal testis, exposure to linuron did not result in reduced mRNA expression of the AR or that of several steroidogenic enzymes, supporting the hypothesis that linuron does not reduce fetal testosterone production. Linuron induced a significant decrease in AR mRNA expression in GD 21 epididymides. Significant changes in mRNA expression in GD 21 and PND 7 epididymides were also identified in the epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1), bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Notch signaling pathways. These pathways are involved in tissue morphogenesis. Changes in the expression of AR and IGF-1 receptors were detected by immunostaining in malformed epididymides from linuron-exposed rats. Linuron induced changes in epididymal gene expression suggestive of altered paracrine interactions between the mesenchyme and epithelial cells during development. The EGF, Notch, IGF-1, BMP4, and FGF signaling pathways may be involved in normal testosterone-mediated development of the Wolffian duct.
BACKGROUND: Titanium carbide (TiC) is used for ceramic metal composites in several industries and is regarded as a nanomaterial for catalyst and battery applications. However, there are very few studies in regard to the toxicological potential of TiC
nanoparticles (NPs). OBJECTIVE: To study the toxicodynamics and toxicokinetics of TiC NPs in Sprague Dawley rats in acute (24 h) and subacute (28 days) oral administrations. The acute doses were 0.5, 5, 50, 300 and 1000 mg kg-1; the subacute doses were 0.5 and 50 mg kg-1. RESULTS: Organ histopathological examination (esophagus, stomach, intestines, spleen, liver, and kidneys) indicates the absence of damage at all applied doses, in both assessments. In the acute administration, alkaline phosphatases increased (5, 300 and 1000 mg kg-1), ASAT increased (1000 mg kg-1) and bile salts decreased (0.5 mg kg-1). No alterations in urine parameters (sodium, potassium, osmolarity) were found. Acute administration of TiC caused mineral changes in organs (liver, spleen, kidneys). TiC was mostly cleared by feces excretion 24 h after administration, in subacute administration causing variations in mineral absorption (Mg, Al, P, S, Ca, Zn). TiC could pass the intestinal barrier as TiC traces were detected in urine. CONCLUSION: No sign of toxicity was found after oral administration. TiC was excreted mostly in feces producing mineral absorption alterations. Low traces were retrieved in urine, indicating that TiC can cross the intestinal barrier.
Nassogne MC, etal., Toxicol Appl Pharmacol. 2004 Jan 15;194(2):101-10.
This paper reports that cocaine may induce a lysosomal storage disorder. Indeed, culture of Rat-1 fibroblasts with 250-500 microM cocaine induced after 2-3 days a major accumulation in lysosomes of electron-dense lamellar structures. By subcellular fractionation, this was reflected by a selective de
crease of the buoyant density of several lysosomal enzymes, indicating lysosomal lipid overload. Biochemical analysis confirmed an increased cellular content of major phospholipids and sphingomyelin, but not of cholesterol. Cocaine, a membrane-permeant weak base, is concentrated by acidotropic sequestration, because its accumulation was abrogated by the proton ionophore, monensin and the vacuolar ATPase inhibitor, bafilomycin A1. At its estimated lysosomal concentration, cocaine almost completely inhibited phospholipase A1 activity on liposomes. Cell incubation with cocaine, but not with its inactive metabolite, benzoylecgonine, rapidly inactivated acid sphingomyelinase, as reflected by a 10-fold decrease in Vmax with identical Km. Acid sphingomyelinase inactivation was fully prevented by the thiol proteinases inhibitors, leupeptin and E64, indicating that cocaine induces selective sphingomyelinase proteolysis. Upon cocaine removal, acid sphingomyelinase activity was rapidly restored, pointing to its fast turnover. In contrast, the cellular content of several other lysosomal hydrolases was increased up to 2-fold. Together, these data show that acidotropic accumulation of cocaine in lysosomes rapidly inhibits acid phospholipase A1 and inactivates acid sphingomyelinase, which can explain induction of a mixed lysosomal lipidosis.
beta-Naphthoflavone (BNF) is a strong inducer of cytochrome P450 1A enzymes, and exerts liver tumor-promoting activity through enhancement of oxidative stress responses in rats. This study investigated the role of the tissue environment surrounding hepatocellular preneoplastic lesions in the early t
umor-promotion stage by BNF, using enzymatically modified isoquercitrin (EMIQ) as an anti-oxidative chemopreventive agent. Male F344 rats were fed a diet containing BNF (0.5%) for 6 weeks, with or without EMIQ (0.2%) in the drinking water, 2 weeks after initiation with N-diethylnitrosamine, and were subjected to two-thirds partial hepatectomy 1 week after starting BNF-promotion. BNF-treatment increased concentrations of liver thiobarbituric acid-reactive substances, single liver cells expressing glutathione S-transferase placental form or heme oxygenase (HO)-1, and concomitant apoptosis and proliferation of liver cells. Transcript upregulation of anti-oxidative enzymes (Aldh1a1 and Nqo1), cell cycle-related molecules (Cdc20 and Cdkn2b) and inflammation-related molecules including proinflammatory cytokines (Ccl2, Col1a1, Il6, Nos2 and Serpine1) was also evident. Furthermore, BNF increased HO-1-expressing Kupffer cells and liver cells expressing tumor necrosis factor receptor 1 (TNFR1) and the TNFR1-associated death domain. Most of these BNF-induced fluctuations disappeared or were suppressed by EMIQ in conjunction with suppression of tumor-promotion. Tnf transcript levels with BNF were also suppressed by EMIQ. These results suggest that BNF-induced oxidative stress causes single liver cell toxicity, allowing subsequent concomitant apoptosis and regeneration involving inflammatory responses including TNFalpha-signaling, contributing to tumor promotion. Kupffer cells may act to protect against inflammatory stimuli induced as a result of oxidative cellular stress by BNF, causing proinflammatory cytokine level fluctuations.
Thomson E, etal., Toxicol Sci. 2005 Nov;88(1):103-13. Epub 2005 Aug 4.
Periodic elevation of ambient particulate matter and ozone levels is linked to acute cardiac morbidity and mortality. Increased plasma levels of the potent vasoconstrictor endothelin (ET)-1, a prognostic indicator of cardiac mortality, have been detected in both animal models and humans after exposu
re to air pollutants. The lungs are the primary source of circulating ET-1, but the direct effects of individual air pollutants and their interaction in modulating the pulmonary endothelin system are unknown. Fischer-344 rats were exposed to particles (0, 5, 50 mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Changes in gene expression were measured using real-time reverse transcription polymerase chain reaction immediately after exposure and following 24 h recovery in clean air. Both pollutants individually increased preproET-1, endothelin converting enzyme-1, and endothelial nitric oxide synthase mRNA levels in the lungs shortly after exposure, consistent with the concomitant increase in plasma of the 21 amino acid ET-1[1-21] peptide measured by HPLC-fluorescence. PreproET-1 mRNA remained elevated 24 h after exposure to particles but not after ozone, in line with previously documented changes of the peptide in plasma. Both pollutants transiently increased endothelin-B receptor mRNA expression, while ozone decreased endothelin-A receptor mRNA levels. Coexposure to particles plus ozone increased lung preproET-1 mRNA but not plasma ET-1[1-21], suggesting alternative processing or degradation of endothelins. This coincided with an increase in the lungs of matrix metalloproteinase-2 (MMP-2), an enzyme that cleaves bigET-1 to ET-1[1-32]. Taken together, our data indicate that ozone and particulate matter independently regulate the expression of lung endothelin system genes, but show complex toxicological interaction with respect to plasma ET-1.
Renal complications are often detected in patients with inflammatory bowel disease (IBD). Because conventional markers such as serum creatinine and beta2-microglobulin are not sensitive and/or specific, a new renal biomarker is needed. We have recently identified urinary vanin-1 as an early biomarke
r for the detection of nephrotoxicant-induced renal injury. In this study, we compared the usefulness of urinary vanin-1 with other newly developed biomarkers [urinary monocyte chemoattractant protein-1 (MCP-1), kidney injury molecule-1 (Kim-1) and N-acetyl-beta-D-glucosaminidase (NAG)] for the detection of renal complications in rats with experimental colitis. On day 2 after intracolonic injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS), male Wistar rats developed not only colitis, but histologically evident renal injury. Urinary vanin-1 started to elevate on day 1, whereas serum creatinine and urinary excretions of glucose, total protein, albumin, Kim-1, MCP-1 and NAG significantly increased only on day 2. The mRNA expressions of vanin-1 and Kim-1 significantly increased in the kidney, but not in the colon. In addition, vanin-1 did not appear in the blood. On the other hand, colonic mRNA expression and the serum concentration of MCP-1 were significantly higher in the TNBS-treated rats than in the control animals. These results suggest that, in contrast to MCP-1, urinary vanin-1 and Kim-1 mainly originated from the kidney rather than the colon in this model. Compared with Kim-1 and MCP-1, vanin-1 might be an earlier biomarker for the detection of renal injury in rats with experimental colitis. Copyright (c) 2013 John Wiley & Sons, Ltd.
Kim TS, etal., J Toxicol Environ Health A. 2010 Jan;73(21-22):1544-59.
The purpose of this study was to determine the effects of di(n-butyl) phthalate (DBP) administration on male reproductive organ development in F1 Sprague-Dawley rats following in utero exposure. During gestation days (GD) 10-19, pregnant rats were administered daily, orally, DBP at 250, 500, or 700
mg/kg or flutamide (1, 12.5, or 25 mg/kg/d) as a positive control. The male offspring were sacrificed at 31 d of age. DBP and flutamide dose-dependently significantly increased the incidence of hypospadias and cryptorchidism in F1 male offspring. The weights of testes and accessory sex organs (epididymides, seminal vesicles, ventral prostate, levator ani plus bulbocavernosus muscles (LABC), and Cowper's glands) were significantly reduced in DBP-treated animals. Furthermore, cauda agenesis of epididymides and ventral prostate atrophy were observed in high-dose 700-mg/kg DBP males. Anogenital distance (AGD) and levels of dihydrotestosterone (DHT) and testosterone were significantly decreased in the DBP (700 mg/kg/d)-treated groups. In particular, the expression of androgen receptor (AR) and 5alpha-reductase type 2 in the proximal penis was markedly depressed following administration of DBP (700 mg/kg/d) or flutamide (25 mg/kg/d). The expression of sonic hedgehog (Shh) in the urethral epithelium of the proximal penis was significantly less in the DBP (700 mg/kg/d)- or flutamide (25 mg/kg/d)-treated groups. In addition, DBP dose-dependently significantly increased the expression of estrogen receptor (ER alpha) in the undescended testis. Data demonstrated that in utero exposure to DBP produced several abnormal responses in male reproductive organs, and these effects may be due to disruption of the stage-specific expression of genes related to androgen-dependent organs development.
Previous studies demonstrated that perinatal exposure to polybrominated diphenyl ethers (PBDEs), a major class of brominated flame retardants, may affect thyroid hormone (TH) concentrations by inducing hepatic uridinediphosphate-glucoronosyltransferases (UGTs). This study further examines effects of
the commercial penta mixture, DE-71, on genes related to TH metabolism at different developmental time points in male rats. DE-71 is predominately composed of PBDE congeners 47, 99, 100, 153, 154 with low levels of brominated dioxin and dibenzofuran contaminants. Pregnant Long-Evans rats were orally administered 1.7 (low), 10.2 (mid), or 30.6 (high) mg/kg/day of DE-71 in corn oil from gestational day (GD) 6 to postnatal day (PND) 21. Serum and liver were collected from male pups at PND 4, 21, and 60. Total serum thyroxine (T(4)) decreased to 57% (mid) and 51% (high) on PND 4, and 46% (mid) dose and 25% (high) on PND 21. Cyp1a1, Cyp2b1/2, and Cyp3a1 enzyme and mRNA expression, regulated by aryl hydrocarbon receptor, constitutive androstane receptor, and pregnane xenobiotic receptor, respectively, increased in a dose-dependent manner. UGT-T(4) enzymatic activity significantly increased, whereas age and dose-dependent effects were observed for Ugt1a6, 1a7, and 2b mRNA. Sult1b1 mRNA expression increased, whereas that of transthyretin (Ttr) decreased as did both the deiodinase I (D1) enzyme activity and mRNA expression. Hepatic efflux transporters Mdr1 (multidrug resistance), Mrp2 (multidrug resistance-associated protein), and Mrp3 and influx transporter Oatp1a4 mRNA expression increased. In this study the most sensitive responses to PBDEs following DE-71 exposure were CYP2B and D1 activities and Cyb2b1/2, d1, Mdr1, Mrp2, and Mrp3 gene expression. All responses were reversible by PND 60. In conclusion, deiodination, active transport, and sulfation, in addition to glucuronidation, may be involved in disruption of TH homeostasis due to perinatal exposure to DE-71 in male rat offspring.
Liu W, etal., Toxicol Lett. 2009 Aug 10;188(3):230-5. Epub 2009 May 3.
The extreme vulnerability of developing nervous system to methylmercury (MeHg) is well documented. Still unclear is the consequence of different postnatal period exposure to MeHg. We investigated the critical postnatal phase when MeHg induced neurotoxicity in ra
ts and the underlying mechanism. Rats were given 5mg/(kg day) methylmercury chloride (MMC) orally on postnatal day (PND) 7, PND14, PND28, and PND60 for consecutive 7 days. A control group was treated with 0.9% sodium chloride solution 5 ml/(kg day) instead. On PND69, spatial learning and memory was evaluated by Morris water maze test. Behavior deficits were found in MMC-treated rats of PND7 and PND14 groups (p<0.01). N-methyl-D-aspartate (NMDA) receptor 2 subunits mRNA expressions were evaluated 3 days after the last administration. In hippocampus, the mRNA expression of NR2A and NR2B decreased, but the NR2C expression increased in PND14 group following MMC-treatment (p<0.01). In cerebral cortex, mRNA expression of NR2A decreased, with NR2C expression elevating in PND14 group following MMC-treatment (p<0.05). These observations suggest that the postnatal exposure to MeHg during PND7-20 could cause neurobehavioral deficits which extend to adulthood. Furthermore, the abnormal expression of NMDAR 2 subunits might associate with the impairment.
Farina M, etal., Toxicology. 2005 Apr 1;209(1):29-37. Epub 2005 Jan 8.
This study was aimed to investigate the effects of the long-term oral exposure to aluminum sulfate on hematological parameters in rats. For this purpose, 24 adult female Wistar rats were divided in three groups with 8 animals each (control, citrate, and citrate plus aluminum groups). Rats from contr
ol and citrate groups had free access to tap water and to a sodium citrate solution (35 mM), respectively. Rats from citrate plus aluminum group received, as unique source of liquid, an aluminum sulfate solution (30 mM) diluted in the above-mentioned sodium citrate solution, ad libitum. After the treatment period (18 months), aluminum-exposed rats showed a significant decrease in the number of red blood cells, blood hemoglobin concentration and hematocrit when compared to rats from the control group. Serum iron levels were also significantly lower in citrate plus aluminum group, whereas total iron binding capacity did not change after citrate plus aluminum exposure. Erythrocyte thiobarbituric acid-reactive substances (TBARS) and nonprotein thiols (NPSH) levels, erythrocyte osmotic fragility and hepatic delta-aminolevulinic acid dehydratase (delta-ALA-D) activity did not change after treatment with citrate plus aluminum. Conversely, aluminum exposure increased delta-ALA-D activity in bone marrow. The present results indicate that long-term oral exposure to low doses of aluminum sulfate promotes alterations on erythrocyte parameters in rats, probably as a consequence of alterations in the iron status. In addition, although the details of the underlying mechanism remain unclear, our study reports, for the first time, a stimulatory effect of chronic aluminum exposure on bone marrow delta-ALA-D activity.
Chopra M, etal., Toxicol Sci. 2009 Sep;111(1):49-63. Epub 2009 Jun 10.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic pollutant ubiquitously present in the environment. Most of the toxic effects of TCDD are believed to be mediated by high-affinity binding to the aryl hydrocarbon r
eceptor (AhR) and subsequent effects on gene transcription. TCDD causes cancer in multiple tissues in different animal species and is classified as a class 1 human carcinogen. In initiation-promotion studies TCDD was shown to be a potent liver tumor promotor. Among other theories it has been hypothesized that TCDD acts as a tumor promotor by preventing initiated cells from undergoing apoptosis. We examined the effects of TCDD on ultraviolet C (UV-C) light-induced apoptosis in primary rat hepatocytes and Huh-7 human hepatoma cells. TCDD inhibits UV-C light-induced apoptosis in both cell types. This effect is seen with chromatin condensation and fragmentation and appears to be mediated by the AhR in rat hepatocytes. Apoptosis induced by UV-C light in these cells is caspase-dependent and is accompanied by alterations in apoptosis-related gene expression such as up-regulation of proapoptotic bcl-2 family genes like bak and bax, and a marked down regulation of the expression of the antiapoptotic bcl-2. TCDD treatment of irradiated hepatocytes induces the expression of some apoptosis-related genes (birc3, dad1, pycard, tnf). Upstream apoptotic events, namely caspase activation and caspase substrate cleavage are not inhibited by TCDD treatment. We hypothesize that TCDD inhibits late-stage apoptotic events that lead to internucleosomal DNA fragmentation, maintaining chromosomal integrity probably in order to sustain metabolic capacity and hepatic elimination of substrates despite of an initiation of apoptosis.
Samimi A and Last JA, Toxicol Appl Pharmacol. 2001 Nov 1;176(3):181-6.
Direct inhibition of lysyl hydroxylase by malathion and malaoxon was observed in an in vitro enzyme assay with recombinant lysyl hydroxylase expressed via a baculoviral system. The IC50 values for malathion and malaoxon were estimated to be approximately 60 and 45 mM, respectively. Additional kineti
c studies showed this inhibition to be competitive or partially competitive with respect to the synthetic (collagen) peptide, partially uncompetitive with respect to Fe(2+), and partially noncompetitive with respect to ascorbic acid. The calculated values for the K(i) were consistent with the IC50 values. Allosteric effects were not found for any of the cofactors tested, the peptide substrate, or the inhibitors. Interactions were found to be unimolecular for lysyl hydroxylase and its substrate and cofactors as well as for the inhibitors malathion and malaoxon. A computer search of a protein structure database showed an unexpected region of partial homology between the active site sequence of acetylcholinesterase and a segment of lysyl hydroxylase, suggesting a possible molecular basis for these observations. These results suggest the possibility of a novel and hitherto unexpected class of inhibitors of lysyl hydroxylase, based on the organophosphate structure, that might be of value for testing as antifibrotic drugs.
Xia W, etal., Toxicology. 2011 Mar 28;282(1-2):23-9. Epub 2011 Jan 18.
Xenobiotics exposure in early life may have adverse effects on animals' development through mitochondrial injury or dysfunction. The current study demonstrated the possibility of cardiac mitochondrial injury in prenatal PFOS-exposed weaned rat heart. Pregnant Sprague-Dawley (SD) rats were exposed to
perfluorooctane sulfonate (PFOS) at doses of 0.1, 0.6 and 2.0 mg/kg/d and 0.05% Tween 80 as control by gavage from gestation days 2-21. The dams were allowed to give nature delivery and then heart tissues from weaned (postnatal day 21) offspring rats were analyzed for mitochondrial injury through ultrastructure observation by electron microscope, global gene expression profile by microarray, as well as related mRNA and proteins expression levels by quantitative PCR and western blot. Ultrastructural analysis revealed significant vacuolization and inner membrane injury occurred at the mitochondria of heart tissues from 2.0 mg/kg/d dosage group. Meanwhile, the global gene expression profile showed significant difference in level of some mRNA expression associated with mitochondrial function at 2.0 mg/kg/d dosage group, compared to the control. Furthermore, dose-response trends for the expression of selected genes were analyzed by quantitative PCR and western blot analysis. The selected genes were mainly focused on those encoding for proteins involved in energy production, control of ion levels, and maintenance of heart function. The down-regulation of mitochondrial ATP synthetase (ATP5E, ATP5I and ATP5O) implicated a decrease in energy supply. This was accompanied by down-regulation of gene transcripts involved in energy consumption such as ion transporting ATPase (ATP1A3 and ATP2B2) and inner membrane protein synthesis (SLC25A3, SLC25A4, SLC25A10, SLC25A29). The up-regulation of gene transcripts encoding for uncoupling proteins (UCP1 and UCP3), epidermal growth factor receptor (EGFR) and connective tissue growth factor (CTGF), was probably a protective process to maintain heart function. The results indicate PFOS prenatal exposure can induce cardiac mitochondrial injury and gene transcript change, which may be a significant mechanism of the developmental toxicity of PFOS to rat.
Kanda H, etal., Arch Toxicol. 2008 Nov;82(11):803-8. Epub 2008 May 17.
The toxicity of methylmercury (MeHg) is, in part, thought to be due to its interaction with thiol groups in a variety of enzymes, but the molecular targets of MeHg are poorly understood. Arginase I, an abundant manganese (Mn)-binding protein in the liver, requir
es Mn as an essential element to exhibit maximal enzyme activity. In the present study, we examined the effect of MeHg on hepatic arginase I in vivo and in vitro. Subcutaneous administration of MeHg (10 mg/kg) for 8 days to rats resulted in marked suppression of arginase I activity. With purified arginase I, we found that interaction of MeHg with arginase I caused the aggregation of arginase I as evaluated by centrifugation and subsequent precipitation, and then the reduction of catalytic activity. Experiments with organomercury column confirmed that arginase I has reactive thiols that are covalently bound to organomercury. While MeHg inhibited arginase I activity, Mn ions were released from this enzyme. These results suggest that MeHg-mediated suppression of hepatic arginase I activity in vivo is, at least in part, attributable to covalent modification of MeHg or substantial leakage of Mn ions from the active site.
Exposure to the environmental toxicant arsenic is reported to produce a variety of effects including disruption of signal transduction pathways, cell proliferation, and apoptosis. This suggests that arsenite may not have specific targets but rather extremely bro
ad effects. The present study was designed to test the hypothesis that arsenite alters signaling involved in focal adhesion structure and function in cultured myoblasts. H9C2 cells were exposed to 1, 2.5, 5, or 10 microM sodium arsenite for 48 h. MTT metabolism and staining by neutral red, trypan blue, and propidium iodide showed that sodium arsenite treatments of 5 microM or less were not overtly cytotoxic. At these doses, sodium arsenite did not affect the amount of polymerized actin in cells, rate of protein synthesis, or amounts of vinculin, talin, paxillin, and focal adhesion kinase (FAK) in cells. However, sodium arsenite-treated cells contained fewer focal adhesions with an altered distribution pattern. Sodium arsenite exposure caused a dose-dependent reduction in cell migration and cell attachment rates. The average area of substrate covered by a cell was also reduced, although the average volume of cells was not significantly affected. Sodium arsenite exposure resulted in reduced tyrosine phosphorylation of FAK, its substrate paxillin and the FAK auto- phosphorylation site, Tyr397. Our results indicate that sodium arsenite can alter focal adhesion structure and function, thus affecting cell attachment and migration and possibly other aspects of focal adhesion function such as integrin signaling. These diverse consequences may be mediated by a relatively specific inhibition of FAK tyrosine phosphorylation, modifying scaffolding proteins.
Abou-Donia MB, etal., J Toxicol Environ Health A. 2008;71(21):1415-29.
Splenda is comprised of the high-potency artificial sweetener sucralose (1.1%) and the fillers maltodextrin and glucose. Splenda was administered by oral gavage at 100, 300, 500, or 1000 mg/kg to male Sprague-Dawley rats for 12-wk, during which fecal samples were collected weekly for bacterial analy
sis and measurement of fecal pH. After 12-wk, half of the animals from each treatment group were sacrificed to determine the intestinal expression of the membrane efflux transporter P-glycoprotein (P-gp) and the cytochrome P-450 (CYP) metabolism system by Western blot. The remaining animals were allowed to recover for an additional 12-wk, and further assessments of fecal microflora, fecal pH, and expression of P-gp and CYP were determined. At the end of the 12-wk treatment period, the numbers of total anaerobes, bifidobacteria, lactobacilli, Bacteroides, clostridia, and total aerobic bacteria were significantly decreased; however, there was no significant treatment effect on enterobacteria. Splenda also increased fecal pH and enhanced the expression of P-gp by 2.43-fold, CYP3A4 by 2.51-fold, and CYP2D1 by 3.49-fold. Following the 12-wk recovery period, only the total anaerobes and bifidobacteria remained significantly depressed, whereas pH values, P-gp, and CYP3A4 and CYP2D1 remained elevated. These changes occurred at Splenda dosages that contained sucralose at 1.1-11 mg/kg (the US FDA Acceptable Daily Intake for sucralose is 5 mg/kg). Evidence indicates that a 12-wk administration of Splenda exerted numerous adverse effects, including (1) reduction in beneficial fecal microflora, (2) increased fecal pH, and (3) enhanced expression levels of P-gp, CYP3A4, and CYP2D1, which are known to limit the bioavailability of orally administered drugs.
Chen MJ and Lai YL, Toxicol Appl Pharmacol. 2003 Mar 15;187(3):178-85.
We explored the dysfunction of tachykinins on monocrotaline (MCT)-induced pulmonary hypertension by using double-stranded preprotachykinin (ds PPT) RNA and neurokinin receptor (NK) antagonists. Here, we showed the possibility to attenuate the PPT gene expression by ds RNA, RNA interference (RNAi), i
n fully developed tissue of rats. We designed four groups (control, MCT, RNAi + MCT, and solvent + MCT) of experiments in series 1 and seven groups (control, MCT, MCT + CP-96345-3.4, MCT + CP-96345-10, MCT + CP-96344-10, MCT + SR-48968, and MCT + SR-48965) of experiments in series 2. Rats in the control groups received saline injection. MCT-treated rats received a single MCT injection (60 mg/kg sc). One day prior to MCT, bilateral nodose ganglia were microinjected with ds PPT RNA in rats of the RNAi + MCT group or with solvent in the solvent + MCT group. Beginning from 1 day post-MCT, MCT-treated rats received a daily injection of the NK(1) receptor antagonist, CP-96345 (3.4 or 10 mg/kg ip) or its inactive enantiomer CP-96344 (10 mg/kg ip). The NK(2) receptor antagonist SR-48968 (3 mg/kg ip) or its inactive enantiomer SR-48965 (3 mg/kg ip) was injected to MCT-treated rats every other day starting 1 day post-MCT. Functional study was carried out 2 weeks (series 1) or 3 weeks (series 2) after MCT. MCT induced right ventricular hypertrophy, as well as increases in pulmonary arterial pressure, PPT mRNA (nodose ganglia and lung tissue), and lung tissue substance P level. All of the above MCT-induced alterations were attenuated by either RNAi or NK receptor antagonists. We conclude that tachykinins play an important role in MCT-induced pulmonary hypertension.
We demonstrated that tienilic acid, a diuretic drug withdrawn from the market because of hepatic failure, enhanced hyperbilirubinemia in Eisai hyperbilirubinuria rats (EHBR) with a defect of canalicular multidrug resistance-associated protein 2 (Mrp2). In contrast, no remarkable changes were noted i
n Sprague-Dawley (SD) rats, the parent strain for EHBR. To investigate a mechanism underlying this enhanced hyperbilirubinemia, we focused on comprehensive effects of tienilic acid on clinicopathological aspects and expression of hepatic transporters. Other than eventual hyperbilirubinemia with slightly increased biliary bilirubin, a single oral treatment of EHBR with tienilic acid at 300 mg/kg caused no changes in serum alanine aminotransferase and alkaline phosphatase, bile flow rate and biliary bile acid secretion, or hepatic morphology. In analyses of mRNA expression of the hepatic transporters, elevated Mrp3 expression in EHBR correlated with an increase in serum total bilirubin, suggesting increased bilirubin transport from the liver into the peripheral blood flow. Hepatic heme oxygenase-1 (Ho-1) mRNA, a stress-induced isoform of the rate-limiting enzyme in the catabolism of heme to bilirubin, was markedly upregulated in EHBR at the same dose at which increased serum bilirubin was seen. A time-course study revealed that marked induction of Ho-1 occurred earlier than that of Mrp3, followed by an increase in serum bilirubin. These results suggest that hepatic Mrp3 and Ho-1 may contribute to tienilic acid-enhanced hyperbilirubinemia in EHBR by inducing increased bilirubin transport from the liver into the blood stream, preceded by potentiation of bilirubin formation in the liver.
Lin HM, etal., Toxicol Lett. 2009 Jan 30;184(2):90-6. Epub 2008 Nov 7.
Prenatal toluene exposure may lead to significant developmental neurotoxicity known as fetal solvent syndrome. Emerging evidence suggests that toluene embryopathy may arise from an elusive deviation of the neurogenesis process. One key event during neural develo
pment is synaptogenesis, which is essential for the progression of neuronal differentiation and the establishment of neuronal network. We therefore aim to test the hypothesis that toluene may interfere with synaptogenesis by applying toluene to cultured hippocampal neurons dissected from embryonic rat brains. In the presence of toluene, hippocampal neurons displayed a significant loss of the immunostaining of synapsin and densin-180 punctas. Notably, a dramatic reduction was also discerned for the colocalization of the two synaptic markers. Moreover, Western blotting analyses revealed that toluene exposure resulted in considerable down-regulation of the expression of synapse-specific proteins. None of the preceding observations can be attributed to toluene-induced cell death effects, since toluene treatments failed to affect the viability of hippocampal neurons. Overall, our data are consistent with the idea that toluene may alter the expression and localization of essential synaptic proteins, thereby leading to a disruption of synapse formation and maintenance.
Several protein phosphatase-inhibitory toxins (okadaic acid, microcystin, calyculin A, cantharidin, tautomycin) administered to isolated rat hepatocytes were found to induce phosphorylation in the tail region of S6 kinase (S6K; p70S6K1) as detected with a phosph
ospecific antibody against doubly phosphorylated Thr-421/Ser424. 5-Aminoimidazole-4-carboxamide riboside (AICAR), an adenosine analogue that elicits activation of the hepatocellular AMP-activated protein kinase (AMPK), similarly stimulated S6K tail phosphorylation. The flavonoid naringin prevented the effects of AICAR, okadaic acid, and microcystin on AMPK activation as well as on S6K tail phosphorylation, suggesting AMPK as a mediator of the latter. The effects of AICAR and the toxins were rapamycin resistant; in contrast, amino acids induced an S6K tail phosphorylation that was rapamycin sensitive, suggesting mediation by the protein kinase mammalian target of rapamycin (mTOR). Amino acids activated S6K by phosphorylation at Thr-389, but the toxins did not, and AICAR in fact suppressed the activating phosphorylation induced by the amino acids. The possibility thus must be considered that the phosphorylated S6K tail may transmit a toxin-induced signal independently of S6K enzymatic activity. Despite their inability to activate S6K, the toxins (but not AICAR) stimulated phosphorylation of the ribosomal protein S6, presumably by activating some other S6-phosphorylating protein kinase.
Singh AK Comp Biochem Physiol C Toxicol Pharmacol 2002 May;132(1):9-24.
Acute effects of Ace, Meth and IL-1 on AChE activity, ACh and CRF mRNA levels in, and CRF-release from the hypothalamus were studied in vitro. The hypothalamus samples were dissected from the rat brain and were incubated in vitro with IL-1, Ace or Meth in the presence or absence of Dex, Atrop, PTL,
PROP and GABA. Ace and Meth, but not IL-1, inhibited AChE activity, while all three compounds; (1) increased ACh and CRF mRNA levels in and CRF release from; (2) activated the CRE promoter region of CRF-gene in: and (3) increased cFos binding to the AP-1 region of the CRF-gene in the hypothalamus. Dex suppressed the effects of IL-1, possibly by inducing the nGRE regulatory sites of the CRF-gene. Dex, however, did not modulate the effects of Ace and Meth on the hypothalamus, which may be attributed to the failure of Dex to modulate the CRF-gene's nGRE regulatory sites. Atrop caused 80-90% inhibition of the effects of IL-1, but caused only 50-65% inhibition of the effects of Ace or Meth on CRF mRNA levels in and CRF release from the hypothalamus. PTL did not affect, while PROP slightly attenuated the effects of IL-1 and the insecticides on the hypothalamus. GABA attenuated the effects of the insecticides but not the effects of IL-1 on the hypothalamus. This suggests that the IL-1-induced augmentation of CRF synthesis in and release from the hypothalamus is mediated through a cholinergic pathway, while the insecticide-induced augmentation of CRF synthesis in and release from the hypothalamus is mediated through the cholinergic and GABAergic pathways. The insecticides, but not IL-1, disrupt feedback regulation of CRF synthesis in and release from the hypothalamus.
Betel-quid use is associated with the risk of liver cirrhosis and hepatocellular carcinoma and arecoline, the major alkaloid of betel-quid, is hepatotoxic in mice. Therefore, we studied the cytotoxic and genotox
t-weight:700;'>toxic effects of arecoline in normal rat hepatocytes (Clone-9 cells). Arecoline dose-dependently (0.1-1mM) decreased cell cycle-dependent proliferation while inducing DNA damage at 24h. Moreover, arecoline (1mM)-induced apoptosis and necrosis at 24h. Arecoline dose-dependently (0.1-0.5mM) increased transforming growth factor-beta (TGF-beta) mRNA, gene transcription and bioactivity and neutralizing TGF-beta antibody attenuated arecoline (0.5mM)-inhibited cell proliferation at 24h. Arecoline (0.5mM) also increased p21(WAF1) protein expression and p21(WAF1) gene transcription. Moreover, arecoline (0.5mM) time-dependently (8-24h) increased p53 serine 15 phosphorylation. Pifithrin-alpha (p53 inhibitor) and the loss of the two p53-binding elements in the p21(WAF1) gene promoter attenuated arecoline-induced p21(WAF1) gene transcription at 24h. Pifithrin-alpha also attenuated arecoline (0.5mM)-inhibited cell proliferation at 24h. We concluded that arecoline induces cytotoxicity, DNA damage, G(0)/G(1) cell cycle arrest, TGF-beta1, p21(WAF1) and activates p53 in Clone-9 cells. Moreover, arecoline-induced p21(WAF1) is dependent on p53 while arecoline-inhibited growth is dependent on both TGF-beta and p53.
Ryu JY, etal., J Toxicol Environ Health A. 2007 Aug;70(15-16):1296-303.
Di(2-ethylhexyl) phthalate (DEHP) is a well-known hepatic and reproductive toxicant whose toxicity may be mediated by peroxisome proliferators-activated receptor (PPAR). This study examined the effects of DEHP on the express
ion of PPAR-regulated genes involved in testicular cells apoptosis. Sprague-Dawley male rats were treated orally with 250, 500, or 750 mg/kg/d DEHP for 28 d, while control rats were given corn oil. The levels of cell cycle regulators (pRb, cyclins, CDKs, and p21) and apoptosis-related proteins were analyzed by Western blot analysis. The role of PPAR-gamma (PPAR-gamma), class B scavenger receptor type 1 (SR-B1), and ERK1/2 was further studied to examine the signaling pathway for DEHP-induced apoptosis. Results showed that the levels of pRB, cyclin D, CDK2, cyclin E, and CDK4 were significantly lower in rats given 500 and 750 mg/kg/d DEHP, while levels of p21 were significantly higher in rat testes. Dose-dependent increases in PPAR-gamma and RXRalpha proteins were observed in testes after DEHP exposure, while there was a significant decrease in RXRgamma protein levels. In addition to PPAR-gamma, DEHP also significantly increased SR-B1 mRNA and phosphorylated ERK1/2 protein levels. Furthermore, DEHP treatment induced pro-caspase-3 and cleavage of its substrate protein, poly(ADP-ribose) polymerase (PARP), in a dose-dependent manner. Data suggest that DEHP exposure may induce the expression of apoptosis-related genes in testes through induction of PPAR-gamma and activation of the ERK1/2 pathway.
The potential for development of Parkinson's disease (PD)-like neurological dysfunction following occupational exposure to aerosolized welding fumes (WF) is an area of emerging concern. Welding consumables contain a complex mixture of metals, including iron (Fe) and manganese (Mn), which are known t
o be neurotoxic. To determine whether WF exposure poses a neurological risk particularly to the dopaminergic system, we treated Sprague-Dawley rats with WF particulates generated from two different welding processes, gas metal arc-mild steel (GMA-MS; low Mn, less water-soluble) and manual metal arc-hard surfacing (MMA-HS; high Mn, more water-soluble) welding. Following repeated intratracheal instillations (0.5 mg/rat, 1/week x 7 weeks) of GMA-MS or MMA-HS, elemental analysis and various molecular indices of neurotoxicity were measured at 1, 4, 35 or 105 days after last exposure. MMA-HS exposure, in particular, led to increased deposition of Mn in striatum and midbrain. Both fumes also caused loss of tyrosine hydroxylase (TH) protein in the striatum (~20%) and midbrain (~30%) by 1 day post-exposure. While the loss of TH following GMA-MS was transient, a sustained loss (34%) was observed in the midbrain 105 days after cessation of MMA-HS exposure. In addition, both fumes caused persistent down-regulation of dopamine D2 receptor (Drd2; 30-40%) and vesicular monoamine transporter 2 (Vmat2; 30-55%) mRNAs in the midbrain. WF exposure also modulated factors associated with synaptic transmission, oxidative stress, neuroinflammation and gliosis. Collectively, our findings demonstrate that repeated exposure to Mn-containing WF can cause persistent molecular alterations in dopaminergic targets. Whether such perturbations will lead to PD-like neuropathological manifestations remains to be elucidated.
Pecoraro M, etal., Cardiovasc Toxicol. 2015 Oct;15(4):366-76. doi: 10.1007/s12012-014-9305-8.
Doxorubicin is the highly effective anthracycline, but its clinical use is limited by cardiotoxicity and consequent dysfunction. It has been proposed that the etiology of this is related to mitochondrial dysfunction. Connexin 43 (Cx43), the principal protein bui
lding block of cardiac gap junctions and hemichannels, plays an important role in cardioprotection. Recent reports confirmed the presence of Cx43 in the mitochondria as well. In this study, the role of mitochondrial Cx43 was evaluated 3 or 6 h after Doxorubicin administration to the rat heart cell line H9c2. Pharmacological inhibition of Hsp90 demonstrated that the mitochondrial Cx43 conferred cardioprotection by reducing cytosolic and mitochondrial reactive oxygen species production, mitochondrial calcium overload and mitochondrial membrane depolarization and cytochrome c release. In conclusion, our study demonstrates that Cx43 plays an important role in the protection of cardiac cells from Doxorubicin-induced toxicity.
Dirami G and Cooke BA, Toxicol Appl Pharmacol. 1998 Jun;150(2):393-401.
Dopamine agonists are known to increase the incidence of Leydig cell hyperplasia/adenomas when administered to rats over periods of 1-2 years. We have examined the early changes in factors affecting luteinizing hormone (LH)-controlled signal transduction pathways and steroidogenesis in Leydig cells
in vitro after chronic oral administration of one of these dopamine agonists, Mesulergine (CU327-085) (N-(1-6,dimethylergolin-8a-yl)-N',N'-dimethylsulphamide hydrochloride) to Sprague-Dawley (SD) rats. Eight-week-old rats were given this dopamine agonist (2 mg/kg body wt/day) in food for 1, 5, or 12 weeks. The Leydig cells from control and treated rats were purified by elutriation and density gradient centrifugation. The dopamine agonist treatment was found to decrease the specific binding of 125I-human chorionic gonadotrophin (hCG) binding to the Leydig cells: a decrease was detected as early as 1 week after treatment and was more pronounced after 5 and 12 weeks. This was found to be due to a decrease in the LH/hCG receptor numbers and not to a decrease in LH/hCG-receptor binding affinity. Both basal and LH-stimulated cAMP and testosterone production were also decreased; cAMP production was decreased by approximately 50% by all concentrations of LH added whereas testosterone production was only decreased with submaximum stimulating concentrations of LH. The formation of testosterone in response to dibutyryl cAMP was also decreased by approximately 50%, indicating additional lesions in the signal transduction pathway. The addition of the cell permeant 22R-hydroxycholesterol (22R) demonstrated that testosterone but not pregnenolone production was decreased by treatment with the dopamine agonist, thus indicating that the 17 alpha-hydroxylase/C17-20 lyase may have been inhibited. Supporting evidence for this was found because the dopamine agonist also increased aromatase activity in the Leydig cells and thus the potential to produce estrogens; previous studies have shown that estradiol is an inhibitor of the 17-20 lyase enzyme. The addition of the dopamine agonist directly to the Leydig cells did not inhibit cAMP production or testosterone production except at high concentrations. It is concluded that treatment of rats with the dopamine agonist indirectly (i.e., via the pituitary) affects Leydig cell function resulting in a rapid decrease in LH receptors and cAMP and testosterone production. Aromatase activity is increased and thus the capacity to produce estrogens. These early changes in the signal transduction pathways and steroidogenesis may be involved in the Leydig cell hyperplasia/adenoma formation that subsequently occurs.
Plewka A, etal., Arch Toxicol. 2004 Apr;78(4):194-200. Epub 2003 Nov 1.
The aim of this study was to evaluate the effects of chronic exposure to cadmium (Cd) on the renal cytochrome P450-dependent monooxygenase system. For this purpose, male Wistar rats were intoxicated with Cd administered in drinking water at a concentration of 5
or 50 mg Cd/l for 6, 12 and 24 weeks. Concentrations of cytochrome P450 and cytochrome b(5) as well as activities of NADPH-cytochrome P450 reductase and NADH-cytochrome b(5) reductase were determined in the kidney microsomal fraction. Protein content of CYP1A1, CYP2E1 and CYP3A1 cytochrome P450 isoforms was evaluated as well. In the rats exposed to 5 mg Cd/l, the concentration of cytochrome P450 decreased (by 41%) after 24 weeks of the experiment. The activity of NADPH-cytochrome P450 reductase decreased (by 24%) after 6 and 12 weeks, whereas after 24 weeks it remained unchanged, compared with the control group. Moreover, a decrease in the concentration of cytochrome b(5) (by 25, 15 and 26% at 6, 12 and 24 weeks, respectively) and the activity of its NADH reductase (by 26 and 31% at 6 and 24 weeks, respectively) was noted in these animals. At the exposure to 50 mg Cd/l, the concentrations of cytochrome P450 and cytochrome b(5) and the activities of their corresponding reductases were decreased at each time-point. Western blot analysis revealed that all isoforms of cytochrome P450 studied were affected by Cd and the effect was dependent on the level and the duration of exposure. The results of this study indicate that chronic exposure to Cd in a dose- and time-dependent manner affects the kidney cytochrome P450-dependent monooxygenase system by decreasing the concentrations of cytochrome P450 and cytochrome b(5) and inhibiting the activities of their corresponding reductases. The effect of Cd on the cytochrome P450 content is associated with its ability to stimulate or inhibit of various P450 isoforms. A very important finding of this study is that Cd affects the kidney cytochrome P450-dependent monooxygenase system at relatively low exposure and low kidney Cd accumulation (2.40+/-0.15 microg/g). As the experimental model used reflects human exposure to Cd, we conclude that Cd can affect the kidney cytochrome P450-dependent monooxygenase system in environmentally exposed humans. Previously we have reported disorders in the system in the liver of rats at the same levels of exposure as in this study. Thus, we hypothesize that the metabolism and detoxification of many substances, including xenobiotics, may be seriously affected in Cd-exposed subjects.
Rached E, etal., Toxicol Sci. 2008 Jun;103(2):371-81. Epub 2008 Feb 27.
The kidney is one of the main targets of xenobiotic-induced toxicity, but early detection of renal damage is difficult. Recently, several novel biomarkers of nephrotoxicity have been identified by transcription profiling, in
cluding kidney injury molecule-1 (Kim-1), lipocalin-2, tissue inhibitor of metalloproteinases-1 (Timp-1), clusterin, osteopontin (OPN), and vimentin, and suggested as sensitive endpoints for acute kidney injury in vivo. However, it is not known if these cellular marker molecules may also be useful to predict chronic nephrotoxicity or to detect nephrotoxic effects in vitro. In this study, a panel of new biomarkers of renal toxicity was assessed via quantitative real-time PCR, immunohistochemistry, and immunoblotting in rats treated with the nephrotoxin ochratoxin A (OTA) for up to 90 days and in rat proximal tubule cells (NRK-52E) treated with OTA in vitro. Repeated administration of OTA to male F344/N rats for 14, 28, or 90 days resulted in a dose- and time-dependent increase in the expression of Kim-1, Timp-1, lipocalin-2, OPN, clusterin, and vimentin. Changes in gene expression were found to correlate with the progressive histopathological alterations and preceded effects on traditional clinical parameters indicative of impaired kidney function. Induction of Kim-1 messenger RNA expression was the earliest and most prominent response observed, supporting the use of this marker as sensitive indicator of chronic kidney injury. In contrast, no significant increase in the expression of putative marker genes and proteins were evident in NRK-52E cells after exposure to OTA for up to 48 h, suggesting that they may not be suitable endpoints for sensitive detection of nephrotoxic effects in vitro.
Fescue toxicosis is caused by consumption of toxins produced by an endophytic fungus, Neotyphodium coenophialum, in tall fescue [Lolium arundinaceum (Schreb.) Darbysh]. Microarray analysis was used to identify shifts in gene
tic expression associated with the affected physiological processes to identify potential targets for future pharmacological/toxicological intervention. Male rats (n = 24) were implanted with temperature transmitters, which measure core temperature every 5 min. After an 8-d recovery, the rats were fed an endophyte-free diet for 5 d. During the following 5-d treatment period, rats were fed either an endophyte-free or an endophyte-infected (91.5 microg of ergovaline.kg of BW(-1).d(-1)) diet. At the end of treatment, rats were euthanized and a sample of the liver was obtained. Feed conversion efficiency was calculated for both treatment groups. Serum prolactin concentrations were measured using ELISA. Liver tissue RNA was reverse transcribed and hybridized to an oligonucleotide microarray chip. Microarray data were analyzed using a 2-step ANOVA model and validated by quantitative real-time PCR. Significant reductions in mean core temperature, feed intake, feed conversion efficiency, BW, liver weight per unit of BW, and serum prolactin concentrations were observed in endophyte-infected rats. There was downregulation (P < 0.05) of various genes associated with energy metabolism, growth and development, and antioxidant protection, as well as an upregulation of genes associated with gluconeogenesis, detoxification, and biotransformation. This study demonstrated that even short-term exposure of rats to tall fescue endophytic toxins under thermoneutral conditions can result in physiological responses associated with altered gene expression within the liver.
The implementation of a rat hepatocyte model system and differential display-polymerase chain reaction resulted in the isolation of ZFP-37 as a peroxisome proliferator-responsive gene. In addition to being responsive to peroxisome proliferators, rat ZFP-37 (rZFP-37) mRNA accumulates rapidly after tr
eating cells with several other hepatic tumor promoters, serum, and cycloheximide, indicating that this gene belongs to the immediate-early growth responsive gene family. Although rZFP-37 and mouse ZFP-37 (mZFP-37) are both members of the Kruppel-associated box and C2H2 zinc finger superfamily of proteins, there are several features that distinguish the two proteins. The primary protein sequences of rat and mouse ZFP-37 are highly conserved, especially within the region encoding the 12 C2H2 zinc finger motifs; however, a region believed to be involved in DNA binding in mZFP-37 is divergent in rZFP-37. Mouse ZFP-37 mRNA is expressed almost exclusively in testes and brain, whereas rZFP-37 mRNA is expressed in testes, brain, kidney, spleen, thymus, lung, and at low levels in liver. A major difference between regulation of ZFP-37 in the two species exists as rZFP-37 is induced, while mZFP-37 is repressed, in liver by the administration of the potent peroxisome proliferator Wy 14,643. Despite the fact that mZFP-37 is believed to be important in cell growth and differentiation in testes and brain, the pronounced differences in regulation of this gene in two closely related species preclude an extrapolation to rZFP-37's biological role. Nonetheless, the effects of tumor promoters and mitogens on its expression and the inclusion of rZFP-37 into the immediate-early growth gene families raise the possibility that this gene plays a role in hepatocyte proliferation and/or differentiation.
Dagues N, etal., Toxicol Sci. 2007 Nov;100(1):238-47. Epub 2007 Jun 14.
Phosphodiesterase (PDE) 4 inhibitors are a class of drugs that can provide novel therapies for asthma and chronic obstructive pulmonary disease. Their development is frequently hampered by the induction of vascular toxicity in rat mesenteric tissue during precli
nical studies. Whereas these vascular lesions in rats have been well characterized histologically, little is known about their pathogenesis and in turn, sensitive and specific biomarkers for preclinical and clinical monitoring do not exist. In order to investigate the early molecular mechanisms underlying vascular injury, time-course studies were performed by treating rats for 2-24 h with high doses of the PDE4 inhibitor CI-1044. Transcriptomics analyses in mesenteric tissue were performed using oligonucleotide microarray and real-time RT-PCR technologies and compared to histopathological observations. In addition, protein measurements were performed in serum samples to identify soluble biomarkers of vascular injury. Our results indicate that molecular alterations preceded the histological observations of inflammatory and necrotic lesions in mesenteric arteries. Some gene expression changes suggest that the development of the lesions could follow a primary modulation of the vascular tone in response to the pharmacological effect of the compound. Activation of genes coding for pro- and antioxidant enzymes, cytokines, adhesion molecules, and tissue inhibitor of metalloproteinase 1 (TIMP-1) indicates that biomechanical stimuli may contribute to vascular oxidant stress, inflammation, and tissue remodeling. TIMP-1 appeared to be an early and sensitive predictive biomarker of the inflammatory and the tissue remodeling components of PDE4 inhibitor-induced vascular injury.
Manganese (Mn) neurotoxicity in adults can result in psychological and neurological disturbances similar to Parkinson's disease, including extrapyramidal motor system defects and altered behaviors. Iron (Fe) deficiency is one of the most prevalent nutritional di
sorders in the world, affecting approximately 2 billion people, especially pregnant and lactating women, infants, toddlers, and adolescents. Fe deficiency can enhance brain Mn accumulation even in the absence of excess Mn in the environment or the diet. To assess the neurochemical interactions of dietary Fe deficiency and excess Mn during development, neonatal rats were exposed to either a control diet, a low-Fe diet (ID), or a low-Fe diet supplemented with Mn (IDMn) via maternal milk during the lactation period (postnatal days [PN] 4-21). In PN21 pups, both the ID and IDMn diets produced changes in blood parameters characteristic of Fe deficiency: decreased hemoglobin (Hb) and plasma Fe, increased plasma transferrin (Tf), and total iron binding capacity (TIBC). Treated ID and IDMn dams also had decreased Hb throughout lactation and ID dams had decreased plasma Fe and increased Tf and TIBC on PN21. Both ID and IDMn pups had decreased Fe and increased copper brain levels; in addition, IDMn pups also had increased brain levels of several other essential metals including Mn, chromium, zinc, cobalt, aluminum, molybdenum, and vanadium. Concurrent with altered concentrations of metals in the brain, transport proteins divalent metal transporter-1 and transferrin receptor were increased. No significant changes were determined for the neurotransmitters gamma aminobutyric acid and glutamate. The results of this study confirm that there is homeostatic relationship among several essential metals in the brain and not simply between Fe and Mn.
Yoo SH, etal., Toxicol Lett. 2011 Apr 10;202(1):23-9. Epub 2011 Jan 22.
Peroxisome proliferator-activated receptor-alpha (PPARalpha) has been implicated in a potent anti-inflammatory activity. However, no information is available on whether PPARalpha can affect signal transducers and activator of transcription proteins (STATs) in acute liver damage. Thus, this study was
aimed to investigate the in vivo role of PPARalpha in elevating STATs as well as oxidative/nitrosative stress in a model of lipopolysaccharide (LPS)-induced acute hepatic inflammatory injury. Using age-matched Ppara-null and wild-type (WT) mice, we demonstrate that the deletion of PPARalpha aggravates LPS-mediated liver injury through activating STAT1 and NF-kappaB-p65 accompanied by increased levels of pro-inflammatory cytokines. Furthermore, the activities of key anti-oxidant enzymes and mitochondrial complexes were significantly decreased while lipid peroxidation and protein nitration were elevated in LPS-exposed Ppara-null mice compared to WT. These results indicate that PPARalpha is important in preventing LPS-induced acute liver damage by regulating STAT1 inflammatory signaling pathways and oxidative/nitrosative stress.
The objective of this study was to first evaluate the developmental abnormalities and carry out the molecular analysis of external genitalia in newborn hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Timed-pregnant rats were given DBP by gastric intubation at dose o
f 750 mg/kg body weight (bw)/day from gestation day (GD) 14 to GD18 to establish a hypospadiac rat model. The incidence of hypospadias was 46.67% in male offsprings. On postnatal day (PND) 7, at the newborn stage, decreased body weight and anogenital distance (AGD)/body weight ratio were observed in newborn hypospadiac male rats. The general image and transverse serial histological analysis of genitalia of newborn hypospadiac male rats confirmed the malformation. Autopsy analysis revealed development of reproductive organs (testes, genital tubercle (GT)), hollow organs (stomach, bladder), and solid organs (brain, heart, liver, spleen, lung, kidney, pancreas) in newborn hypospadiac male rats affected by DBP. Moreover, significantly decreased gene expression of important signaling molecules necessary for GT formation including sonic hedgehog signaling molecules (Shh and Ptched 1), bone morphogenetic proteins signaling molecules (Bmp4 and Bmp7), fibroblast growth factor signaling molecules (Fgf8, Fgf10 and Fgfr2), and the transforming growth factor-beta superfamily signaling molecules (TGF-beta1 and TGF-beta receptor III) were observed, for the first time, in the GT of newborn hypospadias induced by DBP. These results showed that the reproductive system and development conditions of newborn hypospadiac rats were damaged by DBP. These disturbed signaling pathways which orchestrating genital development might play an important role in the toxic process of DBP induced hypospadias.
Chen T, etal., Toxicol Lett. 2011 Feb 25;201(1):34-41. Epub 2010 Dec 9.
Di-(2-ethylhexyl)-phthalate (DEHP) is the most widely used plasticizers in daily-life products. In this study we evaluated the influence of mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of DEHP, on the neurodevelopment in vitro. After neuronotypic PC12 cells were exposed to MEHP (0.25,
2.5, 25, and 250muM), the effects of which on cell proliferation and differentiation were investigated. In undifferentiated PC12 cells, MEHP inhibited cell proliferation in a dose-dependent manner. After 24h of MEHP treatment, there was a dose-dependent G2/M cell cycle arrest as well as a sharp drop of DNA synthesis. During the process of NGF-induced differentiation of the cell line, 4 days of MEHP exposure (2.5-250muM) increased membrane and cytoskeletal protein contents, enhanced NGF-induced neurite outgrowth, up-regulated the choline acetyl transferase (ChAT) mRNA and down-regulated tyrosine hydroxylase (TH) mRNA levels, which suggested the promoted differentiation towards the acetylcholine (ACh) phenotype at the expense of the dopamine (DA) phenotype. Take together, our results indicate that MEHP has a potential to disturb neurodevelopment by suppressing cell proliferation and promote cell differentiation in neurocytes.
Song Y, etal., Toxicology. 2008 Nov 20;253(1-3):53-61. Epub 2008 Sep 4.
p,p'-Dichlorodiphenoxydichloroethylene (p,p'-DDE), the major metabolite of dichlorodiphenoxytrichloroethane (DDT), is a known persistent organic pollutant and male reproductive toxicant. However, the mechanism underlying male reproductive tox
t:700;'>toxicity of p,p'-DDE remains limited. In the present study, Sertoli cells were used to investigate the molecular mechanism involved in p,p'-DDE's male reproductive toxicity. Results showed that p,p'-DDE exposure at over 30 microM showed induction of apoptotic cell death. p,p'-DDE could induce mitochondria-mediated apoptotic changes including elevation in reactive oxygen species (ROS) generation, decrease in mitochondrial membrane potential (DeltaPsi(m)), and release of cytochrome c into the cytosol, which could be blocked by antioxidant agent N-acetyl-l-cysteine (NAC). In addition, elevated ratios of Bax/Bcl-w and Bak/Bcl-w and cleavages of procaspase-3 and -9 were induced by p,p'-DDE treatment. All of the results suggested that ROS generation may play a critical role in the initiation of p,p'-DDE-induced apoptosis by mediation of the disruption of DeltaPsi(m), the release of cytochrome c into the cytosol and further the activation of caspase cascade.
Murine double minute 2 (Mdm2) negatively regulates p53 by mediating its ubiquitination and proteosomal degradation, and Mdm2 is recognized as a proto-oncogene. In the present study, hepatic gene expression patterns induced by phenobarbital (PB; 100 mg/kg) and pregnenolone 16alpha-carbonitrile (PCN,
100 mg/kg) were evaluated in male and female Sprague-Dawley rats using Affymetrix Rat Genome U34A gene arrays. In addition to changes in the hepatic expression of well-characterized drug-metabolizing enzymes, an increase in Mdm2 mRNA was observed with both compounds after single or repeat dosing (5 days). However, gene array analyses did not reveal changes in other p53-dependent genes, suggesting that induction of Mdm2 occurred in a p53-independent manner. Real-time polymerase chain reaction confirmed the microarray results, as PB increased Mdm2 mRNA approximately twofold after single or repeat doses in male and female rats. PCN treatment increased Mdm2 mRNA levels up to 5- and 12-fold in male and female rats, respectively, after 5 days of dosing. Hepatic Mdm2 protein levels were increased, and immunohistochemical evaluation of rat liver demonstrated nuclear localization of Mdm2, suggesting an interaction with p53. Consequently, p53 protein levels were also decreased by approximately 35 and 50% after 5 days of PB and PCN treatment, respectively. In direct contrast to rats, PB and PCN (100 mg/kg) did not induce Mdm2 mRNA in mouse liver after 5 days of dosing. Finally, although Mdm2 in mice and humans is reported to migrate electrophoretically as two proteins with molecular weights of 76 and 90 kDa, rat Mdm2 protein was detected primarily as a 120-kDa species. Follow-up experiments indicated that rat hepatic Mdm2 was subject to posttranslational modification with small ubiquitin-modifying (SUMO) proteins. Although the molecular mechanisms controlling Mdm2 induction by PB and PCN in rats have not yet been determined, these results suggest that early effects on cell cycle regulation, response to DNA damage or cell transformation may contribute to liver tumor development.
Franc MA, etal., Arch Toxicol. 2008 Nov;82(11):809-30. Epub 2008 May 9.
Dioxins exert their major toxicologic effects by binding to the aryl hydrocarbon receptor (AHR) and altering gene transcription. Numerous dioxin-responsive genes previously were identified both by conventional biochemical and molecular techniques and by recent m
RNA expression microarray studies. However, of the large set of dioxin-responsive genes the specific genes whose dysregulation leads to death remain unknown. To identify specific genes that may be involved in dioxin lethality we compared changes in liver mRNA levels following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in three strains/lines of dioxin-sensitive rats with changes in three dioxin-resistant rat strains/lines. The three dioxin-resistant strains/lines all harbor a large deletion in the transactivation domain of the aryl hydrocarbon receptor (AHR). Despite this deletion, many genes exhibited a "Type-I" response-that is, their responses were similar in dioxin-sensitive and dioxin-resistant rats. Several genes that previously were well established as being dioxin-responsive or under AHR regulation emerged as Type-I responses (e.g. CYP1A1, CYP1A2, CYP1B1 and Gsta3). In contrast, a relatively small number of genes exhibited a Type-II response-defined as a difference in responsiveness between dioxin-sensitive and dioxin-resistant rat strains. Type-II genes include: malic enzyme 1, ubiquitin C, cathepsin L, S-adenosylhomocysteine hydrolase and ferritin light chain 1. In silico searches revealed that AH response elements are conserved in the 5'-flanking regions of several genes that respond to TCDD in both the Type-I and Type-II categories. The vast majority of changes in mRNA levels in response to 100 microg/kg TCDD were strain-specific; over 75% of the dioxin-responsive clones were affected in only one of the six strains/lines. Selected genes were assessed by quantitative RT-PCR in dose-response and time-course experiments and responses of some genes were assessed in Ahr-null mice to determine if their response was AHR-dependent. Type-II genes may lie in pathways that are central to the difference in susceptibility to TCDD lethality in this animal model.
Peng FC, etal., J Toxicol Environ Health A. 2005 Nov 12;68(21):1871-88.
This study determined territrem metabolites after incubation of territrem A, B, or C with NADPH and liver microsomes from Wistar rat of both genders aged 2 to 76 wk. The liver microsomal cytochrome P-450 content, NADPH-cytochrome P-450 reductase activity, and CYP3A1 and CYP3A2 protein and mRNA level
s were also analyzed. Male rats had significantly higher liver microsomal cytochrome P-450 content and NADPH-cytochrome P-450 reductase activities than females at 14 to 26 wk. Microsomal cytochrome P-450 content was decreased in senescence in both genders compared with postpubertal and adulthood stages. The activity of 6beta-testosterone hydroxylase in male rats, which was significantly higher than those in females at all ages, decreased after 52 wk. After 26 wk, the levels of CYP3A1 protein markely declined in both genders, which resulted in a large gender difference (male greater than female). The protein levels and mRNA of CYP3A2 were constitutively expressed in 2- to 52-wk-old male rats, but they decreased after 76 wk, and decreased in females after 6 wk. The expression of CYP3A1 or CYP3A2 in males are generally higher than in females. The metabolites of territrems MA1, MAX, MA2, MB2, MB4, and MC were measured by high-performance chromatography (HPLC). Formation of MA1, MAX, and MA2 decreased after 52 wk in males, and MAX and MA2 were not formed after 6 wk in females. The amount of MB2 formed in females was less than in males, but the amount of MC (TRC metabolites) formed in females was higher than in males. The gender differences in metabolism of TRA were related to the protein and mRNA expression of CYP3A2. The protein levels and mRNA expression of CYP3A2 and efficiency of territrems metabolism were decreased after 76 wk. The results suggested that the effects of age and gender on territrem metabolism are due to differences in CYP3A1 and CYP3A2 expression in the liver microsomes.
Grinblat B, etal., J Environ Pathol Toxicol Oncol. 2006;25(1-2):145-58.
Protoporphyrin IX (PpIX) synthesis by malignant cells is successfully exploited for photodynamic therapy (PDT) following administration of 5-aminolevulinic acid (ALA) and light irradiation. The influence of two environmental heavy metal poisons, lead and gallium, on PpIX-synthesis and ALA-PDT was st
udied in two neu-ronal cell lines, SH-SY5Y neuroblastoma and PC12 pheochromocytoma. The heavy metal intoxication affected two of the heme-synthesis enzymes, ALA-dehydratase (ALAD) and porphobilinogen deaminase (PBGD). The present results show that lead poisoning significantly decreased the PBGD cellular level and inhibited its enzymatic activity, whereas the effects of gallium were less prominent. Although, the protein levels were reduced, the mRNA levels of PBGD remained unchanged during metal intoxication. These findings show additional inhibitory activity of lead on top of its classical effect on ALAD. Proteasome activity was enhanced during lead treatment, as measured by the AMC fluorigenic proteasome assay. The reduction in PBGD levels was not a consequence of PBGD mRNA reduced synthesis, which remained unchanged as shown by RT-PCR analysis. As a result of the lead poisoning, marked alterations in the cell cycle were observed, including a decreased G1 phase and an increased number of S phase cells. The efficacy of ALA-PDT was reduced in correlation with decreased activities of the enzymes during lead intoxication. We may conclude that lead poisoning adversely affects the outcome of ALA photodynamic therapy of cancer.
Sato T, etal., Toxicology. 2006 Oct 29;227(3):248-61. Epub 2006 Aug 14.
Stress, such as trauma and injury, is known to cause transcriptional changes in various tissues; however, there is little information on tissue-specific gene expression in response to stress. Here, we have examined duodenal gene expression in rats subjected to whole-body immobilization in order to e
lucidate the mechanism underlying the stress response in the duodenum--one of the tissues that is most sensitive to external stress. DNA microarray analysis revealed that the immobilization for 2 weeks caused great changes in gene expression in the rat duodenum: 165 genes exhibited more than a two-fold change in expression level (103 up-regulated; 62 down-regulated). In addition, functional classification of these genes showed that immobilization preferentially stimulated the expression of genes related to lipid metabolism, including genes encoding mitochondrial HMG-CoA synthase, a key enzyme in ketogenesis; solute carrier 27A2, a fatty acid transporter; and dienoyl CoA reductase, a key enzyme in beta-oxidation. To elucidate the factors mediating these immobilization-induced changes, we treated rats and small intestinal IEC-6 cells with dexamethasone and hydrogen peroxide. In both rats and IEC-6 cells, treatment with dexamethasone induced changes in gene expression that mimicked the immobilization-mediated increase in expression of the mitochondrial HMG-CoA synthase and dienoyl CoA reductase transcripts, suggesting that stress-induced synthesis of glucocorticoid hormones mediates, at least in part, the stress response in the duodenum. These results suggest that immobilization may alter lipid metabolism in the small intestine by modifying the expression of specific genes through which the small intestine may seek to protect itself from stress-induced damage.
Bardai FH and D'Mello SR, J Neurosci. 2011 Feb 2;31(5):1746-51. doi: 10.1523/JNEUROSCI.5704-10.2011.
Although it is well established that pharmacological inhibitors of classical histone deacetylases (HDACs) are protective in various in vivo models of neurodegenerative disease, the identity of the neurotoxic HDAC(s) that these inhibitors target to exert their pr
otective effects has not been resolved. We find that HDAC3 is a protein with strong neurotoxic activity. Forced expression of HDAC3 induces death of otherwise healthy rat cerebellar granule neurons, whereas shRNA-mediated suppression of its expression protects against low-potassium-induced neuronal death. Forced expression of HDAC3 also promotes the death of rat cortical neurons and hippocampally derived HT22 cells, but has no effect on the viability of primary kidney fibroblasts or the HEK293 and HeLa cell lines. This suggests that the toxic effect of HDAC3 is cell selective and that neurons are sensitive to it. Neurotoxicity by HDAC3 is inhibited by treatment with IGF-1 as well as by the expression of a constitutively active form of Akt, an essential mediator of IGF-1 signaling. Protection against HDAC3-induced neurotoxicity is also achieved by the inhibition of GSK3beta, a kinase inhibited by Akt that is widely implicated in the promotion of neurodegeneration in experimental models and in human pathologies. HDAC3 is directly phosphorylated by GSK3beta, suggesting that the neuronal death-promoting action of GSK3beta could be mediated through HDAC3 phosphorylation. In addition to demonstrating that HDAC3 has neurotoxic effects, our study identifies it as a downstream target of GSK3beta.
Ohana E, etal., J Mol Med (Berl). 2006 Sep;84(9):753-63. Epub 2006 Jun 2.
ZnT-1 reduces intracellular zinc accumulation and confers resistance against cadmium toxicity by a mechanism which is still unresolved. A functional link between the L-type calcium channels (LTCC) and ZnT-1 has been suggested, indicating that ZnT-1 may regulate
ion permeation through this pathway. In the present study, immunohistochemical analysis revealed a striking overlap of the expression pattern of LTCC and ZnT-1 in cardiac tissue and brain. Using siRNA to silence ZnT-1 expression, we then assessed the role of ZnT-1 in regulating cation permeation through the L-type Ca(2+) channels in cells that are vulnerable to heavy metal permeation. Transfection of cortical neurons with ZnT-1 siRNA resulted in about 70% reduction of ZnT-1 expression and increased Ca(2+) influx via LTCC by approximately fourfold. Moreover, ZnT-1 siRNA transfected neurons showed approximately 30% increase in synaptic release, monitored using the FM1-43 dye. An increased cation influx rate, through the LTCC, was also recorded for Zn(2+) and Cd(2+) in cells treated with the ZnT-1 siRNA. Furthermore, Cd(2+)-induced neuronal death increased by approximately twofold after transfection with ZnT-1 siRNA. In addition, ZnT-1 siRNA transfection of the ovarian granulosa cell line, POGRS1, resulted in a twofold increase in Cd(2+) influx rate via the LTCC. Finally, a robust nimodipine-sensitive Cd(2+) influx was observed using a low extracellular Cd(2+) concentration (5 muM) in neurons and testicular slice cultures, attesting to the relevance of the LTCC pathway to heavy metal toxicity. Taken together, our results indicate that endogenously-expressed ZnT-1, by modulating LTCC, has a dual role: regulating calcium influx, and attenuating Cd(2+) and Zn(2+) permeation and toxicity in neurons and other cell types.
Li P, etal., J Toxicol Sci. 2015;40(5):615-24. doi: 10.2131/jts.40.615.
Advanced glycation end products (AGEs) by nonenzymatic glycation reactions are extremely accumulated in the diabetic vascular cells, neurons, and glia, and are confirmed to play important role in the pathogenesis of diabetes mellitus -induced cardiovascular complications. Sirt 1, known as mammalian
sirtuin, has been recognized to regulate insulin secretion and protect cells against oxidative stress, which is promoted by the accumulated AGEs in cardiovascular cells. In the present study, we treated human endothelial Eahy926 cells with AGEs, and determined the apoptosis induction, caspase activation, the Sirt 1 activity, the expression and acetylation of p53. Then we manipulated Sirt 1 activity with a Sirt 1 activator, Resveratrol (RSV), and a Sirt 1 inhibitor, sirtinol, in the AGE-BSA-treated Eahy926 cells, and then re-evaluated the apoptosis induction, caspase activation, the expression and acetylation of p53. Results demonstrated that AGEs induced apoptosis in the human endothelial Eahy926 cells, by promoting the cytochrome c release, activation of caspase 9/3. Also, the AGE-BSA treatment promoted the total p53 level and acetylated (Ac) p53, but reduced the Sirt 1 level and activity. On the other hand, the Sirt 1 inhibitor/activator not only deteriorated/ameliorated the promotion to p53 level and Ac p53, but also aggravated/inhibited the AGE-induced apoptosis and the promotion to apoptosis-associated signaling molecules. In conclusion, the present study confirmed the apoptosis promotion by AGEs in endothelial Eahy926 cells, by regulating the Sirt 1 activity and p53 signaling, it also implies the protective role of Sirt 1 activator against the AGE-induced apoptosis.
Kumar V, etal., Toxicology. 2009 Jan 31;255(3):117-23. Epub 2008 Nov 1.
Aluminium has been implicated in various neurodegenerative diseases but exact mechanism of action is still not known. Mitochondria being a major site of reactive oxygen species production are considered to be target of oxidative stress and it seems that the oxidative damage to mitochondrial proteins
may underlie the pathogenesis of aluminium induced neurodegeneration. Thus, the present study was undertaken to reveal the effects of chronic aluminium exposure (10mg/kg b.wt, intragastrically for 12 weeks) on the oxidative damage to mitochondrial proteins in male albino Wistar rats. Chronic aluminium exposure resulted in decrease in the activity of mitochondrial superoxide dismutase (MnSOD) and aconitase in different regions of rat brain suggesting increased oxidative stress. This decrease in MnSOD activity in turn might be responsible for the increased protein oxidation as observed in our study. All these processes taken together may cause increased oxidative damage to mitochondrial proteins in general. By taking the advantage of recent immunochemical probe for oxidatively modified proteins, we identified MnSOD to be susceptible to oxidative damage in aluminium treated animals. The quantitative RT-PCR analysis for Lon protease, a protease involved in the removal of oxidatively modified proteins from mitochondria, showed decreased mRNA expression suggesting increased oxidative damage and decreased removal of mitochondrial proteins. The identification of specific proteins as targets of oxidative damage may provide new therapeutic measures to reverse the effects of aluminium induced neurodegeneration.
Gilmour PS, etal., J Toxicol Environ Health A. 2006 Nov;69(22):2011-32.
It was recently demonstrated that particulate matter (PM) containing water-soluble zinc produces cardiac injury following pulmonary exposure. To investigate whether pulmonary zinc exposure produces systemic metal imbalance and direct cardiac effects, male Wistar Kyoto (WKY) rats (12-14 wk age) were
intratracheally (IT) instilled with saline or 2 micromol/kg zinc sulfate. Temporal analysis was performed for systemic levels of essential metals (zinc, copper, and selenium), and induction of zinc transporter-2 (ZT-2) and metallothionein-1 (MT-1) mRNA in the lung, heart, and liver. Additionally, cardiac gene expression profile was evaluated using Affymetrix GeneChips (rat 230A) arrays to identify zinc-specific effects. Pulmonary zinc instillation produced an increase in plasma zinc to approximately 20% at 1 and 4 h postexposure with concomitant decline in the lung levels. At 24 and 48 h postexposure, zinc levels rose significantly (approximately 35%) in the liver. At these time points, plasma and liver levels of copper and selenium also increased significantly, suggesting systemic disturbance in essential metals. Zinc exposure was associated with marked induction of MT-1 and ZT-2 mRNA in lung, heart, and liver, suggesting systemic metal sequestration response. Given the functional role of zinc in hundreds of proteins, the gene expression profiles demonstrated changes that are expected based on its physiological role. Zinc exposure produced an increase in expression of kinases and inhibition of expression of phosphatases; up- or downregulation of genes involved in mitochondrial function; changes in calcium regulatory proteins suggestive of elevated intracellular free calcium and increases in sulfotransferases; upregulation of potassium channel genes; and changes in free radical-sensitive proteins. Some of these expression changes are reflective of a direct effect of zinc on myocardium following pulmonary exposure, which may result in impaired mitochondrial respiration, stimulated cell signaling, altered Ca2+ homeostasis, and increased transcription of sulfotransferases. Cardiotoxicity may be an outcome of acute zinc toxicosis and occupational exposures to metal fumes containing soluble zinc. Imbalance of systemic metal homeostasis as a result of pulmonary zinc exposure may underlie the cause of extrapulmonary effects.
Zhao Y, etal., Toxicology. 2010 Jan 12;267(1-3):60-9. Epub 2009 Oct 29.
Cadmium (Cd) inhalation can result in emphysema. Cd exposure of rat lung fibroblasts (RFL6) enhanced levels of metal scavenging thiols, e.g., metallothionein (MT) and glutathione (GSH), and the heavy chain of gamma-glutamylcysteine synthetase (gamma-GCS), a key enzyme for GSH biosynthesis, concomita
nt with downregulation of lysyl oxidase (LO), a copper-dependent enzyme for crosslinking collagen and elastin in the extracellular matrix (ECM). Cd downregulation of LO in treated cells was closely accompanied by suppression of synthesis of collagen, a major structure component of the lung ECM. Using rats intratracheally instilled with cadmium chloride (30 microg, once a week) as an animal model, we further demonstrated that although 2-week Cd instillation induced a non-significant change in the lung LO activity and collagen synthesis, 4- and 6-week Cd instillation resulted in a steady decrease in the lung LO and collagen expression. The lung MT and total GSH levels were both upregulated upon the long-term Cd exposure. Emphysematous lesions were generated in lungs of 6-week Cd-dosed rats. Increases of cellular thiols by transfection of cells with MT-II expression vectors or treatment of cells with GSH monoethyl ester, a GSH delivery system, markedly inhibited LO mRNA levels and catalytic activities in the cell model. Thus, Cd upregulation of cellular thiols may be a critical cellular event facilitating downregulation of LO, a potential mechanism for Cd-induced emphysema.
For the purposes of the present study, the protective effect of prostaglandin E1 (PGE1) on lung injury following renal ischemia-reperfusion (RIR) was investigated. Adult male rats were divided into four groups, namely, (I) control rats given physiological saline; (II) rats given PGE1 (20 mug/kg, i
ntravenously); (III) rats subjected to RIR; and (IV) rats subjected to RIR given PGE1 30 min prior to ischemia and just before reperfusion. The right nephrectomy was performed in the RIR model. The left renal pedicle was occluded for 60 min to induce ischemia and then the left kidney was subjected to reperfusion for 60 min. The lungs of rats were used for microscopic and biochemical analyses. Although rats subjected to RIR did not exhibit heavy degenerative alterations in the lung structure, they possessed pulmonary interstitial edema. Lung glutathione levels and catalase, superoxide dismutase, glutathione peroxidase, and tissue factor (TF) activities were decreased in rats subjected to RIR, while lung lipid peroxidation, myeloperoxidase (MPO), xanthine oxidase and serum lactate dehydrogenase (LDH) activities, and blood urea and serum creatinine levels were increased in these rats when compared with the control group. PGE1 treatments resulted in the regression of oxidative stress via induction of antioxidant system, the decreased MPO and LDH activities, the reduced urea and creatinine levels, and the induced TF activity in rats subjected to RIR, while edema still remained permanent. We conclude that PGE1 may be useful in preventing lung injury with the exception of edema that occurred as a result of RIR in rats.
Shi H, etal., Part Fibre Toxicol. 2013 Apr 15;10:15. doi: 10.1186/1743-8977-10-15.
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited he
re has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
The hypothesis that up-regulation of bronchial constrictor endothelin receptors in airway smooth muscle cells may contribute to hyperreactivity during airway inflammation was tested in the present study by quantitative endothelin receptor mRNA analysis and functional responses in ring segments of ra
t trachea and bronchi. Real time reverse transcription polymerase chain reaction was used to quantify endothelin receptor expression in rat airway smooth muscle cells following Sephadex-induced inflammation. Compared with controls, Sephadex-induced airway inflammation caused a significant increase (3.9 times P<0.05) of endothelin receptor type B mRNA expression in bronchial smooth muscle cells, but not in tracheal smooth muscle cells. Functional myograph studies of bronchial and tracheal ring segments without epithelium (mechanically denuded) revealed an increase of the maximum contractile effects of endothelin-1 (a dual agonist for both endothelin type A and B receptors) and sarafotoxin 6c (a selective agonist for endothelin B receptors) in bronchial smooth muscle cells in Sephadex-induced inflammation, but not in tracheal smooth muscle cells. The enhanced maximal responses of bronchial smooth muscle cells to endothelin-1 and sarafotoxin 6c in Sephadex-induced inflammation support our molecular findings and hence imply a role for endothelin B receptors in airway hyperreactivity during airway inflammation.
To investigate the role of nitric oxide (NO) in acute lung inflammation and injury secondary to acute necrotizing pancreatitis (ANP), 5% sodium taurocholate was retrogradely injected into the biliopancreatic duct of rats to ANP model. These ANP rats were given L-Arginine (L-Arg, 100 mg/kg), L-NAME (
10 mg/kg), or their combination by intraperitoneal injection 30 min prior to ANP induction. At 1, 3, 6, and 12 hours after ANP induction, lung NO production, and inducible NO synthase (iNOS) expression were measured. Lung histopathological changes, bronchoalveolar lavage (BAL) protein concentration, proinflammatory mediators tumor necrotic factor alpha (TNF-alpha), and lung tissue myeloperoxidase (MPO) activity were examined. Results showed that NO production and iNOS mRNA expression in alveolar macrophages (AMs) were significantly increased along with significant increases in lung histological abnormalities and BAL proteins in the ANP group, all of which were further enhanced by pretreatment with L-Arg and attenuated by pretreatment with L-NAME, respectively. These markers were slightly attenuated by pretreatment with combination of L-Arg + L-NAME, suggesting that NO is required for initiating the acute lung damage in ANP rats, and also that L-Arg-enhanced lung injury is mediated by its NO generation rather than its direct effect. MPO activity and TNF-alpha expression in lung were upregulated in the ANP rats and further enhanced by pretreatment with L-Arg and attenuated by pretreatment with L-NAME, respectively. These results suggest that overproduction of NO mediated by iNOS in the lung is required for the acute lung inflammation and damage secondary to ANP.
Triclosan (TCS), a chlorophenol, is widely used as a preservative in different types of commercial preparations. The reports on TCS-mediated endocrine disruption are controversial and the present study aimed to elucidate the probable mode of action of TCS as an antiandrogenic compound using a robust
study design. Male albino rats, Rattus norvegicus, were treated with three doses of triclosan for a period of 60 days followed by the analysis of various biochemical parameters. RT-PCR analysis demonstrated a significant decrease in mRNA levels for testicular steroidogenic acute regulatory (StAR) protein, cytochrome P450(SCC), cytochrome P450(C17), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), 17beta-hydroxysteroid dehydrogenase (17beta-HSD) and androgen receptor (AR) in TCS treated rats (p<0.05). TCS also induced a perturbed translation of testicular StAR, and AR proteins as shown by Western blot analysis in treated groups of rats. A reduced level of StAR was further indicated by immunohistochemistry in testicular Leydig cells. Further, there was a significant decrease (p<0.05) in the level of serum lutenizing hormone (LH), follicle stimulating hormone (FSH), cholesterol, pregnenolone, and testosterone. In vitro assays demonstrated more than 30% decrease in testicular 3beta-HSD and 17beta-HSD enzyme activities in treated group of animals. Extensive histopathological malformations were observed in the testis and sex accessory tissues of the treated rats. Overall this study showed that TCS decreased the synthesis of androgens followed by reduced sperm production in treated male rats which could be mediated by a decreased synthesis of LH and FSH thus involving hypothalamo-pituitary-gonadal axis.
The association of kava product use with liver-related risks has prompted regulatory action in many countries. We studied the changes in gene expression of drug metabolizing enzymes in the livers of Fischer 344 male rats administered kava extract by gavage for 14 weeks. Analysis of 22,226 genes reve
aled that there were 14, 41, 110, 386, and 916 genes significantly changed in the 0.125, 0.25, 0.5, 1.0, and 2.0 g/kg treatment groups, respectively. There were 16 drug metabolizing genes altered in all three high-dose treatment groups, among which seven genes belong to cytochrome P450 isozymes. While gene expression of Cyp1a1, 1a2, 2c6, 3a1, and 3a3 increased; Cyp 2c23 and 2c40 decreased, all in a dose-dependent manner. Real-time PCR analyses of several genes verified these results. Our results indicate that kava extract can significantly modulate drug metabolizing enzymes, particularly the CYP isozymes, which could cause herb-drug interactions and may potentially lead to hepatotoxicity.
In this study, we measured and characterized the bifunctional effects of a newly identified natural compound-bisindigotin (SLY-1), isolated from leaf extracts of Isatis indigotica, to CYP1A1/EROD activities in H4IIE cells. The compound, SLY-1 (1muM) elicited a transitory and significant induction of
CYP1A1 RNA/protein levels and EROD activities in the cells. Maximum levels of CYP1A1 expression and EROD induction were attained at 8 and 12h of post-treatment, respectively. Thereafter the induction decreased significantly. Similar profile of CYP1A2 and CYP1B1 mRNA induction was observed. In contrast TCDD elicited CYP1A1/EROD induction was persistent. The transitory effect by SLY-1 is most likely due to the clearance of SLY-1 by cellular metabolism. Taken together the observation indicated that SLY-1 is an Ah receptor agonist for CYP1A1/CYP1A2/CYP1B1/EROD induction. Interestingly in the TCDD/SLY-1 cotreatment study, although synergistic effects on CYP1A1 expression and EROD induction were observed at 4-8h, significant inhibitory effects to TCDD induced CYP1A1 protein and EROD activity were detected at 12-24h of post-treatment. Because there was no significant reduction of CYP1A1, CYP1A2 or CYP1B1 transcript levels between TCDD- and TCDD/SLY-1 treated cells, the data pointed to the translational and/or post-translational inhibitory effect. The cellular signal transduction system may be modulated following exposure to SLY-1. To investigate the possible mechanisms involved, various specific kinase inhibitors or activators (chelerythrin, PD98059, U0126, ZM336372, SB202190, PKA inhibitor PKI (6-22) amide, and dbcAMP) were used for the assessment. Chelerythrine, PD98059 or dbcAMP treatment in TCDD induced cells showed significant inhibitory effects on CYP1A1 mRNA/protein expressions and EROD activities. U0126 had no observable EROD inhibitory effect. ZM336372 or SB202190 showed inhibition only at EROD activities. The results indicated that the SLY-1 inhibitory effect was possibly not mediated by the cAMP/PKA, PKC or MEK pathways. Nevertheless our results indicate that SLY-1 is not only an inducer of the CYP1A1 system, but also a potent inhibitor of CYP1A1 enzyme.
Lu Y, etal., Toxicol In Vitro. 2008 Oct;22(7):1754-60. Epub 2008 Aug 12.
Clozapine is limitedly used due to its adverse effect including agranulocytosis and hepatotoxicity. However, the mechanism of clozapine toxicity is still not clear. The previous in vitro studies on microsomes proposed a poss
ible mediation of cytochrome P450 (CYP) in producing reactive metabolites. In this paper, clozapine toxicity was, respectively, examined in two cultures of rat hepatocytes. Gel entrapment culture of hepatocytes with higher expression on CYP activities showed higher sensitivity to clozapine treatment than hepatocyte monolayer, indicating the possible involvement of CYP in hepatotoxicity of clozapine. Moreover, in each culture, CYP inhibitors were used to confirm the possible mediation of CYP enzymes. Pretreatment of hepatocytes with CYP 3A inhibitor (ketoconazole), CYP 2E1 inhibitor (diethyldithiocarbamate, DDC) and non-specific inhibitor (cimetidine) significantly reduced the toxicity of clozapine. But the pretreatment with CYP 1A2 inhibitor (fluvoxamine) had no such protective effect indicative of non-function of CYP 1A2 in clozapine toxicity. In addition, glycyrrhizic acid (GA), a scavenger of reactive oxygen species (ROS), also inhibited the adverse response to clozapine, suggesting the positive involvement of oxidant pressure. Thus, it could be concluded that clozapine-induced toxicity was mediated by CYP, particularly CYP 3A and CYP 2E1, and oxidant pressure.
To characterize the effects of an estrogen receptor (ER) agonist on the gene expressions in the uterus, immature female rats were administered once orally with 17alpha-ethynyl estradiol (EE, 3 mug/kg), a potent ER agonist. We focused on four categories of sex steroid hormone receptor genes: well-kno
wn estrogen target genes, Wnt genes, and beta-catenin/T-cell factor (TCF) target genes. ERalpha, ERbeta, progesterone receptor, and androgen receptor mRNAs were all downregulated at 24 and/or 48 h after EE administration. Complement C3 and insulin-like growth factor 1 mRNAs were markedly induced after EE administration. Although the time courses of Wnt4, Wnt5a, and Wnt7a mRNA status varied until 12 h after EE administration, all of them were simultaneously downregulated at 24 and 48 h. The remarkable downregulation of Wnt7a mRNA in response to EE was considered to be important to understand the various uterine phenomena affected by ER agonists. In the beta-catenin/TCF target genes, the downregulation of anti-Mullerian hormone type 2 receptor and bone morphogenetic protein 4 mRNA after EE administration appeared to be closely related to the downregulation of Wnt7a. The upregulation of cyclin D1 and follistatin mRNA at the early phase after EE administration was considered to have been affected by the upregulation of Wnt4. These results indicate that an ER agonist influences not only the mRNA expression of sex steroid hormone receptor genes and well-known estrogen target genes but also Wnt genes (Wnt4, Wnt5a, Wnt7a) and beta-catenin/TCF target genes in the uterus of immature rats, indicating that their molecules are the potential players affected by estrogenic stimuli.
Triclosan (TCS) is an antimicrobial chemical widely used in different commercial preparations. The present study demonstrated the mechanism of action of TCS-induced anti-androgenicity in rat Leydig cells. Treatment of purified cells with increasing concentrations of TCS (0.001, 0.01, 0.1, 1 and 10 m
icroM) resulted in a significantly decreased activity of adenylyl cyclase enzyme which was followed by a decreased synthesis of cAMP. This decreased cAMP level resulted in the disruption of entire steroidogenic cascade causing a depressed synthesis of testosterone. However, TCS-induced decrease in the production of testosterone returned to normalcy when cells were treated with forskolin (an adenylyl cyclase activator). Transcription followed by translational of four prominent steroidogenic enzyme/proteins, cytochrome P450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), 17beta-hydroxysteroid dehydrogenase (17beta-HSD) and steroidogenic acute regulatory (StAR) protein, also decreased in a dose-dependent manner in TCS-treated Leydig cells as determined by RT-PCR, enzyme assay and Western blot. These results suggested that the disruption of the activity of adenylyl cyclase enzyme by TCS in turn leads to the disruption of intermediate steroidogenic cascade causing a depressed testosterone production. The study further confirmed the anti-androgenic activity of TCS in Leydig cells with highest effective concentration at 1 microM.
To investigate the relationship between fenofibrate (FF) and oxidative stress, enzymatic, histopathological, and molecular biological analyses were performed in the liver of male F344 rats fed 2 doses of FF (Experiment 1; 0 and 6000 ppm) for 3 weeks and 3 doses (Experiment 2; 0, 3000, and 6000 ppm)
for 9 weeks. FF treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver. However, it decreased those of superoxide dismutase in the liver in both experiments. Increased 8-hydroxy-2'-deoxyguanosine levels in liver DNA and lipofuscin accumulation were observed in the treated rats of Experiment 2. In vitro measurement of reactive oxygen species (ROS) in rat liver microsomes revealed a dose-dependent increase due to FF treatment. Microarray (only Experiment 1) or real-time reverse transcription-polymerase chain reaction analyses revealed that the expression levels of metabolism and DNA repair-related genes such as Aco, Cyp4a1, Cat, Yc2, Gpx2, Apex1, Xrcc5, Mgmt, Mlh1, Gadd45a, and Nbn were increased in FF-treated rats. These results provide evidence of a direct or indirect relationship between oxidative stress and FF treatment. In addition, increases in the expression levels of cell cycle-related genes such as Chek1, Cdc25a, and Ccdn1; increases in the expression levels of cell proliferation-related genes such as Hdgfrp3 and Vegfb; and fluctuations in the expression levels of apoptosis-related genes such as Casp11 and Trp53inp1 were observed in these rats. This suggests that cell proliferation induction, apoptosis suppression, and DNA damage due to oxidative stresses are probably involved in the mechanism of hepatocarcinogenesis due to FF in rats.
The mechanisms underlying the neurotoxicity of endemic fluorosis still remain unknown. To investigate the expression level of neural cell adhesion molecules (NCAM), oxidative stress, and apoptosis induced by fluoride, the primary rat hippocampal neurons were inc
ubated with 20, 40, and 80 mg/l sodium fluoride for 24 h in vitro. The results showed that the cell survival rate in the 80 mg/l fluoride-treated group was significantly lower than that of the control group. Forty and 80 mg/l of fluoride induced significantly increased lactate dehydrogenase release, intracellular reactive oxygen species, and the percentage of apoptosis. Compared with control group, the malondialdehyde levels were significantly elevated while glutathione levels and glutathione peroxidase activities were decreased in all fluoride-treated groups, accompanied by the markedly reduced superoxide dismutase activity in 80 mg/l fluoride-treated group. With respect to NCAM mRNA expression levels, a significant dose-dependent decrease was observed in 40 and 80 mg/l fluoride-treated groups against the control group. In addition, as compared to the control group, the protein expression levels of NCAM-180 in 40 and 80 mg/l fluoride-treated groups, NCAM-140 in all fluoride-treated groups, and NCAM-120 in the 80 mg/l fluoride-treated group were significantly decreased. Our study herein suggested that fluoride could cause oxidative stress, apoptosis, and decreased mRNA and protein expression levels of NCAM in rat hippocampal neurons, contributing to the neurotoxicity induced by fluoride.
Sundarrajan M, etal., J Environ Pathol Toxicol Oncol. 2001;20(3):189-97.
It is now widely accepted that cancer development is a multistage process, starting from the original cell population and ending with a malignant tumor. However, the mechanisms involved in the progressive growth of cells from normalcy to preneoplasia, and from preneoplasia to malignancy are not clea
r. Because tyrosine phosphorylation and dephosphorylation reactions are known to play critical roles during normal and abnormal cellular growth, we have studied the tyrosine phosphorylation, tyrosine phosphorylated proteins, and protein phosphatases during the sequential development of liver cancer. The present investigation indicated that enhanced tyrosine phosphorylation and tyrosine phosphorylated proteins, with no change in the levels of tyrosine protein phosphatases may contribute to abnormal cellular proliferation during liver carcinogenesis. We have also seen an increase in the expression of proliferating cell nuclear antigen and G1/S cyclins during tumor development.
Rao KM and Meighan T, J Toxicol Environ Health A. 2006 Mar;69(6):481-90.
A family of proteins containing PAAD [for PYRIN, AIM (absent in melanoma), apoptosis-associated protein speck-like protein containing a caspase recruitment domain, and death domain] domain was found to be involved in modulating inflammatory responses, by its ability to regulate nuclear factor (NF)-
kappaB and procaspase-1 activation. In this study, intratracheal instillation of silica in rats was found to produce transient upregulation of mRNA levels of the PAAD family of proteins, PYPAF7 (PYRIN containing Apaf1-like protein; Apaf stands for apoptosis activating factor) and MEFV (for Mediterranean fever), in bronchoalveolar lavage (BAL) cells. The levels were markedly elevated at 4 h, returning to basal levels by 24 h. In contrast, intratracheal instillation of LPS produced a sustained upregulation of the two genes in BAL cells. In vitro exposure of BAL cells to silica or lipopolysaccharide (LPS) produced no changes in the expression of these genes, indicating that silica or LPS exposure in vivo induces some factors that are responsible for the upregulation of PYPAF7 and MEFV. The mRNA levels of these two genes in peripheral blood monocytes and PMN following LPS exposure did not change, indicating that AM and peripheral blood cells show similar response to LPS exposure in vitro. This study provides the basis for a physiological model to study the effects of these two genes in modulating the inflammatory response after particle exposure.
Carbonyl sulfide (COS) is an odorless gas that produces highly reproducible lesions in the central nervous system. In the present study, the time course for the development of the neurotoxicological lesions was defined and the gene expression changes occurring i
n the posterior colliculus upon exposure to COS were characterized. Fischer 344 rats were exposed to 0 or 500 ppm COS for one, two, three, four, five, eight, or ten days, six hours per day. On days 1 and 2, no morphological changes were detected; on day 3, 10/10 (100%) rats had necrosis in the posterior colliculi; and on day 4 and later, necrosis was observed in numerous areas of the brain. Important gene expression changes occurring in the posterior colliculi after one or two days of COS exposure that were predictive of the subsequent morphological findings included up-regulation of genes associated with DNA damage and G1/S checkpoint regulation (KLF4, BTG2, GADD45g), apoptosis (TGM2, GADD45g, RIPK3), and vascular mediators (ADAMTS, CTGF, CYR61, VEGFC). Proinflammatory mediators (CCL2, CEBPD) were up-regulated prior to increases in expression of the astrocytic marker GFAP and macrophage marker CSF2rb1. These gene expression findings were predictive of later CNS lesions caused by COS exposure and serve as a model for future investigations into the mechanisms of disease in the central nervous system.
Oxidative stress-mediated destruction of normal parenchymal cells during hepatic inflammatory responses contributes to the pathogenesis of immune-mediated hepatitis and is implicated in the progression of acute inflammatory liver injury to chronic inflammatory liver disease. The transcription facto
r NF-E2-related factor 2 (Nrf2) regulates the expression of a battery of antioxidative enzymes and Nrf2 signaling can be activated by small-molecule drugs that disrupt Keap1-mediated repression of Nrf2 signaling. Therefore, genetic and pharmacologic approaches were used to activate Nrf2 signaling to assess protection against inflammatory liver injury. Profound increases in indicators of cell death were observed in both Nrf2 wild-type (Nrf2-WT) mice and Nrf2-disrupted (Nrf2-KO) mice 24 h following intravenous injection of concanavalin A (12.5 mg/kg, ConA), a model for T cell-mediated acute inflammatory liver injury. However, hepatocyte-specific conditional Keap1 null (Alb-Cre:Keap1(flox/-), cKeap1-KO) mice with constitutively enhanced expression of Nrf2-regulated antioxidative genes as well as Nrf2-WT mice but not Nrf2-KO mice pretreated with three daily doses of a triterpenoid that potently activates Nrf2 (30 mumol/kg, cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl-imidazolide [CDDO-Im]) were highly resistant to ConA-mediated inflammatory liver injury. CDDO-Im pretreatment of both Nrf2-WT and Nrf2-KO mice resulted in equivalent suppression of serum proinflammatory soluble proteins suggesting that the hepatoprotection afforded by CDDO-Im pretreatment of Nrf2-WT mice but not Nrf2-KO mice was not due to suppression of systemic proinflammatory signaling, but instead was due to activation of Nrf2 signaling in the liver. Enhanced hepatic expression of Nrf2-regulated antioxidative genes inhibited inflammation-mediated oxidative stress, thereby preventing hepatocyte necrosis. Attenuation of hepatocyte death in cKeap1-KO mice and CDDO-Im pretreated Nrf2-WT mice resulted in decreased late-phase proinflammatory gene expression in the liver thereby diminishing the sustained influx of inflammatory cells initially stimulated by the ConA challenge. Taken together, these results clearly illustrate that targeted cytoprotection of hepatocytes through Nrf2 signaling during inflammation prevents the amplification of inflammatory responses in the liver.
Sonneveld E, etal., Toxicol Sci. 2007 Oct;99(2):455-69. Epub 2007 Aug 9.
The aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR) are ligand-activated transcription factors and members of the basic helix-loop-helix Period-aryl hydrocarbon nuclear translocator-single minded and nuclear hormone receptor superfamilies, respectively. Besides their individual role
as activators of specific gene transcription, also interplay between both transcription factors can be an important mechanism of regulation. In this study, we report that GR can strongly activate AhR-mediated transcription and consequent gene expression in rat H4IIe cells. Reporter gene assays showed an enhanced effect of dexamethasone on the dioxin response mediated by GR in rat H4IIe cells and mouse Hepa 1c1c7 cells, but not in human HepG2 cells and human T47D cells. These deviations between the rodent and human cell lines were confirmed by CYP1A1 enzyme activities. In addition, quantitative reverse transcription-PCR showed enhanced GR-mediated effects of dexamethasone on endogenous 2,3,7,8-tetrachlorodibenzo-[p]-dioxin target genes as well in rat H4IIe cells, but not in human HepG2 and human T47D cells. Surprisingly, AhR itself was upregulated by combined dioxin/glucocorticoid exposure in rat H4IIe cells but not in the human cells which could be explained by the presence of two putative glucocorticoid response elements in the rat AhR promoter, but not in the human AhR promoter. This GR-mediated expression of dioxin target genes through upregulation of the AhR in rat but not in human cells opens the possibility that dioxin responses in rodent-based models for toxicity differ from humans and provides new insight into the interactions of stress-related pathways, biological effects of dioxin-like compounds and may possibly have implications for risk assessment.
Tukey RH and Strassburg CP, Annu Rev Pharmacol Toxicol. 2000;40:581-616.
In vertebrates, the glucuronidation of small lipophilic agents is catalyzed by the endoplasmic reticulum UDP-glucuronosyltransferases (UGTs). This metabolic pathway leads to the formation of water-soluble metabolites originating from normal dietary processes, cellular catabolism, or exposure to drug
s and xenobiotics. This classic detoxification process, which led to the discovery nearly 50 years ago of the cosubstrate UDP-glucuronic acid (19), is now known to be carried out by 15 human UGTs. Characterization of the individual gene products using cDNA expression experiments has led to the identification of over 350 individual compounds that serve as substrates for this superfamily of proteins. This data, coupled with the introduction of sophisticated RNA detection techniques designed to elucidate patterns of gene expression of the UGT superfamily in human liver and extrahepatic tissues of the gastrointestinal tract, has aided in understanding the contribution of glucuronidation toward epithelial first-pass metabolism. In addition, characterization of the UGT1A locus and genetic studies directed at understanding the role of bilirubin glucuronidation and the biochemical basis of the clinical symptoms found in unconjugated hyperbilirubinemia have uncovered the structural gene polymorphisms associated with Crigler-Najjar's and Gilbert's syndrome. The role of the UGTs in metabolism and different disease states in humans is the topic of this review.
Shakya G, etal., Toxicol Ind Health. 2014 Aug 12. pii: 0748233714545202.
Diabetes mellitus (DM) is a leading cause of morbidity and mortality in the world. Insulin resistance and insulin insufficiency is the major factor for the prognosis of type II diabetes. Consistent high glucose level leads to multiple secondary complications in diabetic patients. Hence, hypoglycaemi
c drugs are of significance for reducing the risk of secondary complications in type II diabetes. Various hypoglycaemic drugs are already available in the market, but they are associated with several side effects. Therefore, traditional herbs have emerged as safer alternative for effective hypoglycaemic treatment. The juvenile grass of common wheat is known as wheatgrass (WG). It is commonly used as a health drink and has potent antioxidant efficacy. It has been used to cure DM in folk medicine. The current study was planned to test the hypoglycaemic effect and pathways regulated by WG on DM. We analysed the glucose and insulin levels in plasma, the activity of glucose oxidative enzymes, hexokinase and glucose 6 phosphate dehydrogenase, in serum and glycogen levels in liver of the male albino Wistar rats. Activity of glucose oxidative enzymes and the levels of insulin and liver glycogen were decreased in rats with diabetes, but they were reversed on treatment with WG. Hence, we conclude that WG can act as a potent anti-hyperglycaemic agent.
Ross MK and Pegram RA, Toxicol Appl Pharmacol. 2004 Mar 1;195(2):166-81.
The drinking water disinfection byproduct bromodichloromethane (CHBrCl(2)) was previously shown to be mutagenic in Salmonella typhimurium that overexpress rat glutathione transferase theta 1-1 (GSTT1-1). Several experimental approaches were undertaken in this study to investigate the DNA covalent bi
nding potential of reactive intermediates generated by GSTT1-1-mediated metabolism of CHBrCl(2). First, rodent hepatic cytosol incubations containing [(14)C]CHBrCl(2), supplemented glutathione (GSH), and calf thymus DNA resulted in approximately 3-fold (rat liver cytosol) and 7-fold (mouse liver cytosol) greater amounts of total radioactivity (RAD) associated with the purified DNA as compared to a control (absence of rodent cytosol) following liquid scintillation counting (LSC) of isolated DNA. The relative increase in DNA labeling is consistent with the conjugation activity of these rodent cytosols toward CHBrCl(2). Second, exposure of GSTT1-1-expressing S. typhimurium to [(14)C]CHBrCl(2) resulted in a concentration-dependent increase of bacterial DNA-associated total radioactivity. Characterization of DNA-associated radioactivity could not be assigned to a specific deoxynucleoside adduct(s) following enzymatic hydrolysis of DNA and subsequent HPLC analysis. A possible explanation for this observation was formation of a 'transient' adduct that was unstable in the DNA isolation and hydrolysis procedures employed. To circumvent problems of adduct instability, reactions of [(14)C]CHBrCl(2) with GSH catalyzed by recombinant rat GSTT1-1 were performed in the presence of calf thymus DNA or, alternatively, the model nucleophile deoxyguanosine. Hydroxyapatite chromatography of [(14)C]-labeled DNA or HPLC chromatography of [(14)C]-labeled deoxyguanosine derivatives demonstrated the covalent binding of [(14)C]CHBrCl(2)-derived metabolites to DNA and deoxyguanosine in low yield (approximately 0.02% of [(14)C]CHBrCl(2) biotransformed by GSTT1-1 resulted in DNA adducts). Cytochrome P450 (CYP)- and GST-catalyzed biotransformation of CHBrCl(2) in rat tissues (kidney and large intestine) that develop tumors following chronic CHBrCl(2) exposure were compared with rat liver (a nontarget tissue). Rat liver had a significant capacity to detoxify CHBrCl(2) (to carbon dioxide) compared with kidney and large intestine as a result of CYP-catalyzed oxidation, liver was approximately 16-fold more efficient than kidney and large intestine when intrinsic clearance values (V(max)/K(m)) were compared. In contrast, the efficiency of GST-mediated GSH conjugation of CHBrCl(2) in kidney and large intestine was only slightly lower than liver (approximately 2- to 4-fold lower), thus, the relative amounts of reactive intermediates that are produced with the capacity to covalently modify DNA may be enhanced in these extrahepatic tissues. The significance of these findings is that conjugation of CHBrCl(2) with GSH can result in the covalent modification of DNA and that cancer target tissues in rats have a much reduced detoxification capacity, but only a modest decrease in bioactivation capacity, as compared to the liver (a nontarget tissue in rats).
Grignard E, etal., Arch Toxicol. 2008 Sep;82(9):583-9. Epub 2007 Nov 29.
More than 20 years after Chernobyl nuclear power plant explosion, radionuclides are still mainly bound to the organic soil layers. The radiation exposure is dominated by the external exposure to gamma-radiation following the decay of (137)Cs and by soil-to-plant-to-human transfer of (137)Cs into the
food chain. Because of this persistence of contamination with (137)Cs, questions regarding public health for people living in contaminated areas were raised. We investigated the biological effects of chronic exposure to (137)Cs on testicular and adrenal steroidogenesis metabolisms in rat. Animals were exposed to radionuclide in their drinking water for 9 months at a dose of 6,500 Bq/l (610 Bq/kg/day). Cesium contamination decreases the level of circulating 17beta-estradiol, and increases corticosterone level. In testis, several nuclear receptors messenger expression is disrupted; levels of mRNA encoding Liver X receptor alpha (LXRalpha) and LXRbeta are increased, whereas farnesoid X receptor mRNA presents a lower level. Adrenal metabolism presents a paradoxical decrease in cyp11a1 gene expression. In conclusion, our results show for the first time molecular and hormonal modifications in testicular and adrenal steroidogenic metabolism, induced by chronic contamination with low doses of (137)Cs.
Gelfand BD, etal., Cell Rep. 2015 Jun 23;11(11):1686-93. doi: 10.1016/j.celrep.2015.05.023. Epub 2015 Jun 11.
Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD). Iron toxicity is widely attributed to hydroxyl radical formation through Fenton's reaction. We report that excess iron, but not other Fenton catalytic metals, induces
activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE) is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs): Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C)-binding protein 2 (PCBP2). These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.
Wang QS, etal., Toxicology. 2006 Oct 3;227(1-2):36-44. Epub 2006 Jul 10.
Chronic exposure to allyl chloride (AC) is known to produce a central-peripheral distal axonopathy. To access the biomarker of exposure and elucidate the mechanism of neuropathy induced by AC, we performed a longitudinal observational study of malondialdehyde (MDA), anti-reactive oxygen species (a
nti-ROS), glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in rats serum and sciatic nerve after 0, 3, 6, 9 and 12 weeks of AC administration. AC was administrated to Wistar rats by gavage at a single dosage of 200 mg/kg/per dose (three times per week). Rats were sacrificed after 0, 3, 6, 9 and 12 weeks of AC treatment, serum and sciatic nerves were quickly collected at 4 degrees C. The results showed that MDA levels in serum (115.4 and 126.2%) and sciatic nerve (130.5 and 145.3%) significantly increased (p<0.05) on 3rd week of AC treatment and at gait score of 2, and further changes of MDA levels were observed after 6, 9 and 12 weeks and at gait score of 3 and 4. While a decrease (p<0.05) in the activities of CAT on 6th week of AC intoxication and at gait score of 2 was observed in serum (81.2 and 72.8%) and sciatic nerve (71.7 and 70.7%). The other antioxidants also decreased in serum and sciatic nerve after 3, 6 and 9, 12 weeks' intoxication and at gait score of 2, 3 and 4. Significant (p<0.05) positive correlations were observed between serum and sciatic nerve in MDA levels (r=0.9162 and 0.9551, respectively) and CAT (r=0.9410 and 0.9557, respectively) activities as time went on and symptoms developed. Thus, AC intoxication was associated with elevation of lipid peroxidation and reduction of antioxidative status, and the time dependent changes of these indexes in Wistar rats' serum and sciatic nerve occurred. The misbalance of lipid peroxidation and antioxidation status might be one of mechanisms of toxic neuropathy induced by AC. MDA and CAT could be served as the biomarkers of AC exposure to afford the early diagnosis of AC-induced toxic neuropathy.
Kiyosawa N, etal., Toxicol Sci. 2008 Feb;101(2):350-63. Epub 2007 Nov 5.
Technical-grade dichlorodiphenyltrichloroethane (DDT) is an agricultural pesticide and malarial vector control agent that has been designated a potential human hepatocarcinogen. The o,p'-enantiomer exhibits estrogenic activity that has been associated with the carcinogenicity of DDT. The temporal an
d dose-dependent hepatic estrogenicity of o,p'-DDT was investigated using complementary DNA microarrays in immature ovariectomized Sprague-Dawley rats with complementary histopathology and tissue-level analysis. Animals were gavaged with 300 mg/kg o,p'-DDT either once or once daily for 3 consecutive days. Liver samples were examined 2, 4, 8, 12, 18, or 24 h after a single dose or following three daily doses. For dose-response studies, a single dose of 3, 10, 30, 100, or 300 mg/kg body weight o,p'-DTT was administered for 3 consecutive days. Genes associated with drug metabolism (Cyp2b2 and Cyp3a2), the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), cell proliferation (Ccnd1, Ccnb1, Ccnb2, and Stmn1), and oxidative stress (Gclm and Hmox1) were significantly induced. Cyp2b2 exhibited dose-dependent regulation and was significantly induced across all time points, while cell proliferation- and oxidative stress-related genes exhibited transient induction. The induction of Cyp2b2 and Cyp3a2 mRNA levels suggest PXR/CAR activation, consistent with expression of genes associated with oxidative stress. Few genes known to be estrogen receptor (ER) regulated were differentially expressed when compared to the hepatic gene expression profile elicited by ethynyl estradiol in immature ovariectomized C57BL/6 mice using the same study design and analysis methods. These data indicate that o,p'-DDT elicits PXR/CAR-, not ER-, mediated gene expression in the rat liver. Based on the species-specific differences in CAR regulation, the extrapolation of rodent DDT hepatocarcinogenicity to humans warrants further investigation.
Excessive accumulation of amyloid beta-peptide (Abeta) plays an early and critical role in synapse and neuronal loss in Alzheimer's Disease (AD). Increased oxidative stress is one of the mechanisms whereby Abeta induces neuronal death. Given the lessened susceptibility to oxidative stress exhibited
by mice lacking p66Shc, we investigated the role of p66Shc in Abeta toxicity. Treatment of cells and primary neuronal cultures with Abeta caused apoptotic death and induced p66Shc phosphorylation at Ser36. Ectopic expression of a dominant-negative SEK1 mutant or chemical JNK inhibition reduced Abeta-induced JNK activation and p66Shc phosphorylation (Ser36), suggesting that JNK phosphorylates p66Shc. Abeta induced the phosphorylation and hence inactivation of forkhead transcription factors in a p66Shc-dependent manner. Ectopic expression of p66ShcS36A or antioxidant treatment protected cells against Abeta-induced death and reduced forkhead phosphorylation, suggesting that p66Shc phosphorylation critically influences the redox regulation of forkhead proteins and underlies Abeta toxicity. These findings underscore the potential usefulness of JNK, p66Shc, and forkhead proteins as therapeutic targets for AD.
Zeidler P, etal., J Toxicol Environ Health A. 2004 Jul 9;67(13):1001-26.
Inhalation of crystalline silica can produce lung inflammation and fibrosis. Inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) is believed to be involved in silica-induced lung disease. To investigate the role of iNOS-derived NO in this disease, the responses of iNOS knockout (KO) ver
sus C57Bl/6J wild-type (WT) mice to silica were compared. Male mice (8-10 wk old, mean body weight 24.0 g) were anesthetized and exposed, by aspiration, to silica (40 mg/kg) or saline. At 24 h and 42 d postexposure, lungs were lavaged with saline. The first bronchoalveolar lavage (BAL) fluid supernatant was analyzed for lactate dehydrogenase (LDH) activity, levels of albumin, tumor necrosis factor-alpha (TNF-alpha), and macrophage inflammatory protein-2 (MIP-2), as well as total antioxidant capacity (TAC). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and zymosanstimulated AM chemiluminescence (AM-CL). In separate mice, lung histopathological changes were evaluated 42 d postexposure. Acute (24-h) silica exposure decreased AMs, increased PMNs, increased LDH activity and levels of albumin, TNF-alpha, and MIP-2 in BAL fluid, and enhanced AM-CL in both iNOS KO and WT mice. However, iNOS KO mice exhibited less AM activation (defined as increased AM-CL and decreased AM yield) than WT. Furthermore, TAC following acute silica decreased in WT but was maintained in iNOS KO mice. Pulmonary reactions to subchronic (42 d) silica exposure were similar to acute. However, histopathological and BAL fluid indices of lung damage and inflammation, AM activation, and lung hydroxyproline levels were significantly less in iNOS KO compared to WT mice. These results suggest that iNOS-derived NO contributes to the pathogenesis of silica-induced lung disease in this mouse model.
The fungicide prochloraz (PCZ) induces malformations in androgen-dependent tissues in male rats when administered during sex differentiation. The sensitivity of fetal testicular steroidogenesis to PCZ was investigated to test the hypothesis that the reported morphological effects from maternal expos
ure were associated with reduced testosterone synthesis. Pregnant Sprague-Dawley rats were dosed by gavage with 0, 7.8, 15.6, 31.3, 62.5, and 125 mg PCZ/kg/day (n = 8) from gestational day (GD) 14 to 18. On GD 18, the effects of PCZ on fetal steroidogenesis were assessed by measuring hormone production from ex vivo fetal testes after a 3-h incubation. Lastly, PCZ levels in amniotic fluid and maternal serum were measured using liquid chromatography/mass spectroscopy and correlated to the inhibition of steroidogenesis. Fetal progesterone and 17alpha-hydroxyprogesterone production levels were increased significantly at every PCZ dose, whereas testosterone levels were significantly decreased only at the two high doses. These results suggest that PCZ inhibits the conversion of progesterone to testosterone through the inhibition of CYP17. To test this hypothesis, PCZ effects on CYP17 gene expression and in vitro CYP17 hydroxylase activity were evaluated. PCZ had no effect on testicular CYP17 mRNA levels as measured by quantitative real-time polymersase chain reaction. However, microsomal CYP17 hydroxylase activity was significantly inhibited by the fungicide (K(i) = 865nM). Amniotic fluid PCZ concentrations ranged from 78 to 1512 ppb (207-4014nM) and testosterone production was reduced when PCZ reached approximately 500 ppb, which compares favorably with the determined CYP17 hydroxylase K(i) (326 ppb). These results demonstrate that PCZ lowers testicular testosterone synthesis by inhibiting CYP17 activity which likely contributes to the induced malformations in androgen-dependent tissues of male offspring.
Woods JS and Southern MR, Toxicol Appl Pharmacol. 1989 Jan;97(1):183-90.
Studies were conducted on the etiology of trace metal-induced porphyria in rats, with particular emphasis on the action of metals on hepatic and renal coproporphyrinogen oxidase. Prolonged exposure of rats to methyl mercury hydroxide or sodium arsenate at subtox
ic dose levels in drinking water resulted in a progressive coproporphyrinuria, reaching highest rates of coproporphyrin excretion 5 weeks after initiation of exposure. The development of coproporphyrinuria was accompanied by substantial metal accumulation in the kidney and a significant decrease in renal, but not hepatic, coproporphyrinogen oxidase activity. During prolonged exposure to either metal, the rates of coproporphyrin excretion and metal accumulation by the kidney continued to increase for 2 to 3 weeks following maximal inhibition of renal coproporphyrinogen oxidase. Acute treatment studies and studies in vitro support the conclusion that the kidney is the principal source of excess urinary coproporphyrin during metal exposure. These observations demonstrate that metal-induced coproporphyrinuria is predominantly of renal etiology and that impairment of renal coproporphyrinogen oxidase is a principal cause of this effect.
Zhao HW, etal., J Toxicol Environ Health A. 2004 Sep 10;67(17):1391-406.
Tumor necrosis factor-alpha (TNF-a) is produced by alveolar macrophages (AM) in response to bleomycin (BLM) exposure. This cytokine has been linked to BLM-induced pulmonary inflammation, an early drug effect, and to lung fibrosis, the ultimate toxic effect of BL
M. The present study was carried out to study the time dependence of apoptotic signaling pathways and the potential roles of TNF receptors in BLM-induced AM apoptosis. Male Sprague-Dawley rats were exposed to saline or BLM (1 mg/kg) by intratracheal instillation. At 1, 3, or 7 d postexposure, AM were isolated by bronchoalveolar (BAL) lavage and evaluated for apoptosis by ELISA. The release of cytochrome c from mitochrondria, the activation of caspase-3, -8, and -9, the cleavage of nuclear poly(ADP-ribose) polymerase (PARP), and the expression of TNF receptors (TNF-R1/p55 and TNF-R2/p75), TNF-R-associated factor 2 (TRAF2), and cellular inhibitor of apoptosis 1 (c-IAP1) were determined by immunoblotting. The results showed that BLM exposure induced AM apoptosis, with the highest apoptotic effect occurring at 1 d after exposure and gradually decreasing at 3 and 7 d postexposure, but still remaining significantly above the control level. The maximal translocation of cytochromec from mitochondria into the cytosol was observed at 1 d postexposure, whereas the activation of caspase-9 and caspase-3 and caspase-3-dependent cleavage of PARP was found to reach a peak level at 3 d postexposure. BLM exposure had no marked effect on AM expression of TNF-R1 or caspase-8 activation, but significantly increased the expression of TNF-R2 that was accompanied by a rise in c-IAP1 and a decrease in TRAF2. This induction of TNF-R2 by BLM was significant on d 1 and increased with greater exposure time. In vitro studies showed that pretreatment of naive AM with a TNF-R2 antibody significantly inhibited BLM-induced caspase-3 activity and apoptosis. These results suggest that BLM-induced apoptosis involves multiple pathways in a time-dependent manner. Since maximal BLM-induced AM apoptosis (1 d postexposure) preceded maximal changes in caspase-9 and -3 (3 d postexposure), it is possible that a caspase-independent mechanism is involved in this initial response. These results indicate that the sustained expression of TNF-R2 in AM by BLM exposure may sensitize these cells to TNF-a-mediated toxicity.
Han ST, etal., Toxicol Lett. 2007 Apr 25;170(2):111-5. Epub 2007 Feb 20.
Neurological sequelae (NS) is a common complication of carbon monoxide (CO) poisoning and structural alterations of myelin basic protein have been proven to initiate immunological reactions leading to NS. To determine whether xanthine oxidoreductase (XOR) participates in the pathophysiology of CO-me
diated NS, we examined myelin basic protein in CO poisoned XOR-depleted rats and performed radial maze studies to evaluate the alteration of cognitive function. Carbon monoxide poisoned XOR-depleted rats did not exhibit myelin basic protein alterations or impaired cognitive function, both found in CO poisoned control rats. These results indicate that XOR is essential to the pathological cascade of CO-mediated NS.
Johansson M, etal., Basic Clin Pharmacol Toxicol. 2005 Apr;96(4):309-15.
Methylsulfonyl-PCBs (MeSO2-PCBs) and some fungicides were studied for their functional effects on the glucocorticoid signal transduction in the Reuber rat hepatoma H-II-E-C3 cell line. 4-Substituted MeSO2-PCBs, tolylfluanid and ketoconazole displayed antagonistic effects on dexamethasone-induced tyr
osine aminotransferase specific activity (IC50 ranging from 0.7-5.1 microM), but no agonist activity. These substances also had affinity to the mouse glucocorticoid receptor in competition binding studies, indicating that the inhibition of the middle cerebral artery occlusion-activity is indeed mediated by receptor binding. Thus, substances with a structural resemblance with a methyl sulfonyl group, such as the fungicide tolylfluanid, may inhibit glucocorticoid receptor-regulated gene transcription. In co-exposure experiments with three substances, multivariate modelling showed that the inhibitory effect of 4-MeSO2-2,5,6,2',4'-pentachlorobiphenyl (4-MeSO2-CB91), 4-MeSO2-2,3,6,2',4',5'-hexachlorobiphenyl (4-MeSO2-CB149) and tolylfluanid on tyrosine aminotransferase activity was close to additive. Thus, co-exposure to such different chemicals as persistent organic pollutants and pesticides may affect cells additively. Chemical interference with the glucocorticoid hormone system therefore deserves further attention in vivo.
Jefferson FA, etal., Toxicol Sci. 2009 Jan;107(1):293-7. Epub 2008 Oct 8.
Aromatic and heterocyclic amine carcinogens present in the diet and in cigarette smoke induce breast tumors in rats. N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) enzymes have important roles in their metabolic activation and deactivation. Human epidemiological studies suggest that g
enetic polymorphisms in NAT1 and/or NAT2 modify breast cancer risk in women exposed to these carcinogens. p-Aminobenzoic acid (selective for rat NAT2) and sulfamethazine (SMZ; selective for rat NAT1) N-acetyltransferase catalytic activities were both expressed in primary cultures of rat mammary epithelial cells. PABA, 2-aminofluorene, and 4-aminobiphenyl N-acetyltransferase and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine and N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline O-acetyltransferase activities were two- to threefold higher in mammary epithelial cell cultures from rapid than slow acetylator rats. In contrast, SMZ (a rat NAT1-selective substrate) N-acetyltransferase activity did not differ between rapid and slow acetylators. Rat mammary cells cultured in the medium supplemented 24 h with 10muM ABP showed downregulation in the N-and O-acetylation of all substrates tested except for the NAT1-selective substrate SMZ. This downregulation was comparable in rapid and slow NAT2 acetylators. These studies clearly show NAT2 acetylator genotype-dependent N- and O-acetylation of aromatic and heterocyclic amine carcinogens in rat mammary epithelial cell cultures to be subject to downregulation by the arylamine carcinogen ABP.
Wang X, etal., Toxicol Ind Health. 2010 Feb;26(1):47-53. Epub 2010 Jan 7.
Silicosis is a kind of pneumoconiosis caused by inhalation of silica dust, which is characterized by lung fibrosis. The biologically active form of transforming growth factor-beta1 (TGF-beta1) plays a key role in the development of lung fibrosis. CD36 is involved in the transformation of latent TGF
-beta1 (L-TGF-beta1) to active TGF-beta1. The antagonistic effect of the synthetic peptide was analyzed by the administration of CD36 (93-110) synthetic peptide to the silicosis model of mice. The hydroxyproline content of the silica + CD36 (93-110) synthetic peptide group was significantly lower than that of the other experimental groups [silica and silica + CD36 (208-225) synthetic peptide groups] (p < .05). Inflammation, fibrotic degree and distribution of collagen fibers in silicotic nodules of the silica + CD36 (93-110) synthetic peptide group were less than those of the other experimental groups. The expressions of collagen I and III of the silica + CD36 (93-110) synthetic peptide group were significantly lower than those of the other experimental groups (p < .05). CD36 (93-110) synthetic peptide reduced the tissue fibrotic pathologies and collagen accumulation in the silicosis model of mice, resulting in the decreased severity of silica-induced lung fibrosis.
Qamar W, etal., Toxicology. 2012 Jan 27;291(1-3):25-31. Epub 2011 Oct 25.
Benzo(a)pyrene [B(a)P] is known to alter lung physiology by interfering in various intracellular pathways including alterations in NF-kappaB activities, cytokine release and cell survival. NF-kappaB suppression/activation plays a major role in cell survival status. Present investigation deals with s
uch kind of effects of B(a)P on lungs in relation with soluble epoxide hydrolase (sEH) and thioredoxin reductase (TrxR) activities. Glycyrrhizic acid (GA), an active principle of Glycyrrhiza glabra (Licorice), is known to modulate various molecular processes. In the present study, we investigated the protective effects of GA against B(a)P induced debilities in lungs of Wistar rats. Intratracheal instillation of B(a)P significantly suppressed NF-kappaB translocation, sEH, TrxR and catalase activities in lung tissue. A marked induction of H(2)O(2) levels along with caspases activation (caspases-2, -3, -6, -8, and -9) in lung tissue after B(a)P exposure was observed. Lung injury was assessed by measuring lactate dehydrogenase (LDH), alkaline phosphatase (ALP), total cell count, total protein, neutrophil elastase activity in bronchoalveolar lavage fluid (BALF). Reduction in phospholipid content further potentiated these parameters. GA oral administration (50 and 100mg/kg b.wt.) significantly showed protection of lung epithelium by suppression of caspases activities in lung tissue and reduction of total protein, total cells, elastase activity, LDH and ALP activities along with fortification of phospholipids in BALF. Histological observations also confirm the findings in above mentioned parameters. Results indicate a strong correlation between amelioration of sEH and TrxR activities, and NF-kappaB activation. The present investigation gives an insight into probable mechanisms of lung injuries induced by short term exposures of B(a)P and prevention by glycyrrhizic acid.
Ultrastructural and biochemical studies were conducted to evaluate the effects of bismuth, a potentially toxic group V trace metal, on organelle structure and heme biosynthetic parameters in rat liver and kidney cells. Bismuth subnitrate (BiONO3) was administere
d subcutaneously to male rats in 0, 20, 40, or 80 mg/kg doses 16 hr prior to euthanasia. Electron microscopy revealed swollen mitochondria and distortion of mitochondrial inner membranes in liver and renal proximal tubule cells at 40 and 80 mg/kg dose levels. In liver, dose-related decreases were observed in the activities of the mitochondrial enzymes, delta-aminolevulinic acid (ALA) synthetase and heme synthetase, and of the cytoplasmic enzyme, ALA dehydratase, to 51, 48, and 35% of levels seen in untreated controls, respectively. In kidney, ALA synthetase and ALA dehydratase, but not heme synthetase, were depressed in vivo to 32 and 20% of control, respectively. Studies in vitro conducted for 1-hr periods with Bi concentrations at 0, 0.1, 0.2, or 0.4 mM in reaction mixtures revealed that the direct action of the metal on membranal enzymes only partially accounts for the impairment of the activity of membranal enzymes. These studies demonstrate that the initial acute effects of bismuth in liver and kidney cells include distortion of mitochondrial membranes and direct inhibition of specific heme pathway enzymes. Both effects contribute to compromise of membrane-associated enzymatic functions. These findings are comparable to those previously reported of other trace metals with known toxicologic potential and may represent early events in bismuth-induced cell injury.
Wan YJ, etal., Toxicology. 2010 Jul-Aug;274(1-3):57-64. Epub 2010 May 26.
The adverse environmental exposure in early life may have adverse effects on animals through epigenetic aspects. The current study examined the possibility of early epigenetic alteration in PFOS-exposed rat liver. Pregnant Sprague-Dawley (SD) rats were exposed to perfluorooctane sulfonate (PFOS) at
doses of 0.1, 0.6 and 2.0 mg/kg/d and 0.05% Tween 80 as control by gavage from gestation days 2 to 21. The dams were allowed to give birth and liver samples from weaned (postnatal day 21) offspring rats were analyzed for PFOS content, relative liver weight, global DNA methylation, methylation of LINE-1 regulatory region, tumor suppressor gene glutathione S-transferase pi (GSTP) and p16 promoter methylation level, as well as related genes expression level. In PFOS-exposed weaned rats, compared to the control, global DNA methylation and methylation of LINE-1 regulatory region decreased significantly only in the 2.0 mg/kg/d group. Up to 30% of critical CpG sites (+79, 81 and 84) in GSTP promoter region were methylated in the livers of PFOS-treated rats, while p16 promoter methylation was not affected. In addition, the up-regulated expression of GSTP was observed and this increase was associated with its main pathway of transcription regulation: Keap1-Nrf2/MafK. Thus, early-induced changes in critical cytosines within the GSTP gene promoter region may be a biomarker of hepatic PFOS burden, though their direct role in PFOS-induced hepatotoxicity, including its potential carcinogenic action, needs further research.
Liu T, etal., J Appl Physiol (1985). 2015 Aug 15;119(4):412-9. doi: 10.1152/japplphysiol.00335.2015. Epub 2015 Jun 11.
Anthrax is associated with severe vascular leak, which is caused by the bacterial lethal toxin (LeTx). Pleural effusions and pulmonary edema that occur in anthrax are believed to reflect endothelial injury caused by the anthrax tox
xin. Since vascular leak can also be observed consistently in rats injected intravenously with LeTx, the latter might present a simple physiologically relevant animal model of acute lung injury (ALI). Such a model could be utilized in evaluating and developing better treatment for ALI or acute respiratory distress syndrome (ARDS), as other available rodent models do not consistently produce the endothelial permeability that is a major component of ARDS. The biological activity of LeTx resides in the lethal factor metalloprotease that specifically degrades MAP kinase kinases (MKKs). Recently, we showed that LeTx inactivation of p38 MAP kinase signaling via degradation of MKK3 in pulmonary vascular endothelial cells can be linked to compromise of the endothelial permeability barrier. LeTx effects were linked specifically to blocking activation of p38 substrate and MAP kinase-activated protein kinase 2 (MAPKAPK2 or MK2) and phosphorylation of the latter's substrate, heat shock protein 27 (HSP27). We have now designed a peptide that directly and specifically activates MK2, causing HSP27 phosphorylation in cells and in vivo. The MK2-activating peptide (MK2-AP) also blocks the effects of LeTx on endothelial barriers in cultured cells and reduces LeTx-induced pulmonary vascular leak in rats. Hence, MK2-AP has the therapeutic potential to counteract anthrax or pulmonary edema and vascular leak due to other causes.
Rosenthal SL, etal., Am J Neurodegener Dis. 2012;1(2):191-8.
Late-onset Alzheimer's disease (LOAD) is a complex and multifactorial disease. So far ten loci have been identified for LOAD, including APOE, PICALM, CLU, BIN1, CD2AP, CR1, CD33, EPHA1, ABCA7, and MS4A4A/MS4A6E, but they explain about 50% of the genetic risk and thus additional risk genes need to b
e identified. Amyloid beta (Abeta) plaques develop in the brains of LOAD patients and are considered to be a pathological hallmark of this disease. Recently 12 new Abeta toxicity modifier genes (ADSSL1, PICALM, SH3KBP1, XRN1, SNX8, PPP2R5C, FBXL2, MAP2K4, SYNJ1, RABGEF1, POMT2, and XPO1) have been identified that potentially play a role in LOAD risk. In this study, we have examined the association of 222 SNPs in these 12 candidate genes with LOAD risk in 1291 LOAD cases and 958 cognitively normal controls. Single site and haplotype analyses were performed using PLINK. Following adjustment for APOE genotype, age, sex, and principal components, we found single nucleotide polymorphisms (SNPs) in PPP2R5C, PICALM, SH3KBP1, XRN1, and SNX8 that showed significant association with risk of LOAD. The top SNP was located in intron 3 of PPP2R5C (P=0.009017), followed by an intron 19 SNP in PICALM (P=0.0102). Haplotype analysis revealed significant associations in ADSSL1, PICALM, PPP2R5C, SNX8, and SH3KBP1 genes. Our data indicate that genetic variation in these new candidate genes affects the risk of LOAD. Further investigation of these genes, including additional replication in other case-control samples and functional studies to elucidate the pathways by which they affect Abeta, are necessary to determine the degree of involvement these genes have for LOAD risk.
Adult virgin 4-day cycling synchronized Charles foster females were treated subcutaneously (0.05 mg/kg body wt/day) with sodium acetate (control), lead acetate or cadmium acetate alone, or both during gestational period, with pretreatment of 5 days prior to mating. There were no alterations in repro
ductive performance in all metal-treated groups. Implantation enzymes, cathepsin-D and alkaline phosphatase, activity were altered, but no change in the reproductive performance was observed. The key steroidogenic enzymes of ovary and placenta (3beta-HSD and 17beta-HSD), along with gonadal steroids, were affected the most in cadmium and combined treated animals whereas lead-treated animals showed a minimum change compared to the control group. Maximum displacement of zinc bound to metallothionein was more in cadmium and combined treated rats when compared to other metal-treated groups. Biomolecules such as glycogen, protein, RNA, DNA, and protein content were affected in all metal-treated groups, whereas cadmium-treated animals showed greater effect. General parameters of toxicity such as alkaline phosphatase, serum glutamate pyruvate transaminase, and creatinine were altered but were within the normal range. Biochemical effects are correlated with metals accumulated in blood, reproductive tissue such as placenta and ovary.
Morgan DL, etal., Toxicol Pathol. 2012 Apr;40(3):448-65. Epub 2012 Jan 3.
2,3-Pentanedione (PD) is a component of artificial butter flavorings. The use of PD is increasing since diacetyl, a major butter flavorant, was associated with bronchiolitis obliterans (BO) in workers and has been removed from many products. Because the toxicit
y of inhaled PD is unknown, these studies were conducted to characterize the toxicity of inhaled PD across a range of concentrations in rodents. Male and female Wistar-Han rats and B6C3F1 mice were exposed to 0, 50, 100, or 200 ppm PD 6 h/d, 5 d/wk for up to 2 wk. Bronchoalveolar lavage fluid (BALF) was collected after 1, 3, 5, and 10 exposures, and histopathology was evaluated after 12 exposures. MCP-1, MCP-3, CRP, FGF-9, fibrinogen, and OSM were increased 2- to 9-fold in BALF of rats exposed for 5 and 10 days to 200 ppm. In mice, only fibrinogen was increased after 5 exposures to 200 ppm. The epithelium lining the respiratory tract was the site of toxicity in all mice and rats exposed to 200 ppm. Significantly, PD also caused both intraluminal and intramural fibrotic airway lesions in rats. The histopathological and biological changes observed in rats raise concerns that PD inhalation may cause BO in exposed humans.
Penney DG, etal., J Toxicol Environ Health. 1983 Aug-Sep;12(2-3):395-406.
Male rats, 5 and 90 d of age, continuously inhaled 500 ppm CO [40% carboxyhemoglobin (COHb)] for 5.5-8.0 wk. Cardiomegaly and polycythemia developed as previously reported. Heart weight gain in young and old rats treated with CO was accompanied by increased cytochrome c content (nmol) in both left v
entricle (LV) and right ventricle (RV) relative to controls. Cytochrome c concentration (nmol/g wet weight), however, was significantly depressed in LV and RV of young CO-exposed rats relative to controls, while there was no change in LV and RV of the old CO-exposed group. LV cytochrome c concentration was significantly higher than that of RV in both young and old, CO-exposed and control rats. On the other hand, cytochrome c concentration in young and old control LVs was similar, as was cytochrome c concentration in RVs of young and old control rats. Three additional experiments were carried out with 5-d-old rats inhaling 500 ppm CO, for 47 and 25 d. These also showed the increase in myocardial cytochrome c content and compromise of cytochrome c concentration, and both changes were greater with longer exposure.
An animal model of lung carcinogenicity induced by chronic inhalation of mainstream cigarette smoke would be useful for research on carcinogenic mechanisms, smoke composition-response relationships, co-carcinogenicity, and chemoprevention. A study was conducted to determine if chronic whole-body exp
osures of rats would significantly increase lung tumor incidence. Male and female F344 rats (n = 81 to 178/gender) were exposed whole-body 6 h/day, 5 days/week for up to 30 months to smoke from 1R3 research cigarettes diluted to 100 (LS) or 250 (HS) mg total particulate matter/m(3), or sham-exposed to clean air (C). Gross respiratory tract lesions and standard lung and nasal sections were evaluated by light microscopy. A slight reduction of survival suggested that the HS level was at the maximum tolerated dose as commonly defined. Cigarette smoke exposure significantly increased the incidences of non-neoplastic and neoplastic proliferative lung lesions in females, while nonsignificant increases were observed in males. The combined incidence of bronchioloalveolar adenomas and carcinomas in females were: HS = 14%; LS = 6%; and C = 0%. These incidences represented minima because only standard lung sections and gross lesions were evaluated. Mutations in codon 12 of the K-ras gene occurred in 4 of 23 (17%) tumors. Three mutations were G to A transitions and one was a G to T transversion. The incidence of neoplasia of the nasal cavity was significantly increased at the HS, but not the LS level in both males and females (HS = 6%, LS = 0.3%, C = 0.4% for combined genders). These results demonstrate that chronic whole-body exposure of rats to cigarette smoke can induce lung cancer.
Placental 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta-HSD2) is the key enzyme which protects the fetus from overexposure to glucocorticoids (GCs) by their oxidation into inactive derivates. Several recent studies suggest that 11 beta-HSD2 expression is subjected to regulation by antenatal s
teroid therapy. In our study we investigated the effect of two commonly used synthetic steroids, dexamethasone (DXM) and betamethasone (BTM), on the expression and function of 11 beta-HSD2 in the rat placenta. Pregnant rats were pretreated with low (0.2mg/kg) or high (5mg/kg and 11.5mg/kg for DXM and BTM, respectively) i.m. doses of GCs. 11 beta-HSD2 expression was investigated using real-time RT-PCR and Western blotting; conversion capacity of 11 beta-HSD2 was assessed by dual perfusion of the rat placenta. Significant increase in placental 11 beta-HSD2 mRNA expression was found in rats treated with DXM, however, this alteration was not observed on protein level. BTM had no effect on either mRNA or protein levels of 11 beta-HSD2. Functional studies revealed that both GCs significantly reduced the metabolism of corticosterone by the placenta. Our data indicate that placental barrier function mediated by 11 beta-HSD2 might be considerably impaired by the antenatal therapy with DXM and BTM. In addition, the discrepancy between expressional and functional studies suggests that sole analysis of expressional changes of 11 beta-HSD2 at mRNA and/or protein levels cannot convincingly predict the role of GC treatment on 11 beta-HSD2 function in the placental barrier.
Ascorbic acid is a sugar acid and an essential vital food nutrient found mainly in fruits and vegetables. The purpose of this study was to investigate the effects of ascorbic acid against arsenic induced oxidative stress in blood of rat. In rat, treatment with ascorbic acid prevented the increased s
erum enzymatic activity of AST, ALT, ALP, ACP and LDH. In addition, treatment with ascorbic acid prevented elevated production of LPO, PC and NO and restored the depletion of reduced SOD and CAT activities. Interestingly, ascorbic acid markedly upregulated lymphocytes relative mRNA expression of lymphocytes SOD2 gene corresponding to GAPDH, house keeping candidate gene in arsenic-treated rat, which might provide anti-oxidative activity in the blood.
Chlorpyrifos (CPS), a known neurotoxicant, is a widely used agricultural organophosphorus insecticide. The effects of postnatal exposure to CPS on the expression of mRNA for two factors critical to brain development, nerve growth factor (NGF) and reelin, were in
vestigated in the forebrain of rats. In addition, the expression of mRNA for the muscarinic acetylcholine receptor (mAChR) M(1) subtype and cell-specific markers for developing neurons (beta-III tubulin), astrocytes (glial fibrillary acidic protein, GFAP), and oligodendrocytes (myelin-associated glycoprotein, MAG) was also investigated. Oral administration of CPS (1.5 or 3.0 mg/kg) or the corn oil vehicle was performed daily from postnatal days (PNDs) 1 through 6. No signs of overt toxicity or of cholinergic hyperstimulation were observed after CPS administration. Body weight was significantly different from controls on PND7 in both males and females exposed to 3.0 mg/kg CPS. Quantitative PCR was performed on the forebrain. The expression of NGF, reelin, and M(1) mAChR mRNA was significantly reduced with both dosages of CPS in both sexes. beta-III Tubulin mRNA expression remained unchanged after exposure, whereas MAG mRNA expression was significantly decreased with both dosages of CPS in both sexes, suggesting effects on the developing oligodendrocytes. In contrast, GFAP mRNA levels were significantly increased with both dosages of CPS in both sexes, suggesting increased astrocyte reactivity. Our findings indicate that dosages of CPS which cause significant cholinesterase inhibition but do not exert overt toxicity can adversely affect the expression levels of critical genes involved in brain development during the early postnatal period in the rat.
Sobarzo CM, etal., Reprod Toxicol. 2006 Jul;22(1):77-86. Epub 2006 May 5.
This study investigated the effect of DEHP exposure on N-cadherin and alpha-, beta- and p120-catenin immunoreactivities in the rat testis. DEHP was administered by daily gavage to 25-day-old male Sprague-Dawley rats at a dose of 2 g DEHP/5 ml corn oil/kg body weight for 2 days or 7 days. Control rat
s were treated with corn oil vehicle under the same conditions. Animals were killed at 24h after the last treatment. Another group of rats treated with DEHP or corn oil vehicle (control group) for 2 days were held for 30 days without treatment to observe recovery. Testes were analyzed for histopathology, TUNEL staining, immunofluorescence (IF) and Western blot analyses. Animals exposed to DEHP for 2 days or 7 days showed severe alterations of seminiferous tubules characterized by germ cell sloughing. Animals from the longer term recovery group treated with DEHP showed foci of delayed spermatogenesis. A linear and continuous pattern of N-cadherin was observed in the basal compartment of the seminiferous tubules. A similar pattern but with higher IF intensity was observed for N-cadherin in rats treated with DEHP for 2 days or 7 days, compared to control animals. The alpha-, beta- and p120-catenins were detected in the basal compartment of seminiferous tubules in similar localization and IF pattern for DEHP and control groups. A significant increase in testicular N-cadherin and alpha-catenin levels was detected by Western blot analysis in DEHP-exposed versus control rats. No variations in N-cadherin or catenin expression were detected in the recovery groups. These findings demonstrate that DEHP induces an up-regulation of N-cadherin and alpha-catenin expression and may perturb cell-cell adhesion phenomena in the seminiferous tubule.
Yao HT, etal., Food Chem Toxicol. 2009 Jul;47(7):1703-9. Epub 2009 May 3.
To investigate whether diabetes-induced alterations of CYP2E1 and oxidative stress can be modulated by dietary taurine supplementation, male Wistar rats were divided into non-diabetic, diabetic, and diabetic taurine-supplemented groups (administered at 2% in the drinking water). Increased levels of
CYP2E1-catalyzed p-nitrophenol hydroxylation were found in liver and kidney microsomes of rats with STZ-induced diabetes compared to those of non-diabetic control rats. Immunoblot and RT-PCR analyses of CYP2E1 protein and mRNA levels in the liver and kidneys showed the same trend as with enzyme activities. Taurine supplementation significantly decreased the enzyme activity and expression (protein and mRNA) of CYP2E1 in diabetic rat kidneys. Plasma beta-hydroxybutyrate concentration was significantly reduced in taurine-treated diabetic rats. The induction of heme oxygenase-1 mRNA was suppressed by taurine treatment in diabetic rat kidneys. An increase in reduced glutathione (GSH) and a higher ratio of reduced to oxidized glutathione (GSH/GSSG) together with lower values of thiobarbituric acid-reactive substances (TBARS) were observed in the kidneys of taurine-treated diabetic rats. However, taurine supplementation caused only a slight or insignificant effect on these alternations in the liver of diabetic rats. Our results show dietary taurine may reduce CYP2E1 expression and activity, and oxidative stress in kidneys of diabetic rats.
We aimed to investigate the extent to which maternal diabetes with or without folic acid (FA) supplementation affects mRNA levels and protein distribution of ROS scavenging enzymes, vascular endothelial growth factor-A (Vegf-A), folate binding protein-1 (Folbp-1), and apoptosis-associated proteins i
n the yolk sacs of rat embryos on gestational days 10 and 11. Commencing at conception and throughout pregnancy, half of the streptozotocin-diabetic and half of the control rats received daily FA injections. Maternal diabetes impaired vascular morphology and decreased CuZnSOD and GPX-1 gene expression in yolk sacs. Maternal diabetes also increased the levels of CuZnSOD protein, increased the Bax/Bcl-2 protein ratio and decreased Vegf-A protein distribution. FA treatment normalized vascular morphology, decreased mRNA levels of all three SOD isoforms and increased Vegf-A mRNA levels, rectified CuZnSOD protein distribution and Bax/Bcl-2 ratio. A teratogenic diabetic environment produces a state of vasculopathy, oxidative stress, and mild apoptosis in the yolk sac. FA administration normalizes vascular morphology, diminishes apoptotic rate, and increases Vegf-A gene expression and protein distribution in the yolk sac of diabetic rats.
Ning Y, etal., J Toxicol Sci. 2015;40(5):637-45. doi: 10.2131/jts.40.637.
Mechanisms underlining oxidative stress-induced injury to cardiomyocytes during myocardial infarction (MI) or acute ischemia/reperfusion (I/R) are not well recognized. Forkhead box O (FOXO) transcription factors have been defined as critical mediators of oxidative stress resistance in multiple cell
types, but their cardioprotective functions have not been reported previously. In the present study, we investigated the promotion to FOXO1 by the treatment with hydrogen peroxide (H2O2) during the H2O2-induced apoptosis in cardiomyocyte H9c2 cells. We then silenced FOXO1 with FOXO1-specific siRNA, and re-evaluated the H2O2-induced apoptosis. In addition, we also examined the H2O2-induced autophagy and the autophagy induction post FOXO1 silence. Results demonstrated that H2O2 induced a significantly high level of apoptosis in H9c2 cells. Interestingly, the FOXO1 in both mRNA and protein levels were not significantly regulated, however, the phosphorylated form of FOXO1 was significantly promoted in the H2O2-treated H9c2 cells. On the other hand, post the significant knockout of FOXO1 with the transfection with FOXO1-specific siRNA, the apoptosis induction was more significant in H9c2 cells subjected to H2O2. In addition, we found a significantly higher level of autophagy induction in the H2O2-treated H9c2 cells. However, the autophagy was markedly reduced by the knockout of FOXO1. In summary, these data support the critical role for FOXO1 in promoting cardiomyocytes against oxidative stress probably through inducing autophagy.
Studies in rats have demonstrated that modest underlying inflammation can precipitate idiosyncratic-like liver injury from the histamine 2-receptor antagonist, ranitidine (RAN). Coadministration to rats of nonhepatotoxic doses of RAN and the inflammagen, bacteri
al lipopolysaccharide (LPS), results in hepatocellular injury. We tested the hypothesis that hepatic gene expression changes could be distinguished among vehicle-, LPS-, RAN- and LPS/RAN-treated rats before the onset of significant liver injury in the LPS/RAN-treated rats (i.e., 3 h post-treatment). Rats were treated with LPS (44 x 10(6) EU/kg, i.v.) or its vehicle, then two hours later with RAN (30 mg/kg, i.v.) or its vehicle. They were killed 3 h after RAN treatment, and liver samples were taken for evaluation of liver injury and RNA isolation. Hepatic parenchymal cell injury, as estimated by increases in serum alanine aminotransferase (ALT) activity, was not significant at this time. Hierarchal clustering of gene expression data from Affymetrix U34A rat genome array grouped animals according to treatment. Relative to treatment with vehicle alone, treatment with RAN and/or LPS altered hepatic expression of numerous genes, including ones encoding products involved in inflammation, hypoxia, and cell death. Some were enhanced synergistically by LPS/RAN cotreatment. Real-time PCR confirmed robust changes in expression of B-cell translocation gene 2, early growth response-1, and plasminogen-activator inhibitor-1 (PAI-1) in cotreated rats. The increase in PAI-1 mRNA was reflected in an increase in serum PAI-1 protein concentration in LPS/RAN-treated rats. Consistent with the antifibrinolytic activity of PAI-1, significant fibrin deposition occurred only in livers of LPS/RAN-treated rats. The results suggest the possibility that expression of PAI-1 promotes fibrin deposition in liver sinusoids of LPS/RAN-treated rats and are consistent with the development of local ischemia and consequent tissue hypoxia.
The hepatobiliary disposition of thyroxine (T4) was evaluated in Groningen Yellow transport deficient (TR(-)) rats lacking functional multidrug resistance-associated protein 2 (Mrp2; Abcc2). Male Wistar and TR(-) rats were dosed orally (4 days) with phenobarbital (PB; 100 mg/kg) or DMP 904 (200 mg/k
g), after which T4 homeostasis and hepatic cytochromes P450, UDP-glucuronosyltransferase, xenobiotic transporters, and T4 glucuronidation were determined. Serum concentrations of T4 were approximately 50% higher in control TR(-) rats than Wistars. PB and DMP 904 increased hepatic levels of P450s and T4-glucuronidation (T4-G), and these changes were associated with decreased serum T4 levels in both strains. In Wistar but not TR(-) rats, DMP 904 increased thyroid stimulating hormone levels twofold. Hepatobiliary clearance of T4 was determined after intravenous infusion of [(125)I]T4 to rats dosed with PB and DMP 904 (4 days). PB and DMP 904 increased plasma clearance and hepatic uptake of [(125)I]T4 equivalents in Wistar but not TR(-) rats. Total biliary clearance (Cl(bile)) was approximately 0.85 and 0.2 ml/h in Wistar and TR(-) rats, respectively, with virtually no T4-G excreted in bile in TR(-) rats. Biliary clearance of unconjugated T4 was also lower in control TR(-) rats than in Wistars, although DMP 904 increased its biliary clearance in both strains. These results suggest that Mrp2 is likely to be responsible for biliary excretion of T4-G and contributes in part to excretion of T4. Decreased biliary clearance of T4 and metabolites in TR(-) rats mitigated but did not prevent drug-induced changes in serum T4, suggesting that other factors contribute to changes in T4 homeostasis in these rats.
Lee MH, etal., Toxicology. 2008 Jan 14;243(1-2):224-35. Epub 2007 Oct 22.
Formaldehyde is frequently used in indoor household and occupational environments. Inhalation of formaldehyde invokes an inflammatory response, including a variety of allergic signs and symptoms. Therefore, formaldehyde has been considered as the most prevalent cause of sick building syndrome, which
has become a major social problem, especially in developing urban areas. Further formaldehyde is classified as a genotoxicant in the respiratory tract of rats and humans. To better understand the molecular mechanisms involved in formaldehyde intoxication, we sought differentially regulated genes by formaldehyde exposure to Hs 680.Tr human trachea cells, using polymerase chain reaction (PCR)-based suppression subtractive hybridization. We identified 27 different formaldehyde-inducible genes, including those coding for the major histocompatibility complex, class IA, calcyclin, glutathione S-transferase pi, mouse double minute 2 (MDM2), platelet-derived growth factor receptor alpha, and which are known to be associated with cell proliferation and differentiation, immunity and inflammation, and detoxification. Induction of these genes by formaldehyde treatment was confirmed by reverse transcription PCR and western blot analysis. Further, the expression of calcyclin, glutathione S-transferase pi, PDGFRA and MDM2 were significantly induced in the tracheal epithelium of Sprague Dawley rats after formaldehyde inhalation. Our results suggest that the elevated levels of these genes may be associated with the formaldehyde-induced toxicity, and that they deserve evaluation as potential biomarkers for formaldehyde intoxication.
In this study, approximately 40 endogenous metabolites were identified and quantified by (1)H NMR in urine samples from male rats dosed with two proximal tubule toxicants, cisplatin and gentamicin. The excreted amount of a majority of those metabolites in urine
was found to be dose-dependent and exhibited a strong correlation with histopathology scores of overall proximal tubule damage. MetaCore pathway analysis software (GeneGo Inc.) was employed to identify nephrotoxicant-associated biochemical changes via an integrated quantitative analysis of both urine metabolomic and kidney transcriptomic profiles. Correlation analysis was applied to establish quantitative linkages between pairs of individual metabolite and gene transcript profiles in both cisplatin and gentamicin studies. This analysis revealed that cisplatin and gentamicin treatments were strongly linked to declines in mRNA transcripts for several luminal membrane transporters that handle each of the respective elevated urinary metabolites, such as glucose, amino acids, and monocarboxylic acids. The integrated pathway analysis performed on these studies indicates that cisplatin- or gentamicin-induced renal Fanconi-like syndromes manifested by glucosuria, hyperaminoaciduria, lactic aciduria, and ketonuria might be better explained by the reduction of functional proximal tubule transporters rather than by the perturbation of metabolic pathways inside kidney cells. Furthermore, this analysis suggests that renal transcription factors HNF1alpha, HNF1beta, and HIF-1 might be the central mediators of drug-induced kidney injury and adaptive response pathways.
C-reactive protein (CRP), haptoglobin (Hp) and fibrinogen (Fbgn) are acute phase reactants (APRs), the blood levels of which increase during acute inflammation. However, although the levels of these APRs are used to monitor inflammation in man, their usefulness and sensitivity as markers of inflamma
tion in rodents are less clear. We therefore wished to evaluate, in a comparative fashion, a prototype immunoassay for serum CRP, a commercial assay for serum Hp, and an automated assay for Fbgn, using a model of acute inflammation in the rat. Additionally, pro-inflammatory cytokines and serum protein fractions were also measured. The model of inflammation used was the intraperitoneal injection of Freund's complete adjuvant (FCA). In a concluding experiment, findings with Hp in the FCA rat model were validated in a toxicologically relevant study involving the induction of acute hepatic inflammation using the model hepatotoxicant carbon tetrachloride (CCl(4)). Female Wistar Han rats were treated with a single injection of FCA in a dose-response study (1.25-10.0 ml/kg, sampling at 36 h) and two time-course studies (over 40 h and 21 days). In a final experiment, rats were dosed with CCl(4) at 0.8 ml/kg and sampled over a 17-day period. In FCA and CCl(4) experiments, serum/plasma was prepared and tissues taken at autopsy for histological assessment (CCl(4) study only). In the dose-response study, serum CRP, Hp and plasma Fbgn were increased at all FCA dose levels at 36 h post-dosing. Serum alpha(2) and beta(1) globulin fractions were also increased, while albumin levels were decreased. In the 40-h time-course study, CRP levels peaked at 25-40 h post-dosing, to approximately 120% of control (as 100%). Hp levels increased to a maximum at 25 and 40 h post-dosing with values greater than 400% of control, and alpha(2) and beta(1) globulin fractions peaked at 30 and 40 h post-dosing to 221 and 187% of control, respectively. Increased serum interleukin-6 (IL-6) and interleukin-1beta (IL-1beta) levels peaked at 20 h (11-fold) and 25 h (19-fold), respectively. In a 21-day time-course study, no increased CRP levels were measured despite elevated levels of Hp, which peaked at 36 h (approximately 7-fold above control), and remained elevated up to 21 days. IL-6 and IL-1beta levels peaked at 12 h (19-fold) and 24 h (28-fold), respectively. Liver histopathology of animals treated with CCl(4) showed centrilobular hepatocellular degeneration and necrosis (most significant at 36 h) with an inflammatory response (most significant at 48 h). Resolution of the lesion was complete by 4 days post-dosing. Serum alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase levels peaked at 36 h post-dosing. Hp levels increased maximally at 48 h (426% of control). We conclude that serum CRP is a poor marker of acute inflammation in the rat in comparison with serum Hp and plasma Fbgn. Between Hp and Fbgn, serum Hp is shown to be the most sensitive and useful marker of acute inflammation.
Meier DT, etal., J Biol Chem. 2015 Dec 18;290(51):30475-85. doi: 10.1074/jbc.M115.676692. Epub 2015 Oct 19.
Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased beta-cell apoptosis and reduced beta-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves h
IAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting beta-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1-15, 1-25, 16-37, 16-25, and 26-37. The fragments 1-15, 1-25, and 26-37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with beta cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16-37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16-37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16-37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and beta-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit beta-cell loss in type 2 diabetes.
Tokuda E, etal., Toxicology. 2007 Jan 5;229(1-2):33-41. Epub 2006 Sep 29.
It has been hypothesized that copper-mediated oxidative stress contributes to the pathogenesis of familial amyotrophic lateral sclerosis (ALS), a fatal motor neuron disease in humans. To verify this hypothesis, we examined the copper and zinc concentrations and the amounts of lipid peroxides, togeth
er with that of the expression of metallothionein (MT) isoforms in a mouse model [superoxide dismutase1 transgenic (SOD1 Tg) mouse] of ALS. The expression of MT-I and MT-II (MT-I/II) isoforms were measured together with Western blotting, copper level, and lipid peroxides amounts increased in an age-dependent manner in the spinal cord, the region responsible for motor paralysis. A significant increase was already seen as early as 8-week-old SOD1 Tg mice, at which time the mice had not yet exhibited motor paralysis, and showed a further increase at 16 weeks of age, when paralysis was evident. Inversely, the spinal zinc level had significantly decreased at both 8 and 16 weeks of age. The third isoform, the MT-III level, remained at the same level as an 8-week-old wild-type mouse, finally increasing to a significant level at 16 weeks of age. It has been believed that a mutant SOD1 protein, encoded by a mutant SOD1, gains a novel cytotoxic function while maintaining its original enzymatic activity, and causes motor neuron death (gain-of-toxic function). Copper-mediated oxidative stress seems to be a probable underlying pathogenesis of gain-of-toxic function. Taking the above current concepts and the classic functions of MT into account, MTs could have a disease modifying property: the MT-I/II isoform for attenuating the gain-of-toxic function at the early stage of the disease, and the MT-III isoform at an advanced stage.
Phenobarbital (PB) increases serum total cholesterol levels in rodents and humans. To investigate the underlying molecular mechanisms, we performed a microarray analysis on liver of rats treated repeatedly with 100 mg/kg PB, and examined the serum blood chemistry. The serum concentration of non-este
rified fatty acids was decreased from day 1 to day 14 except for day 7, and that of cholesterol was increased from day 4 to day 14. The serum concentration of total ketone bodies was increased on day 7, and that of triglycerides was decreased on day 14. Transcript content of glycolytic genes was decreased by PB treatments, while that of lipoprotein lipase was continuously increased, suggesting a notion that repetitive PB treatments impaired glycolysis and stimulated lipolysis in the liver. The hypothesis was examined by using a previously reported flux-balance model. The increase in mRNA content of malic enzyme after the PB treatment agreed well with the flux-balance model result, suggesting the validity of our hypothesis. The findings also suggested that there was an abundance of acetyl-CoA and shortage of glycolytic products after the repeated PB treatments. Although ketogenesis would normally occur under such cellular conditions, it was only weakly observed after the repeated PB treatments, presumably owing to a decrease in HMG-CoA synthase mRNA content. On the other hand, the mRNA content of several cholesterogenic genes was slightly induced by PB treatments. Thus, serum chemistry and microarray results suggested that repeated PB treatments induced cholesterogenesis in rat livers, which may have contributed to the elevation of the serum total cholesterol concentration.
Tomita M, etal., Toxicology. 2007 Mar 7;231(2-3):200-9. Epub 2006 Dec 15.
Paraquat (PQ)-induced pulmonary toxicity is characterized by initial development of pulmonary edema, infiltration of inflammatory cells, and damage to the alveolar epithelium, which may progress to severe fibrosis. However, the exact role of PQ in the progressi
on of the pathogenesis has not been clearly established. To understand the mechanism of PQ in pulmonary toxicity, we developed an animal model of PQ-induced lung injury by intranasal instillation of PQ solution using C57Black/6J mice. Twenty microliters of PQ solution (0.01, 0.01, and 0.04 mg/mouse) was applied through the nares, and the same amount of vehicle was applied in control mice. The pathological progression of lung pathology in our mouse model was very similar to that of patients suffering from PQ poisoning. The lungs of some animals exposed to PQ showed acute fulmination, resulting in death from 5 days post-exposure, but others showed a more protracted injury, resulting in typical pulmonary fibrosis at 3 weeks. Using this PQ-poisoned mouse model, we examined the gene expression at the initial destructive phase (within 5 days) that fibrosis has not completely developed. We prepared RNAs after 6h, 24h, and 5 days and examined the changes of the expression levels for 45 selected genes. The genes showing >2-fold increase at 6h or a time-dependent decrease during this experimental period may be the early markers for the destructive phase. These genes are Mt1, Mt2, Hmox1, Gcl, GR, IL-6, IL-13, Txn1, Fas, FasL, Lpin2, Mmp1a, Mmp12, Sfp-B, Sfp-D, CAT, EC-SOD, GST, and Pltp. On the other hand, the genes involved in the development of fibrosis, such as procollagen, Fn1, Eln, SMA, and Mmp9, Timp1 were significantly increased on day 5, not at 6h nor at 24h, after PQ treatment (the late marker). The genes showing a significant increase (Mmp3 and Mmp8) or decrease (VEGFA) at 24h and 5 days and not at 6h may be also the late markers. These changes in gene expression, which are equalled to functional activities of proteins, will be the targets for future studies focused on the development on PQ-induced pulmonary damage.
OBJECTIVES: Multidrug resistance protein 2 (MRP2, ABCC2) plays an important role in the biliary clearance of a wide variety of endogenous and exogenous toxic compounds. Therefore, polymorphisms and mutations in the MRP2 gene may affect individual susc
eptibility to hepatotoxic reactions. METHODS: Associations between genetic variations of MRP2 and toxic hepatitis were investigated using integrated population genetic analysis and functional molecular studies. RESULTS: Using a gene scanning method, 12 polymorphisms and mutations were found in the MRP2 gene in a Korean population. Individual variation at these sites was analyzed by conventional DNA screening in 110 control subjects and 94 patients with toxic hepatitis induced mostly by herbal remedies. When haplotypes were identified, over 85% of haploid genes belonged to the five most common haplotypes. Among these, a haplotype containing the g.-1774delG polymorphism showed a strong association with cholestatic or mixed-type hepatitis, and a haplotype containing the g.-1549G>A, g.-24C>T, c.334-49C>T, and c.3972C>T variations was associated with hepatocellular-type hepatitis. A comprehensive functional study of these sites revealed that genetic variations in the promoter of this gene are primarily responsible for the susceptibility to toxic liver injuries. The g.-1774delG variation and the combined variation of g.-1549G>A and g.-24C>T decreased MRP2 promoter activity by 36 and 39%, respectively. In addition, the promoter carrying the g.-1774delG allele showed a defect in the bile acid-induced induction of promoter activity. CONCLUSIONS: These results suggest that genetic variations of MRP2 are an important predisposing factor for herbal-induced or drug-induced toxic liver injuries.
Herlin M, etal., Toxicology. 2010 Jun 29;273(1-3):1-11. Epub 2010 Apr 18.
BACKGROUND: Both industrial chemicals and environmental pollutants can interfere with bone modeling and remodeling. Recently, detailed toxicological bone studies have been performed following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which exerts m
ost of its toxic effects through the aryl hydrocarbon receptor (AhR). OBJECTIVES: The aims of the present study were to quantitatively evaluate changes in bone geometry, mineral density and biomechanical properties following long-term exposure to TCDD, and to further investigate the role of AhR in TCDD-induced bone alterations. To this end, tissue material used in the study was derived from TCDD-exposed Long-Evans (L-E) and Han/Wistar (H/W) rats, which differ markedly in sensitivity to TCDD-induced toxicity due to a strain difference in AhR structure. METHODS: Ten weeks old female L-E and H/W rats were administered TCDD s.c. once per week for 20 weeks, at doses corresponding to calculated daily doses of 0, 1, 10, 100 and 1000ngTCDD/kgbw (H/W only). Femur, tibia and vertebra from the L-E and H/W rats were analyzed by peripheral quantitative computed tomography (pQCT) and biomechanical testing at multiple sites. Dose-response modeling was performed to establish benchmark doses for the analyzed bone parameters, and to quantify strain sensitivity differences for those parameters, which were affected by TCDD exposure in both rat strains. RESULTS: Bone geometry and bone biomechanical parameters were affected by TCDD exposure, while bone mineral density parameters were less affected. The trabecular area at proximal tibia and the endocortical circumference at tibial diaphysis were the parameters that showed the highest maximal responses. Significant strain differences in response to TCDD treatment were observed, with the L-E rat being the most sensitive strain. For the parameters that were affected in both strains, the differences in sensitivity were quantified, showing the most pronounced (about 49-fold) strain difference for cross-sectional area of proximal tibia. CONCLUSION: The study provides novel information about TCDD-induced bone alterations at doses, which are of relevance from a health risk assessment point of view. In addition, the obtained results provide further support for a distinct role of the AhR in TCDD-induced bone alterations, and suggest that the benchmark dose modeling approach is appropriate for quantitative evaluation of bone toxicity parameters.
Li X, etal., J Toxicol Sci. 2016 Feb;41(1):45-53. doi: 10.2131/jts.41.45.
Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells and cancer cells. However, whether Ambra1 plays an important
role in the autophagy pathway in ovarian cancer cells is unknown. In this study, we hypothesized that Ambra1 is an important regulator of autophagy and apoptosis in ovarian cancer cells. We firstly confirmed autophagic activity in ovarian cancer OVCAR-3 cells which were treated with cisplatin by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) localization and the presence of autophagosomes and LC3 protein levels in OVCAR-3 cells. Cell apoptosis and viability were measured by annexin-V and PI staining and MTT assays. We then knocked down Ambra1 expression with transfection with the plasmid expressing the small hairpin RNA (shRNA) targeting AMBRA1, then re-evaluated autophagy in the OVCAR-3 cells subject to cisplatin treatment, and re-determined the sensitivity of OVCAR-3 cells to cisplatin. Results demonstrated that cisplatin treatment induced autophagy in OVCAR-3 cells in association with Ambra1 upregulation in the ovarian cancer cells. When Ambra1 expression was reduced by shRNA, the ovarian cancer cells were more sensitive to cisplatin. In conclusion, Ambra1 is a crucial regulator of autophagy and apoptosis in ovarian cancer cells subject to cisplatin to maintain the balance between autophagy and apoptosis. And the Ambra1-targeting inhibition might be an effective method to sensitize ovarian cancer cells to chemotherapy.
Polychlorinated biphenyls (PCBs) are ubiquitous and persistent environmental contaminants that disturb normal endocrine functions, including gonadal functions in humans and mammals. PCBs (Aroclor 1254) - induced toxic manifestations are associated with the produ
ction of free radicals. Lycopene belongs to the group of natural carotenoids, which are found in many fruits, vegetables and other green plants. Lycopene, the most potent antioxidant protects against oxidative damage. The present study was conducted to elucidate the protective role of lycopene against Aroclor 1254-induced changes in Leydig cellular steroidogenic acute regulatory (StAR) protein, cytochrome P450 side chain cleavage (P450 scc) enzyme expression and 3beta-hydroxy steroid dehydrogenase (3beta-HSD) activity. The rats were divided into four groups. Each group consists of six animals. Group I rats were administered with corn oil intraperitoneally (i.p.) for 30 days. Group II rats were treated with Aroclor 1254 (i.p.) 2mgkg(-1)body weight (bwt)day(-1) for 30 days. Group III rats were treated with Aroclor 1254 (i.p.) 2mgkg(-1)bwtday(-1) along with simultaneous supplementation of lycopene 4mgkg(-1)bwtday(-1) (gavage) for 30 days. Group IV rats administered with lycopene alone at the dose of 4mgkg(-1)bwt day(-1) (gavage) for 30 days. After 24h of the last treatment, animals were decapitated, blood was collected and serum testosterone level was estimated by radioimmunoassay (RIA). Testes were removed and Leydig cells were isolated in aseptic condition. StAR protein, cytochrome P450 scc enzyme expression were studied by Western blot analysis and 3beta-HSD activity was estimated spectrophotometrically. Aroclor 1254 treatment significantly reduced the serum testosterone level. Simultaneous supplementation of lycopene maintained the serum testosterone to near normal. Aroclor 1254 exposure decreased Leydig cellular StAR protein, cytochrome P450 scc enzyme expression and activity of 3beta-HSD. However, simultaneous supplementation of lycopene improved Leydig cellular StAR protein, cytochrome P450 scc expression and activity of 3beta-HSD. These results suggested that lycopene have ameliorative role against Aroclor 1254 induced Leydig cell dysfunction.
Lahousse SA, etal., Toxicol Sci. 2006 Oct;93(2):369-81. Epub 2006 Jun 29.
Phthalate chemical plasticizers can damage the fetal and postnatal mammalian testis, but several aspects of the injury mechanism remain unknown. Using a genome-wide microarray, the profile of testicular gene expression changes was examined following exposure of postnatal day 28 rats to a single, hig
h dose (1000 mg/kg) of mono-(2-ethylhexyl) phthalate (MEHP). By microarray analysis, approximately 1675 nonredundant genes exhibited significant expression changes; the vast majority were observed at 12 h. Among the 36 genes significantly altered up to the 3-h time point, prominent functional categories were secreted, transcription, and signaling factors. Using quantitative PCR (qPCR), the dose-response of 24 genes was determined after a single MEHP exposure of 10, 100, or 1000 mg/kg. Increasing 114-fold by 12 h at 1000 mg/kg, Thbs1 (thrombospondin 1) showed the highest level of gene induction. The vast majority of genes analyzed by qPCR exhibited significant expression alterations at the lowest dose level. Interestingly, a unique, dose-dependent expression pattern was observed for the transcription factor Nr0b1, steroidogenic genes (Cyp17a1 and StAR), and a cholesterol metabolism gene (Dhcr7). For these genes, the direction of expression change at 10 or 100 mg/kg was opposite that observed at 1000 mg/kg. Gene profiling data at 1000 mg/kg MEHP were phenotypically anchored to increased germ cell apoptosis (6 and 12 h) and an interstitial neutrophil infiltrate (12 h). At 10 or 100 mg/kg MEHP, no testicular morphological changes were detected, but a significant increase in germ cell apoptosis was seen at 6 h. Finally, comparison of the prepubertal MEHP microarray data to similar data from fetal dibutyl phthalate (DBP) exposure showed conservation in both the identities of testicular genes altered and the direction of expression changes. For example, 60% of the genes altered within 3 h of prepubertal MEHP exposure also were changed following acute fetal DBP exposure, and the direction of expression change was highly preserved. These data demonstrate that similar genetic targets are altered following fetal and prepubertal phthalate exposure, suggesting that the initial mechanism of fetal and prepubertal phthalate-induced testicular injury is shared.
Estradiol (E2) is suppressed in prepubertal females exposed maternally to lead (Pb); thus, we assessed effects of Pb on ovarian steroidogenic acute regulatory protein (StAR) as a potential mechanism for this action. Adult Fisher 344 females were dosed with 12 mg of lead acetate per ml of Pb acetate
(PbAc) or sodium acetate (NaAc; control), beginning 30 days prior to breeding and continuing until their pups were weaned. For the first part of this study, animals from both groups were killed when 31 days old, at 0800 h, for assessment of basal ovarian StAR gene expression. Results indicated Pb decreased (p < 0.01) both StAR transcripts. In the second part of the study, pregnant mare serum gonadotropin (PMSG) was administered to half of the Pb-treated and control animals at 0800 h. These animals, and animals from both groups that did not receive PMSG, were killed and ovaries and blood collected at 1600 h to assess ovarian StAR protein and E2 responsiveness to gonadotropin stimulation. Pb decreased (p < 0.0001) basal StAR protein expression and lowered (p < 0.001) E2 levels in animals that did not receive PMSG. PMSG induced (p < 0.0001) StAR protein in both the Pb-treated and control animals, an action associated with increased (p < 0.001) serum levels of E2. These results are the first to show that Pb alters basal StAR synthesis, but does not alter gonadotropin-stimulated StAR synthesis, hence, suggesting the primary action of Pb to suppress E2 is through its known action to suppress the serum levels of luteinizing hormone and not due to decreased responsiveness of StAR synthesizing machinery.
Zeng KW, etal., Toxicol In Vitro. 2012 Mar;26(2):215-20. Epub 2011 Nov 26.
Aluminum-induced neuronal cell apoptosis has been implicated in various neurodegenerative disorders. However, whether autophagy, a vital lysosomal degradation pathway, is involved in this pathogenesis still remains unknown. Our present findings demonstrated that aluminum significantly increased rat
astrocyte apoptosis and autophagy levels in a dose-dependent manner. Examination of the associated mechanisms revealed that aluminum at low levels (400muM) did not increase apoptosis protein expressions (cleaved caspase-3 and cleaved PARP), but markedly up-regulated autophagy-related protein Beclin 1 expression. This indicates that the autophagy process occurs earlier than neuronal apoptosis. Moreover, aluminum at high levels (1600muM) significantly induced autophagy-related protein (Beclin 1 and LC3II) and apoptosis-related protein expressions, showing that both autophagy and apoptosis processes are activated under high levels of aluminum exposure. We used 3-methyladenine, an inhibitor of class III phosphatidylinositol-3 kinase, to treat astrocytes and found that the apoptosis rate in the 3-MA/aluminum co-treated group was markedly down-regulated compared with aluminum alone-treated astrocytes. The apoptosis protein and autophagy-related protein expressions were also decreased. These observations showed that the mild autophagy process may precede apoptosis in low dose aluminum-insulted astrocytes, and high dose aluminum-induced serious autophagy may result in cell apoptosis via the Beclin 1-dependent autophagy signal pathway.
Poljakovic M, etal., J Toxicol Environ Health A. 2007 Jan 15;70(2):118-27.
Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase were elucidated in l
ungs of Sprague-Dawley rats 24 h following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time polymerase chain reaction (PCR), and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced two- and three-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100 g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no inducible nitric oxide synthase (iNOS) immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica.
Wang QS, etal., Toxicology. 2008 Feb 28;244(2-3):166-78. Epub 2007 Nov 22.
To investigate the mechanisms and biomarker of the neuropathy induced by 2,5-hexanedione (HD), male Wistar rats were administrated HD at dosage of 200 or 400mg/kg for 8 weeks (five-times per week). All rats were sacrificed after 8 weeks of treatment and the cerebrum cortex (CC), spinal cord (SC) and
sciatic nerves (SN) were dissected, homogenized and used for the determination of cytoskeletal proteins by western blotting. The levels of neurofilaments (NFs) subunits (NF-L, NF-M and NF-H) in nerve tissues of 200 and 400mg/kg HD rats significantly decreased in both the supernatant and pellet fractions. Furthermore, significant negative correlations between NFs levels and gait abnormality were observed. As for microtubule (MT) and microfilament (MF) proteins, the levels of alpha-tubulin, beta-tubulin and beta-actin in the supernatant and pellet fraction of SN significantly decreased in 200 and 400mg/kg HD rats and correlated negatively with gait abnormality. However, the contents of MT and MF proteins in CC and SC were inconsistently affected and had no significant correlation with gait abnormality. The levels of NF-L and NF-H in serum significantly increased, while NF-M, alpha-tubulin, beta-tubulin and beta-actin contents remain unchanged. A significant positive correlation (R=0.9427, P<0.01) was observed between gait abnormality and NF-H level in serum as the intoxication went on. These findings suggested that HD intoxication resulted in a progressive decline of cytoskeletal protein contents, which might be relevant to the mechanisms of HD-induced neuropathy. NF-H was the most sensitive index, which may serve as a good indicator for neurotoxicity of n-hexane or HD.
Thakur P and Sanyal SN, J Environ Pathol Toxicol Oncol. 2010;29(3):255-65.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to be effective antineoplastic agents that block prostaglandin formation by inhibiting the enzyme cyclooxygenase (COX), which exists in two isoforms, COX-1 and COX-2. COX-2 is over expressed in lung cancer. The present study evaluates the
chemopreventive efficiency of diclofenac, which is a preferentially selective COX-2 inhibitor in lung cancer. Female Wistar rats were divided into 4 groups. Group 1 served as control and received saline intratracheally, once. In group 2 lung cancer was induced by a single intratracheal instillation of dimethybenz(a)anthracene (DMBA) (20 mg/kg body weight). Group 3 was given the intervention of diclofenac (8 mg/kg body weight) daily by oral gavage, in addition to DMBA. Group 4 received diclofenac alone. After 18 weeks of treatment, animals were sacrificed and various studies done. COX-2 expression as seen by western immunoblot and immunohistochemistry (IHC) was increased in the DMBA group, while diclofenac intervention was able to bring down the levels of the enzyme. Apoptosis studies by DNA fragmentation, TUNEL and fluorescent dyes reveal the lowered number of apoptotic cells in group 2. The levels were restored by diclofenac treatment in group 3. There was also a significant reduction in tumor incidence in DMBA+Diclofenac treated animals. All these results indicate that diclofenac acts as an effective chemopreventive agent that mediates its effects by the induction of apoptosis in cancer tissue and suppression of COX-2 enzyme.
Tissandie E, etal., Toxicology. 2006 Aug 1;225(1):75-80. Epub 2006 May 19.
Twenty years after Chernobyl disaster, many people are still chronically exposed to low dose of (137)Cs, mainly through the food consumption. A large variety of diseases have been described in highly exposed people with (137)Cs, which include bone disorders. The aim of this work was to investigate t
he biological effects of a chronic exposure to (137)Cs on Vitamin D(3) metabolism, a hormone essential in bone homeostasis. Rats were exposed to (137)Cs in their drinking water for 3 months at a dose of 6500 Bq/l (approximately 150 Bq/rat/day), a similar concentration ingested by the population living in contaminated territories in the former USSR countries. Cytochromes P450 enzymes involved in Vitamin D(3) metabolism, related nuclear receptors and Vitamin D(3) target genes were assessed by real time PCR in liver, kidney and brain. Vitamin D, PTH, calcium and phosphate levels were measured in plasma. An increase in the expression level of cyp2r1 (40%, p<0.05) was observed in the liver of (137)Cs-exposed rats. However a significant decrease of Vitamin D (1,25(OH)D(3)) plasma level (53%, p=0.02) was observed. In brain, cyp2r1 mRNA level was decreased by 20% (p<0.05), while the expression level of cyp27b1 is increased (35%, p<0.05) after (137)Cs contamination. In conclusion, this study showed for the first time that chronic exposure with post-accidental doses of (137)Cs affects Vitamin D(3) active form level and induces molecular modifications of CYPs enzymes involved its metabolism in liver and brain, without leading to mineral homeostasis disorders.
Pasupathy K and Bhattacharya RK, J Biochem Mol Toxicol. 2000;14(5):277-82.
Continuous administration in the drinking water of hepatocarcinogen N-nitrosodiethylamine (NDEA) to male rats (200 mg/L) for 60 days resulted in DNA damage in the form of single strand breaks. The damage, which is measured as a shift in the sedimentation of DNA in alkaline sucrose density gradients,
was found to be maximum at the fourth week of treatment, and the sedimentation pattern of DNA was found to return to near normal size by the seventh week of NDEA treatment. Simultaneously, there were perturbations in the nuclear enzymes involved in DNA replication and repair. Activities of DNA polymerase beta, DNA ligase, and topoisomerase were found to increase in as early as the first week of NDEA treatment and reached the maximum at the fourth week, and thereafter declined to normal level by the eighth week of treatment. Concomitantly, the activities of DNA polymerase alpha, DNA primase, and RNA polymerase which were unaltered in the initial period of carcinogen treatment recorded a marked increase after sixth week of NDEA treatment. Results suggest that administration of NDEA inflicts DNA damage, which is manifested as increase in DNA repair enzymes in the initial period and activated DNA replicative enzymes at a later period, indicating the active proliferation of transformed cells.
Masubuchi Y, etal., Arch Toxicol. 2006 Jun;80(6):347-53. Epub 2006 Feb 17.
Hepatic drug metabolism is impaired in experimental animals and humans with renal diseases. An anticancer drug, cisplatin induces acute renal failure (ARF) in rats. Under the same experimental conditions, cisplatin causes down-regulation of hepatic cytochrome P450 (P450) enzymes in an isozyme select
ive manner. The present study examined the pathological role of ARF in the down-regulation of hepatic P450 enzymes in the cisplatin-treated rats. Male rats with single dose of intraperitoneally cisplatin (5 mg/kg) caused marked changes in renal parameters, BUN and serum creatinine but not hepatic parameters, serum alanine aminotransferase or aspartate aminotransferase. The rats also suffered from down-regulation of hepatic microsomal CYP2C11 and CYP3A2, male specific P450 isozymes, but not CYP1A2, CYP2E1, or CYP2D2. The decrease in serum testosterone level was also observed in injured rats, which was consistent with the selective effects on male specific P450 enzymes. Protection of rats against cisplatin-induced ARF by dimethylthiourea, a hydroxyl radical scavenger, also protected rats against the decrease in serum testosterone levels and the down-regulation of CYP2C11 and CYP3A2. Carboplatin, an analogue to cisplatin but no ARF inducer, did not cause decrease in serum testosterone levels and down-regulation of hepatic male specific P450 enzymes. These results suggest that down-regulation of hepatic P450 enzymes in male rats given cisplatin is closely related to the cisplatin-induced ARF and the resultant impairment of testis function.
Zhang W and Jia H, Toxicology. 2007 Oct 8;239(3):204-12. Epub 2007 Jul 13.
The paper presents results of the effect of cadmium on the progesterone synthesis of ovaries. In the current study, we investigated whether Cd also disrupts progesterone synthesis via steroidogenic acute regulatory protein (StAR) and P450 cholesterol side-chain cleavage (P450scc), which play importa
nt roles in progesterone synthesis. The Wistar rats were exposed to cadmium in vivo (at 2.5, 5, 7.5mg/kg, as a single s.c. dose). We showed that the serum P(4) and granule cells P(4) of rats were significantly lower than control group. Ovaries granule cells were incubated in Dulbecco-modified Eagle medium +15% fetal bovine serum with 0, 10, 20, or 40 microM CdCl(2) in vitro, progesterone levels were declined in a dose-dependent manner. Our data showed that the expression of StAR and P450scc in vivo or in vitro were inhibited when treated with CdCl(2) (p<0.05). Coculture with 8-bromo-cAMP enhanced progesterone secretion in untreated cultures and reversed the decline in progesterone secretion induced by CdCl(2) treatment; the expression of StAR mRNA and P450scc mRNA in 8-Br-cAMP+40 microM CdCl(2) were significantly higher than 40 microM CdCl(2), and were lower than control group. We concluded that StAR, which delivers cholesterol to the inner mitochondrial membrane, is one site at which Cd interferes with progesterone production in cultured rats ovarian granule cells; P450scc, which conveys cholesterol to pregnenolone, is anther site. The mechanisms were mainly controlled by the cAMP-dependent pathway.
Tissandie E, etal., Arch Toxicol. 2006 Aug;80(8):473-80. Epub 2006 Feb 25.
Uranium is a natural radioactive heavy metal. Its toxicity has been demonstrated for different organs, including bone, kidney, liver and brain. Effects of an acute contamination by depleted uranium (DU) were investigated in vivo on vitamin D(3) biosynthetic path
way. Rats received an intragastric administration of DU (204 mg/kg) and various parameters were studied either on day 1 or day 3 after contamination. Cytochrome P450 (CYP27A1, CYP2R1, CYP27B1, CYP24A1) enzymes involved in vitamin D metabolism and two vitamin D(3)-target genes (ECaC1, CaBP-D9K) were assessed by real time RT-PCR in liver and kidneys. CYP27A1 activity was measured in liver and vitamin D and parathyroid hormone (PTH) level were measured in plasma. In acute treated-rats, vitamin D level was increased by 62% and decreased by 68% in plasma, respectively at day 1 and at day 3, which paralleled with a concomitant decrease of PTH level (90%) at day 3. In liver, cyp2r1 mRNA level was increased at day 3. Cyp27a1 activity decreased at day 1 and increased markedly at day 3. In kidney, cyp27b1 mRNA was increased at days 1 and 3 (11- and 4-fold respectively). Moreover, ecac1 and cabp-d9k mRNA levels were increased at day 1 and decreased at day 3. This work shows for the first time that DU acute contamination modulates both activity and expression of CYP enzymes involved in vitamin D metabolism in liver and kidney, and consequently affects vitamin D target genes levels.
In light of the adverse reports of Bisphenol A (BPA) on reproduction and considering the pivotal role played by the steroid receptors (SRs) and their coregulators in male reproduction, it was of interest to decipher the influence that BPA may have on their expression pattern during critical 'windows
' of development. Male rats were injected with 2.4 microg per pup per day of BPA from postnatal days (PND) 1-5 and controls received vehicle. During development, the testicular expression pattern of SRs (AR, ERbeta and ERalpha), coactivators (SRC-1, SRC-2 and SRC-3) and corepressors (NCoR and SMRT) in BPA-exposed rats were compared. A significant decrease in the expression of SRs was seen in the BPA group. SRC-1 showed a significant decrease, whereas SRC-2 and SRC-3 showed a significant increase in the protein expression whereas corepressor expression remained unaltered in the BPA-exposed groups. Such impairments in the expression pattern can be a putative mechanism of adversities on fertility as a result of BPA exposure. Copyright (c) 2013 John Wiley & Sons, Ltd.
Methoxychlor (MC) was developed as a replacement for the banned pesticide DDT. After in vivo administration, it is metabolized in the liver to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is proposed to be the active agent. Both MC and HPTE have been shown to exhibit weak estrogenic
and antiandrogenic activities, and they are thought to exert their effects through estrogen and androgen receptors, respectively. Although in vitro studies using cultured rat Leydig cells have reported that HPTE inhibits both basal and hCG-stimulated testosterone formation, the response of circulating testosterone levels to in vivo MC has been more variable. Therefore, the current studies evaluated whether the daily in vivo administration of MC (0, 5, 40 and 200 mg/kg body weight) for a short duration (days 54-60 of age) by gavage altered serum testosterone levels and ex vivo Leydig cell testosterone formation in young adult male rats. These results demonstrate that both fluid-retained and fluid-expressed seminal vesicle weights declined to 44 and 60% of control, respectively, in the 200 mg/kg MC-exposed animals. Similarly, serum testosterone and dehydroepiandrosterone levels declined to 41 and 45% of control, respectively, in the 200 mg/kg MC-exposed animals; however, serum LH and FSH levels were unaffected. Ex vivo Leydig cell basal testosterone formation over 4h declined to 49% of control in animals exposed to 200 mg/kg MC, and ex vivo Leydig cell P450 cholesterol side-chain cleavage activity declined to 79 and 50% of control in animals exposed to 40 and 200 mg/kg of MC, respectively, supporting previous in vitro studies which demonstrated the sensitivity of this step to MC.
Cadmium (Cd2+) is known to cause a selective disruption of the filamentous actin cytoskeleton in the smooth muscle-like renal mesangial cell. We examined the effect of Cd2+ on the distribution of the actin-severing protein, gelsolin. Over 8 h, CdCl2 (10 microM) caused a progressive shift of gelsolin
from a diffuse perinuclear and cytoplasmic distribution to a pattern decorating F-actin filaments. Over this time filaments were decreased in number in many cells, and membrane ruffling was initiated. Western blotting and 125I-F-actin gel overlays demonstrated an increase in actin-binding gelsolin activity in the cytoskeletal fraction of cell extracts following Cd2+ treatment. In in vitro polymerization assays, gelsolin acted as a nucleating factor and increased the rate of polymerization. Cytosolic extracts also increased the polymerization rate. Addition of Cd2+ together with gelsolin further increased the rate of polymerization. Gelsolin enhanced depolymerization of purified actin, and Cd2+ partially suppressed this effect. However, cytoskeletal extracts from Cd2+-treated cells also markedly increased depolymerization, suggesting further that Cd2+ may activate cellular component(s) such as gelsolin for actin binding. We conclude that a major effect of Cd2+ on the mesangial cell cytoskeleton is manifest through activating the association of gelsolin with actin, with gelsolin's severing properties predominating under conditions found in Cd2+-treated cells.
Mesial temporal lobe epilepsy (MTLE) is a severe neurological condition of unknown pathogenesis for which several animal models have been developed. To obtain a better understanding of the underlying molecular mechanisms and identify potential biomarkers of lesion progression, we used a rat kainic a
cid (KA) treatment model of MTLE coupled with global gene expression analysis to examine temporal (four hours, days 3, 14, or 28) gene regulation relative to hippocampal histopathological changes. The authors recommend reviewing the companion histopathology paper (Sharma et al. 2008) to get a better understanding of the work presented here. Analysis of filtered gene expression data using Ingenuity Pathways Analysis (Ingenuity Systems, http://www.ingenuity.com) revealed that a number of genes pertaining to neuronal plasticity (RhoA, Rac1, Cdc42, BDNF, and Trk), neurodegeneration (Caspase3, Calpain 1, Bax, a Cytochrome c, and Smac/Diablo), and inflammation/immune-response pathways (TNF-alpha, CCL2, Cox2) were modulated in a temporal fashion after KA treatment. Expression changes for selected genes known to have a role in neuronal plasticity were subsequently validated by quantitative polymerase chain reaction (qPCR). Notably, canonical pathway analysis revealed that a number of genes within the axon guidance signaling canonical pathway were up-regulated from Days 3 to 28, which correlated with aberrant mossy fiber (MF) sprouting observed histologically beginning at Day 6. Importantly, analysis of the gene expression data also identified potential biomarkers for monitoring neurodegeneration (Cox2) and neuronal/synaptic plasticity (Kalrn).
Goldsmith CD Jr, etal., Bull Environ Contam Toxicol. 1976 Jul;16(1):66-70.
Soil lead levels were found to decrease significantly in all traffic areas as distance from the highway increased. Areas of higher traffic volume had greater soil lead levels. Strong trends were shown in vegetation with areas of greater traffic density having greater lead levels than areas of lower
In previous 2-year studies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) conducted by the National Toxicology Program on female Harlan Sprague-Dawley rats, acinar-cell vacuolation, atrophy, inflammation, and arteritis developed at high incidence, and a rare occu
rrence of pancreatic acinar-cell adenomas and carcinomas was noted. In this investigation, we sought to identify the mechanism involved in the early formative stages of acinar-cell lesions. Pancreas from animals treated for 14 and 31 weeks with 100 ng TCDD/kg body weight or corn oil vehicle was examined immunohistochemically and/or morphometrically. Acinar-cell kinetics were analyzed using staining with hematoxylin and eosin and proliferating cell nuclear antigen. Expressions of cytochrome P450 (CYP) 1A1 and aryl hydrocarbon receptor (AhR) were evaluated to assess direct effects of TCDD exposure. The cholecystokinin-A receptor (CCK-A receptor; CCKAR) and duodenal cholecystokinin 8 (CCK) revealed the associations of dioxin treatment with hormonal changes. Amylase localization showed acinar structural changes that could affect enzymatic production. Increased apoptotic activity in acinar cells occurred in 14- and 31-week-treated animals, with an increase in proliferative activity in the latter. Also in the latter, in the vacuolated acinar cells, CYP1A1 was overexpressed, and statistically significant decreases in expressions of AhR, CCKAR, and amylase occurred. The intensity of CCKAR expression increased in nonvacuolated acinar cells; a decrease in the size of CCK-positive epithelial cells occurred in duodenum. Our findings indicate that dioxin-induced acinar-cell lesions might be related to a direct effect of TCDD on the pancreas. Increase in CYP1A1 and decrease in CCKAR expressions in vacuolated acinar cells may be involved in the pathogenesis of pancreatic lesions. Changes in the expression of CYP or CCKAR may have induced the acinar-cell tumors by initiating proliferation.
Liu CN and Somps CJ, Toxicol Sci. 2008 Jun;103(2):346-53. Epub 2008 Mar 3.
Inhibitors of the Na+/H+ exchanger isoform 1 (NHE-1) have been associated with peripheral neuropathy in rats and dogs. Recent studies suggest that NHE-1 plays an important role in mediating neuronal excitability. To investigate potential NHE-1-mediated mechanisms contributing to neuronal tox
='font-weight:700;'>toxicity, we studied the effects of NHE-1 inhibitors on nerve and dorsal root ganglion (DRG) neurons isolated from the adult rat. Compound action potentials (CAPs) were recorded from electrically stimulated sections of isolated sciatic nerve/DRG/root preparations. Whole-cell patch-clamp technique was used to record fast and slow voltage-dependent Na+ currents from dissociated DRG neurons (29-41 microm). Exposures to 1 and 10 microM of a selective NHE-1 inhibitor reduced the amplitude of the CAP recorded from the dorsal root by 33% and 58%, respectively (p < 0.05). The compound had no effect on CAPs recorded from the ventral root. Perfusion of dissociated DRG neurons with NHE-1 inhibitors at 10 and 100 microM shifted voltage-dependent inactivation curves of fast Na+ current by as much as 11 mV (p < 0.001) in the hyperpolarizing direction. No shift was observed in slow Na+ currents. No statistically significant drug effects were observed on voltage-dependent activation or recovery from inactivation of either fast or slow Na+ currents. These results suggest that NHE-1 inhibitors may reduce peripheral neuronal excitability by shifting fast Na+ channels into the inactivated state under physiological conditions. Such effects may underlie peripheral neuropathies reported in rats and dogs with NHE-1 inhibitors.
Zhang Y, etal., Toxicol Lett. 2010 Mar 15;193(2):167-72. Epub 2010 Jan 14.
Perinatal undernutrition has adverse effects on brain physiology as well as learning and memory activity. However, the mechanism is still incompletely understood. Nitric oxide (NO) synthesized by neuronal nitric oxide synthase (nNOS) has important roles in neuronal survival and synaptic plasticity a
s well as contributes to the learning and memory task. The aims of the present study were to investigate whether 50% perinatal food restriction (FR50) produced deleterious effects on the population of nNOS neurons in CA1 and CA3 and the dentate gyrus (DG) region of the hippocampus using ABC immunohistochemical method. The results showed FR50 reduced body weight of offspring on postnatal day (PD)1, PD7, PD10, PD14 and PD21, and this type of food restriction impaired learning and memory of adult male offspring rats (postnatal day 70) and decreased the density of nNOS-positive cells in the CA1, CA3 and DG region of the hippocampus. These findings suggest that perinatal undernutrition affects the activity of nNOS in hippocampus. Thus, these changes in the density of nNOS neurons may partly explain learning and memory disturbances commonly observed in undernourished rats and provide clues to the knowledge of malnutrition effects upon the brain.
Pari L and Mohamed Jalaludeen A, Chem Biol Interact. 2011 Oct 15;194(1):40-7. doi: 10.1016/j.cbi.2011.08.004. Epub 2011 Aug 16.
Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Sinapic acid is a phenylpropanoid compound and is found in various herbal materials and high-bran cereals. It has been re
ported that sinapic acid has antioxidant efficacy as metal chelators due to the orientation of functional groups. However, it has not yet been examined in experimental animals. In light of this fact, the purpose of this study was to characterize the protective role of sinapic acid against arsenic induced toxicity in rats. Rats were orally treated with arsenic alone (5mg/kg body weight (bw)/day) plus sinapic acid at different doses (10, 20 and 40mg/kg bw/day) for 30days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes namely aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma glutamyl transferase, lactate dehydrogenase and total bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances, lipid hydroperoxides, protein carbonyl content and conjugated dienes. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase along with non-enzymatic antioxidant like reduced glutathione. Administration of sinapic acid exhibited significant reversal of arsenic induced toxicity in hepatic tissue. The effect at a dose of 40mg/kgbw/day was more pronounced than the other two doses (10 and 20mg/kgbw/day). All these changes were supported by reduction of arsenic concentration and histopathological observations of the liver. These results suggest that sinapic acid has a protective effect over arsenic induced toxicity in rat.
Peroxisome proliferator-activated receptor-alpha (PPARalpha) belongs to the nuclear receptor (NR) family of transcription factors and regulates lipid and glucose metabolism. Like other NRs, the regulation of gene expression by PPARalpha depends on cofactor recruitment to the transcription complex an
d multiple protein-protein interactions. In this study, Murine Double Minute 2 (MDM2), an E3 ubiquitin ligase, is identified as a PPARalpha-interacting protein that regulates PPARalpha transcriptional activity. MDM2 modulated the transcriptional activity of PPARalpha and PPARbeta/delta, but not PPARgamma in reporter assays. Knockdown of MDM2 by small interfering RNA in rat hepatoma cells inhibited ligand-induced mRNA levels of several PPARalpha target genes involved in lipid metabolism. MDM2 associated with PPARalpha on target gene promoters, and this association increased in response to Wy14,643 treatment. MDM2 interacted with PPARalpha and this interaction occurred with the A/B domain of PPARalpha. Coexpression of MDM2 increased PPARalpha ubiquitination and the E3 ubiquitin ligase activity of MDM2 affected PPARalpha protein expression and transcriptional activity. MDM2 expression was decreased in response to clofibrate in wild-type (WT), but not in PPARalpha null mice, indicating a PPARalpha-dependent regulation. These studies identify a role for MDM2 in regulating PPARalpha-mediated pathways of lipid metabolism.
Butyrylcholinesterase (BChE) gene therapy is emerging as a promising concept for treatment of cocaine addiction. BChE levels after gene transfer can rise 1000-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. For months or years, gene transfer of a BChE
mutated into a cocaine hydrolase (CocH) can maintain enzyme levels that destroy cocaine within seconds after appearance in the blood stream, allowing little to reach the brain. Rapid enzyme action causes a sharp rise in plasma levels of two cocaine metabolites, benzoic acid (BA) and ecgonine methyl ester (EME), a smooth muscle relaxant that is mildly hypotensive and, at best, only weakly rewarding. The present study, utilizing Balb/c mice, tested reward effects and cardiovascular effects of administering EME and BA together at molar levels equivalent to those generated by a given dose of cocaine. Reward was evaluated by conditioned place preference. In this paradigm, cocaine (20 mg/kg) induced a robust positive response but the equivalent combined dose of EME + BA failed to induce either place preference or aversion. Likewise, mice that had undergone gene transfer with mouse CocH (mCocH) showed no place preference or aversion after repeated treatments with a near-lethal 80 mg/kg cocaine dose. Furthermore, a single administration of that same high cocaine dose failed to affect blood pressure as measured using the noninvasive tail-cuff method. These observations confirm that the drug metabolites generated after CocH gene transfer therapy are safe even after a dose of cocaine that would ordinarily be lethal.
Hobler C, etal., Toxicology. 2010 Oct 29;276(3):198-205. Epub 2010 Aug 12.
Triphenyltin (TPT) is an organotin compound (OTC) previously widely used as an antifouling agent in paints applied in the marine environment, a fungicide, and as an agricultural pesticide. In female aquatic invertebrates, certain OTCs induce the so-called imposex, an abnormal induction of male sex c
haracteristics. OTC-induced environmental endocrine disruption also occurs in fish and mammals and a number of in vivo and in vitro studies have argued that OTCs may act through inhibition of the aromatase enzyme. In vivo studies supporting the aromatase inhibition hypothesis in mammals are lacking. Recently, the causal relationship between inhibition of aromatase and imposex was questioned, suggesting aromatase independent mechanisms of action for this phenomenon. We conducted a comprehensive investigation to identify the most sensitive window of exposure to TPTCl and to examine the effects of pre- and postnatal exposure on postnatal development in rats. The results on brain and gonadal aromatase activity obtained from offspring of dams exposed to 2 mg TPTCl/kg bw are reported here. Female and male offspring rats were exposed to 2 mg TPTCl/kg bw/d in utero from gestation day 6 through lactation until weaning on PND 21, or from gestation day 6 until termination at adulthood. Male offspring were sacrificed from PND 58 and female offspring at first estrus after PND 58. Pre- and postnatal TPT exposure clearly affected brain and gonadal aromatase activity in a sex-dependent fashion. While brain aromatase activity was significantly increased on PND 21 and at adulthood in female offspring, male offspring exhibited a significant decrease in brain aromatase activity only at adulthood. Ovarian aromatase activity was unaffected at both time points investigated. In contrast, testicular aromatase activity was significantly increased in males on PND 21 and significantly decreased at adulthood independent from the duration of treatment. The results of the present study confirm our previously reported observations regarding sex-dependent differences in sexual development after TPT exposure with the male rat being more susceptible to disturbances through this endocrine active compound than the female. We conclude that TPT administered during the particularly vulnerable period of development can affect aromatase activity in rats.
Liu GP and Shi N, Toxicol Lett. 2006 Mar 1;161(3):195-9. Epub 2005 Oct 17.
The inhibitory effects of deltamethrin (DM) on dopamine biosynthesis in PC12 cells were investigated. Levels of dopamine in PC12 cells were detected after treatment with different doses from 10(-4)M to 10(-6)M deltamethrin or combined with 20 microM or 50 microM l-3,4-dihydroxyphenylalanine (L-Dopa)
for 3 h or 12 h by HPLC. Flow cytometry (FCM) and RT-PCR technology were used to detect the levels of tyrosine hydroxylase (TH) mRNA and protein in PC12 cells treated with different doses of deltamethrin for 3 h or 12 h. Deltamethrin decreased the levels of dopamine, TH mRNA and TH protein in PC12 cells, and the increased dopamine levels induced by l-Dopa at 20-50 microM were also decreased by deltamethrin for 3 h or 12 h. These results indicate that deltamethrin decreases dopamine content by the inhibition of TH mRNA and protein level in PC12 cells and maybe also have inhibitory effect on aromatic l-amino acid decarboxylase.
The kidney is one of the main targets of drug toxicity, and early detection of renal damage is critical in preclinical drug development. A model of cisplatin-induced nephrotoxicity in male Sprague Dawley rats treated for 1,
3, 5, 7, or 14 days at 1 mg/kg/day was used to monitor the spatial and temporal expression of various indicators of kidney toxicity during the progression of acute kidney injury (AKI). As early as 1 day after cisplatin treatment, positive kidney injury molecule-1 (Kim-1) immunostaining, observed in the outer medulla of the kidney, and changes in urinary clusterin indicated the onset of proximal tubular injury in the absence of functional effects. After 3 days of treatment, Kim-1 protein levels in urine increased more than 20-fold concomitant with a positive clusterin immunostaining and an increase in urinary osteopontin. Tubular basophilia was also noted, while serum creatinine and blood urea nitrogen levels were elevated only after 5 days, together with tubular degeneration. In conclusion, tissue Kim-1 and urinary clusterin were the most sensitive biomarkers for detection of cisplatin-induced kidney damage. Thereafter, urinary Kim-1 and osteopontin, as well as clusterin immunostaining accurately correlated with the histopathological findings. When AKI is suspected in preclinical rat studies, Kim-1, clusterin, and osteopontin should be part of urinalysis and/or IHC can be performed.
Oleszczyńska-Prost E, Klin Oczna. 2004;106(1-2):64-7.
PURPOSE: To evaluate the results of treatment of esotropia, exotropia and hypertropia with botulinum toxin A. MATERIAL AND METHODS: 72 children with esotropia, exotropia and hypertropia treated with intramuscular injection of botulinum tox
style='font-weight:700;'>toxin A. RESULTS: Squint angle decreased 76% in children with alternant esotropia, 70% in children with monocular esotropia, 64% in alternant exotropia and 54% in monocular exotropia after treatment with botulinum toxin A. In hypertropia squint angle reduced in 50%. CONCLUSIONS: The use of injections of botulinum toxin A in treatment of concomitant strabismus improves position of eyes, which creates better conditions for development of localization with normal retinal correspondence.
Classical neurotransmitters are transported into synaptic vesicles so that their release can be regulated by neural activity. In addition, the vesicular transport of biogenic amines modulates susceptibility to N-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotox
ight:700;'>toxin N-methyl-1,2,3,6-tetrahydropyridine that produces a model of Parkinson's disease. Taking advantage of selection in MPP+, we have used gene transfer followed by plasmid rescue to identify a cDNA clone that encodes a vesicular amine transporter. The sequence predicts a novel mammalian protein with 12 transmembrane domains and homology to a class of bacterial drug resistance transporters. We have detected messenger RNA transcripts for this transporter only in the adrenal gland. Monoamine cell populations in the brain stem express a distinct but highly related protein.
Aconitine, a highly poisonous type of alkaloid, has a widespread effect in stimulating the membranes of cardiomyocyte. However, other effects of aconitine on cardiomyocyte are unknown. In this study, we investigated whether aconitine also affects the phosphorylation status of connexin43 (Cx43) and i
ntracellular [Ca(2+)] oscillation patterns in cultured ventricular myocytes of neonatal rats. As determined by Western blot analysis, a decreased percentage (47.68+/-2.29%) of phosphorylated Cx43 (P-Cx43) and a concomitant increased percentage (52.32+/-2.29%) of nonphosphorylated Cx43 (NP-Cx43) were found in aconitine-treated cultures, compared to the controls (82.77+/-2.04% for P-Cx43 and 17.23+/-2.04% for NP-Cx43). Quantitative immunofluorescent microscopy revealed similar changes in phosphorylation status occurring in Cx43 containing gap junctions in the cultures under the same treatment conditions. Real-time laser scanning microscopy indicated that intracellular [Ca(2+)] oscillations were relatively stable in control cultures, with occasional calcium sparks; after being treated with aconitine, high frequency [Ca(2+)] oscillations emerged, whereas typical calcium sparks disappeared. Furthermore, Western blot analysis revealed that, after aconitine treatment, the amount of phosphorylated PKCalpha decreased significantly. These observations suggest that aconitine not only induces dephosphorylation of Cx43 and PKCalpha, but also alters intracellular [Ca(2+)] oscillation patterns in cultured cardiomyocytes.
Methylmercury (MeHg) is a testicular toxicant causing reduced steroidogenic enzyme activity, reduced serum testosterone (T) and abnormal spermatogenesis in mammals and fowl. It is also known that certain diets can alter androgen metabolism in rats. Previously we
have shown that diets used in the current study impact circulating androgen levels and testicular steroidogenic enzyme activities in Sprague Dawley rats in the absence of MeHg. In the present study, we have investigated the impact of imposing an environmental contaminant (MeHg) commonly found in marine mammals and fish onto the rats' dietary intake of different proteins and lipids in order to determine if the different diets could modify MeHg toxicity in rats. Therefore, we examined the effects of MeHg on testicular steroidogenic enzymes and serum testosterone in rats fed diets containing either different protein sources (casein, fishmeal, whey) or different lipid sources (soybean oil, docosahexaenoic acid (DHA), seal oil, fish oil, lard). Male rats 42-45 days of age (18 per group) were assigned to different experimental diets for 28 days after which 6 rats in each group were gavaged daily with 0, 1 or 3 mg/kg body weight (BW)/day MeHg chloride in 5 mM Na(2)CO(3) solution for 14 days while being maintained on their diets. On the 43rd day of dosing, rats were sacrificed and blood plasma and testes frozen (-80 degrees C) until analysis. Microsomal steroidogenic enzyme activities (3beta-HSD, 17-OHase, C-17, 20-lyase, 17beta-HSD) were measured radiometrically. Serum testosterone was determined using ELISA kits. Testis weights were not affected by MeHg. MeHg at 3 mg/kg BW/day caused a reduction (>50%) in the activity of C-17, 20-lyase in all three protein diets and similar reductions in 17-OHase activity were seen in the casein and whey protein fed rats. At 3 mg/kg BW/day, MeHg reduced 17-OHase activity in the DHA diet but had no effect on 3beta-HSD activity and no inhibitory effects on 17beta-HSD activity. MeHg (3 mg/kg BW/day) caused significant reductions in serum T in the whey, soybean oil and fish oil groups. Interestingly, fishmeal protein but not fish oil offered some protection with respect to maintaining steroidogenic enzyme activities and serum T levels in rats dosed with MeHg. In conclusion, these studies show that different lipid diets can alter the toxic effects of MeHg on male rat steroidogenesis in terms of serum testosterone and steroidogenic enzyme activities.
The development of this Brown Norway (BN) rat asthma model was focused on the duplication of at least some hallmarks of human diisocyanate asthma using the skin as the initial priming route of exposure. Equal total doses of polymeric diphenylmethane-diisocyanate (MDI) were applied to similar surface
areas either dissolved in di-n-octyl sebacic acid ester (20%) (SEBA), in acetone:olive oil (20%) (AOO) or undiluted. The elicitation of respiratory allergy utilized four repeated nose-only inhalation challenges of 30 min with 39 mg/m(3) MDI-aerosol approximately every 2 weeks. Emphasis was directed towards the analysis of respiratory responses delayed in onset. Endpoints suggestive of an allergic inflammatory response were examined by bronchoalveolar lavage (BAL) 1 day after the last inhalation challenge and comprised protein, LDH, cytodifferentiation of BAL cells, MCP-1, and some Th1 and Th2 cytokines. MCP-1 and cytokines were comparatively determined in three compartments: BAL fluid, BAL cells, and lung-associated lymph nodes (LALN). In all groups sensitized topically to MDI typical delayed-onset respiratory responses occurred. The lung and LALN weights, BAL-protein and -LDH were significantly increased as compared to the naive control group challenged identically. There was compelling evidence of a neutrophilic rather than an eosinophilic inflammatory response. The patterns of interleukin (IL) IL-1alpha, TNF-alpha, IFN-gamma, GM-CSF, and IL-4 differed appreciably from one compartment to another and were essentially maximal in BAL cells. In contrast, MCP-1 was increased to the same extent in all compartments measured. Collectively, changes were slightly, although consistently more pronounced when using SEBA as vehicle when compared with the vehicle AOO or undiluted MDI. Notable was a discordance of cytokine profiles and respiratory responses. In conclusion, the priming potency of topically administered MDI and subsequent asthma-like responses following repeated inhalation exposures appear to be dependent on multiple factors, one of them appears to be associated with the type of matrix used to dissolve MDI. This animal model provides a versatile and robust experimental tool to evaluate and assess at least some features of MDI-related asthma.
Zhao Z, etal., Birth Defects Res B Dev Reprod Toxicol. 2009 Feb;86(1):72-7.
Maternal diabetes causes neural tube defects in embryos, which are associated with increased apoptosis in the neuroepithelium. Many factors, including effector caspases, have been shown to be involved in the events. However, the key regulators have not been identified and the underlying mechanisms r
emain to be addressed. Caspase-8, an initiator caspase, has been shown to be altered in diabetic embryopathy, suggesting a role as an upstream apoptotic regulator. Using mouse embryos as a model system, this study demonstrates that caspase-8 is required for the production of hyperglycemia-associated embryonic malformations. Caspase-8 was shown to be expressed in the developing neural tube. Its activity, as evidenced by enhanced cleavage, was increased by hyperglycemia. These changes were associated with increased formation of the active cleavage of Bid. Inhibition of caspase-8 activity in high glucose-challenged embryos reduced the rate of embryonic malformation and this was associated with decreased apoptosis in the neuroepithelium of the neural tube. Inhibition of caspase-8 activity also reduced hyperglycemia-induced Bid activation and caspase-9 cleavage. These data suggest that caspase-8 may control diabetic embryopathy-associated apoptosis via regulation of the Bid-stimulated mitochondrion/caspase-9 pathway.
Ben-Assa E, etal., Toxicol Lett. 2009 Sep 28;189(3):242-7. doi: 10.1016/j.toxlet.2009.06.848. Epub 2009 Jun 12.
Hepcidin is an important and recently discovered regulator of iron homeostasis. Acute iron intoxication is one of the leading causes of overdose mortality in children. It is difficult to estimate the degree of iron intoxicat
ion since iron serum levels do not correlate with the actual clinical severity. In the current study we aimed to investigate whether serum hepcidin levels are elevated in acute iron intoxication. Rats were divided into two iron dose groups and one control group. Each group was further subdivided into four time groups following the administration of iron. Levels of hepcidin, iron and liver enzymes were measured, and animals were followed for signs of toxicity. Serum hepcidin levels were significantly higher in the group treated with toxic doses of iron (p=0.005). No significant difference in serum iron levels was found between the groups. In acute iron intoxication serum hepcidin levels increase significantly and remain elevated for at least 6h. We postulate that beyond the first hour after iron administration, serum hepcidin levels provide a better estimate of the amount of iron intake than do serum iron levels.
Gueguen Y, etal., Cardiovasc Toxicol. 2008 Mar;8(1):33-40. Epub 2008 Mar 8.
Cardiovascular system impairment has been observed in children and in liquidators exposed to the Chernobyl nuclear power plant accident. No experimental studies of animals have analyzed whether these disorders might be attributed to chronic ingestion of low levels of cesium 137 ((137)Cs). Biochemica
l, physiological, and molecular markers of the cardiovascular system were analyzed in rats exposed through drinking water to (137)Cs at a dose of 500 Bq kg(-1) (6500 Bq l(-1)). Plasma concentrations of CK and CK-MB were higher (+52%, P < 0.05) in contaminated rats. No histological alteration of the heart was observed, but gene expression was modified in the atria. Specifically, levels of ACE (angiotensin converting enzyme) and BNP (brain natriuretic peptide) gene expression increased significantly (P < 0.05). ECG analysis did not disclose any arrhythmia except ST- and RT-segment shortening (-9% and -11%, respectively, P < 0.05) in rats exposed to (137)Cs. Mean blood pressure decreased (-10%, P < 0.05), and its circadian rhythm disappeared. Overall, chronic contamination by an extreme environmental dose of (137)Cs for 3 months did not result in cardiac morphological changes, but the cardiovascular system impairments we observed could develop into more significant changes in sensitive animals or after longer contamination.
Non-ortho polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) are ubiquitous environmental contaminants that exert their toxicity mostly through activation of the aryl-hydrocarbon receptor (AhR), an
d are referred to as AhR agonists. The objective was to study, by real time reverse-transcriptase-polymerase chain reaction (RT-PCR), the effects of postnatal exposure to a reconstituted mixture of AhR agonists present in breast milk (3 non-ortho PCBs, 6 PCDDs, and 7 PCDFs, referred to here-in-after as AhRM) on mRNA expression of estrogen receptor (ERalpha), enzymes involved with the metabolism of estrogens [catechol-o-methyltransferase (Comt), cytochrome P450 (Cyp)1A1, 1B1 and 2B1], and DNA methyltransferase-1 (Dnmt1), in brain areas, liver and uterus of immature female rats. Neonates were exposed by gavage during postnatal day (PND) 1-20 with dosages equivalent to 1, 10, 100, and 1000 times the estimated average human exposure level, and were sacrificed at PND 21. None of the end points were affected in uterine cross-sections, or in samples of uterine tissue layers collected by laser capture microdissection. At 1000x, the AhRM reduced Dnmt1 mRNA abundance to 28% and 32% of control in the liver and hypothalamus, respectively. In the brain, Cyp1A1 was increased (409%) but ERalpha was reduced (66%). Similarly, mRNA abundance for Comt isoforms was reduced in the liver (45%) and brain areas (55-70%). AhRM at 100x, the lowest effective dose, exerted a 220% increase in brain cortex Comt [membrane bound (Mb)], a 219% increase in hepatic Cyp1B1, and a 63% decrease in hepatic Comt (soluble (S)+Mb). These results support the possibility that early exposure to environmental contaminants could lead to effects mediated by changes in DNA methylation and/or estrogen metabolism and signaling.
We explored the effects of particulate matter <10 microm (PM(10)) exposure along with CYP1A1 polymorphisms of MspI (T6235C) and NcoI (Ile462Val) on reduced birth weight (BW). A prospective cohort study was done with women who delivered from 2001 to 2004 at Ewha Womans University Hospital, Seoul, Kor
ea. We compared the estimated least squares means of BW in the generalized linear model, after adjusting for controlling factors. High PM(10) exposure at the 90th percentile level and above during the 1st trimester conferred a significant risk for reduced BW, compared with low PM(10) exposure below the 90th percentile level. The effect of high PM(10) exposure during the 1st trimester of pregnancy compared with low PM(10) exposure was greater for women with MspI TC/CC and NcoI IleVal/ValVal genotypes than for those with MspI TT and NcoI IleIle genotypes. In conclusion, high PM(10) exposure during the 1st trimester increased the risk for reduced BW in concert with MspI TC/CC and NcoI IleVal/ValVal genotypes in Korean women.
Zhang LF, etal., Toxicol Lett. 2007 Apr 25;170(2):104-10. Epub 2007 Feb 20.
Lead (Pb(2+)) exposure is related to increased blood pressure or hypertension of human or animals. Abnormal vascular relaxant responses of low level Pb(2+) exposed animals were reported by several studies. However, it is difficult to tell whether these effects were induced directly by Pb(2+) or not.
In this study we hypothesized that Pb(2+) can directly affect the relaxation of vessels. Male Wistar rat aortae were removed and cultured in PMRI 1640 with 1 ppm Pb(2+) (4.8 microM lead acetate) for 0.5, 6, 12 and 24h, and then their responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were examined. After incubated for 24h, the relaxation induced by ACh was significantly decreased in Pb(2+) exposed aortic rings. However, there was not significant difference in relaxation induced by SNP between Pb(2+) exposed and control group. The nitrite in the culture media of aortic rings cultured for 24h, measured with Griess method, was significantly decreased in the Pb(2+) exposed group. The expression of endothelial NOS (eNOS) and isoform NOS (iNOS) in the homogenate of aortic rings cultured for 24h was measured by Western blot. The expression of eNOS of the Pb(2+) exposed group was significantly upregulated compared with that of the control group. However, there was no significant difference in the expression of iNOS in control and Pb(2+) exposed group. In conclusion, Pb(2+) was able to directly affect the relaxation of rat aorta. This effect may have some relation with the lower level of NO in the media, though the expression of eNOS was upregulated.
We investigated the effects of glutamine on markers of oxidative stress, nuclear factor kappaB (NF-kappaB) activation, and pro-inflammatory mediators in a rat model of experimental colitis induced by intracolonic administration of 7% acetic acid. Glutamine (25 mg/kg) was given by rectal route 48 and
24h before acetic acid instillation. Glutamine significantly reduced gross damage and histopathological scores, and partially prevented the decrease of anal pressure observed in the animals receiving acetic acid. Increases in the cytosolic concentration of TBARS and hydroperoxide-initiated chemiluminescence were significantly prevented in glutamine-treated animals. Acetic acid instillation induced a marked increase of the NF-kappaB p65 subunit expression in the nucleus and resulted in significant changes in the cytosolic protein level of IkappaB kinases (IKKalpha and IKKbeta) and the non-phosphorylated form of the inhibitor IkappaBalpha. Protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were significantly increased. All these effects were partially prevented by administration of glutamine. It is concluded that the anti-inflammatory activity of glutamine in a rat model of acetic acid-induced colitis may be mediated, at least in part, by inhibition of the expression of certain pro-inflammatory mediators which are regulated by the oxidative stress-sensitive NF-kappaB signalling pathway.
Randi AS, etal., Toxicol Lett. 2008 Mar 15;177(2):116-22. Epub 2008 Jan 12.
Hexachlorobenzene (HCB) is a widespread environmental pollutant. It has some properties that are typical for dioxin-like compounds that act mainly through the aryl hydrocarbon receptor (AhR) protein. Upon dioxin binding, the AhR translocates to the nucleus and modulates gene expression. At the same
time, c-Src kinase frees from the AhR complex and thereby activates its own kinase activity, which acts as a trigger for the growth factor receptor signal transduction pathway. HCB is a weak agonist of the AhR, and the evidence that HCB toxicity is mediated via the AhR complex is limited and inconclusive. In the present study, female Wistar rats were administered HCB (1, 10 and 100mg/kg) for 30 days. Liver cytosolic AhR was translocated to the nucleus. The activity of liver microsomal c-Src increased at all assayed doses. HCB induced the association of the EGFR with c-Src and increased the phosphorylation of EGFR at tyrosine 845 (Tyr845), a known c-Src phosphorylation site. c-Src from WB-F344 cells treated with HCB exhibited increased protein levels and c-Src-pTyr416 phosphorylation than the control cells. Again HCB induced EGFR phosphorylation at Tyr845. Such an effect of HCB could not be detected when c-Src activity was blocked by PP2. All together, our data demonstrates that HCB may induce EGFR transactivation through an c-Src-dependent pathway.
Pellicer M, etal., Pharmacol Res. 2017 Jun;120:133-137. doi: 10.1016/j.phrs.2017.03.021. Epub 2017 Mar 27.
Predicting individual risk of chemotherapy-induced severe adverse reaction is a critical issue when selecting the best treatment for cancer patients. SNPs have been identified in genes involved in the pharmacodynamics of fluoropyrimidines, and guidelines even recommend genotyping some DPYD variants
in order to estimate the risk of toxicity. However, the predictive value of this approach remains insufficient, thus limiting its clinical implementation. The aim of the present study was to identify new genetic variants by selecting a group of tag SNPs in genes associated with the pharmacodynamics of fluoropyrimidines (CDA, DPYD, ENOSF1, CES1, TYMS, SLC22A7, TYMP, and UMPS). For this purpose, 23 selected SNPs were genotyped on an OpenArray™ platform in a cohort of 301 colorectal cancer patients receiving capecitabine-based chemotherapy. Univariate and multivariate statistical analysis by logistic regression revealed 10 SNPs associated with severe adverse reactions to capecitabine (P<0.05): rs1048977, rs12726436, and rs2072671 in CDA; rs12119882 in DPYD; rs2853741 in TYMS; rs699517 in TYMS/ENOSF1; rs2270860 and rs4149178 in SLC22A7; and rs2279199 and rs4678145 in UMPS. Except for rs2072671, no association had previously been reported between these SNPs and the risk of capecitabine-induced toxicity. The use of tag SNPs to find new polymorphisms related to adverse reactions to capecitabine was successful. These new variants could increase the predictive power of currently available tests and thus prevent severe adverse reactions to capecitabine.
Pulmonary silicosis is a deadly disease which kills thousands of people every year worldwide. The disease initially develops as an inflammatory response with recruitment of inflammatory cells into the lung controlled by multiple cytokines. The question whether these cytokines exert biological functi
ons through signal transducing pathway remains unanswered along with the potential role of interleukin-6 receptor alpha (IL-6Ralpha) in regulating inflammatory cytokines. We aimed to assess the status of signal transducers and activator of transcription (Stat3), suppressor of cytokine signalling 3(Socs3) and inflammatory cytokines in airways of silica-exposed mice, and their relationship with IL-6Ralpha. Silica-exposed and silica-exposed IL-6Ralpha gene knockdown Balb/c mice were used in the study. Lung function was measured by plethysmography, mRNA expression of cytokines and signal molecules by qRT(2)-PCR and lung architecture by histopathology; T helper cell-type 2 (Th2) cytokines in broncho-alveolar lavage fluids were evaluated by ELISA and hydroxyproline in lung by colorimetry. Elevated levels of collagen deposition, signs of lung fibrosis, infiltration of inflammatory cells and presence of exfoliated mucosa in the lung of silica-exposed mice with concurrent increase in methacholine-induced specific resistance of airways were observed on day 60 post-exposure. In parallel, heightened expression of Th2 cytokines (IL-4, IL-5, IL-6) and signal molecules (Stat3 and Socs3) were observed in the airways of silica-exposed mice. Th1 (IL-1beta and TNF-alpha) cytokines are underexpressed in majority of the airways tissues of silica-exposed mice. Silencing IL-6Ralpha in lung of silica-exposed mice down regulated the hypermorphic mRNA pool of potential Th2 cytokines and signal molecules. Hypermorphic expression of Th2 cytokines and signal molecules in airways of silica-exposed mice are mediated through IL-6Ralpha.
Park J, etal., Infect Immun. 2019 Nov 18;87(12). pii: IAI.00455-19. doi: 10.1128/IAI.00455-19. Print 2019 Dec.
Interleukin-27 (IL-27) is a heterodimeric cytokine composed of the subunits IL-27p28 and EBi3, and while the IL-27 heterodimer influences T cell activities, there is evidence that IL-27p28 can have EBi3-independent activities; however, their relevance to infection is unclear. Therefore, the studies
presented here compared how IL-27p28 transgenics and IL-27p28-/- mice responded to the intracellular parasite Toxoplasma gondii While the loss of IL-27p28 and its overexpression both result in increased susceptibility to T. gondii, the basis for this phenotype reveals distinct roles for IL-27p28. As a component of IL-27, IL-27p28 is critical to limit infection-induced T cell-mediated pathology, whereas the ectopic expression of IL-27p28 reduced the effector T cell population and had a major inhibitory effect on parasite-specific antibody titers and a failure to control parasite replication in the central nervous system. Indeed, transfer of immune serum to infected IL-27p28 transgenics resulted in reduced parasite burden and pathology. Thus, IL-27p28, independent of its role as a component of IL-27, can act as a negative regulator of humoral and cellular responses during toxoplasmosis.
Souli E, etal., Food Chem Toxicol. 2008 Mar;46(3):863-70. Epub 2007 Oct 30.
Prostate cancer (PC) is the most commonly diagnosed malignancy for men in Western countries. Research showed that cruciferous vegetables containing indole derivatives were involved in cancer prevention. This study was designed to investigate the effect of indole-3-carbinol (I3C) in cell lines and on
PC tumor growth in mice when given as a therapeutic and as a preventive treatment. The effect in vitro of 13C on the viability, proliferation and apoptosis of mouse PC cell line TRAMP-C2 and on bovine capillary endothelial (BCE) cells was examined using MTT, BrdU and FACS analyses. The effect of I3C (20 mg/kg body weight) as both a therapeutic and a preventive treatment on the growth of PC cells, inoculated subcutaneously in C57BL/6 mice, was evaluated using tumor volume measurements and immunohistochemistry. I3C decreased the proliferation rate in 3-folds (staining to Ki-67), and promoted apoptosis (staining with caspase 3). I3C, injected intraperitonially (I.P.), significantly inhibited the tumor growth (a 78% decrease in tumor volume) and affected the angiogenesis process by decreasing the microvessel density (CD31 endothelial marker) and complexity. I3C has a significant inhibitory effect on PC cells in vitro and in vivo, and offers a potential usage as both preventive and therapeutic agent for humans.
Huang CL, etal., Toxicol Lett. 2012 Mar 25;209(3):203-10. Epub 2012 Jan 10.
Paraquat (PQ) was demonstrated to induce dopaminergic neuron death and is used as a Parkinson's disease (PD) mimetic; however, its mechanism remains contradictory. Alternatively, minocycline is a second-generation tetracycline and is undergoing clinical trials for treating PD with an unresolved mec
hanism. We thus investigated the molecular mechanism of minocycline in preventing PQ-induced cytotoxicity. In this study, minocycline was effective in preventing PQ-induced apoptotic cell death, which involves the cleavages of poly (ADP-ribose) polymerase (PARP) and caspase 3 and increased fluorescence intensity of annexin V-FITC. In addition, PQ also quickly induced alterations of unfolded protein responses (UPRs) and subsequently dysfunction of the mitochondria (such as the decrease in membrane potential and increase in membrane permeability and superoxide formation). Finally, the mechanism of minocycline in preventing PQ-induced apoptosis might be mediated by attenuating endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which respectively results in caspase-12 activation and the release of H(2)O(2), HtrA2/Omi, and Smac/Diablo. Thus, minocycline could possibly be used to treat other neurodegenerative disorders with similar pathologic mechanisms.
Henkens T, etal., Toxicol In Vitro. 2007 Oct;21(7):1253-7. Epub 2007 May 5.
Primary cultures of epidermal growth factor (EGF)-stimulated hepatocytes are a valuable tool to study the regulation of hepatocyte proliferation. As progression through the cell cycle is generally associated with a reduction in liver-specific functions, we studied the effects of a proliferative resp
onse triggered by EGF on the albumin secretion and urea production, and on cytochrome P450 (CYP) 1A1 and CYP2B1 expression and their corresponding 7-ethoxyresorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-dealkylase (PROD) activities. It was found that cell cycle entry is associated with decreased albumin secretion and urea production. Furthermore, western blot analysis revealed that in hepatocytes cultured under proliferative conditions, the protein expression of CYP1A1 and CYP2B1 was substantially decreased, as well as the CYP2B-mediated PROD activity. In contrast, EROD activity was not altered. In addition, the expression levels of the liver enriched transcription factors (LETFs) hepatic nuclear factor (HNF) 3beta and HNF4alpha were downregulated under proliferative conditions, whereas the expression of HNF1alpha remained constant. In conclusion, we show that in cultured primary hepatocytes, cell cycle progression significantly modulates albumin secretion, urea production and CYP-mediated biotransformation, probably involving transcriptional regulation by hepatic nuclear factors. Therefore, in order to maintain primary hepatocytes functional in culture, cell cycle inhibition must be achieved.
Lee JH, etal., Food Chem Toxicol. 2007 Nov;45(11):2237-44. Epub 2007 Jun 2.
The effects of Panax ginseng extracts on DNA damage, expression of cytochrome P450 (CYP) 1A1 and reproductive toxicity were evaluated in the testis of rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxinthe (TCDD). Fifty rats were divided into five groups accordi
ng to treatment with 2,3,7,8-TCDD and P. ginseng extracts. Single cell gel electrophoresis assays were performed to evaluate DNA damage that occurred in the lymphocytes of rats. Histological changes in the seminiferous tubules of the testis were determined using Johnsen's scoring system and Real Time-PCR was performed to evaluate the mRNA expression of CYP1A1. Significant pathological effects were observed in the 2,3,7,8-TCDD treated rats including a reduced seminiferous tubular diameter, an increased number of damaged tubules (maturation arrest, eosinophilic degeneration and spermatid giant cells) and increased Johnsen's score. DNA damage and the expression of CYP1A1 mRNA were significantly increased in rat testes. There were no significant differences between the control and animals treated with P. ginseng extracts. However, a significantly decreased level of DNA damage, decreased CYP1A1 expression and reduced pathological effects were observed in the 2,3,7,8-TCDD with P. ginseng extracts treated groups when compared with the TCDD treated group. In summary, our study demonstrates that 2,3,7,8-TCDD induces the pathological and genotoxical damage in rat testes, while P. ginseng extract treatment exhibits a therapeutic capacity to reduce these effects via reduction of CYP1A1 mRNA.
Han DY, etal., Toxicol Ind Health. 2010 Jun;26(5):287-96. Epub 2010 Mar 31.
Polychlorinated biphenyls (PCBs) are environmental pollutants that are quite toxic to biological systems. This study examined the inhibitory effect of PCB126 and PCB114 on testicular steroidogenesis in male rats. Male Sprague Dawley rats received weekly intraper
itoneal injections of PCB126 (0.2 mg/kg) or PCB114 (20 mg/kg) or vehicle (corn oil). Animals from each group were sacrificed at 2, 5 and 8 weeks after the injections. Blood and testis tissue samples were collected for the hormone assay, Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). The testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels were assayed, and the expression levels of the mRNA and proteins associated with the testosterone biosynthesis pathway were measured to determine the effect of PCB126 and PCB114 on testicular steroidogenesis. The results showed that the testis weight was significantly higher in the PCB126-treated rats given eight shots. Moreover, the serum testosterone levels were significantly lower in the PCB126 and PCB114-treated groups than the control. The transcription and translation levels of P450(17alpha) and P450(scc) were significantly lower in the PCB126-treated groups than the control. These results suggest that PCB126 may affect testicular steroidogenesis by downregulating P450(17alpha), P450(scc) and have inhibitory effect on the testicular functions.
Polychlorinated biphenyls (PCBs) are industrial pollutants detected in human milk, serum and tissues. They readily cross the placenta to accumulate in fetal tissues, particularly the brain. These compounds affect normal brain sexual differentiation by mechanisms that are incompletely understood. The
aim of this study was to verify whether a technical mixture of PCBs (Aroclor 1254) would interfere with the normal pattern of expression of hypothalamic aromatase and 5-alpha reductase(s), the two main enzymatic pathways involved in testosterone activation and of androgen receptor (AR). Aroclor 1254 was administered to pregnant rats at a daily dose of 25 mg/kg by gavage from days 15 to 19 of gestation (GD15-19). At GD20 the expression of aromatase, 5-alpha reductase types 1 and 2 and androgen receptor (AR) and aromatase activity were evaluated in the hypothalamus of male and female embryos. The direct effect of Aroclor was also evaluated on aromatase activity adding the PCB mixture to hypothalamic homogenates or to primary hypothalamic neuronal cultures. The data indicate that aromatase expression and activity is not altered by prenatal PCB treatment; 5-alpha reductase type 1 is similarly unaffected while 5-alpha reductase type 2 is markedly stimulated by the PCB exposure in females. Aroclor also decreases the expression of the AR in females. The observed in vivo effects are indicative of a possible adverse effect of PCBs on the important metabolic pathways by which testosterone produces its brain effects. In particular the changes of 5-alpha reductase type 2 and AR in females might be one of the mechanisms by which Aroclor exposure during fetal development affects adult sexual behavior in female rats.
Proteomic techniques such as two-dimensional gel electrophoresis (2-DGE) and mass spectrometry have become important tools for the identification of novel biomarkers of toxicity and disease. Ideally, such biomarkers need to be sensitive and organ specific, but,
recently, it has become apparent that it would be an additional benefit to be able to measure biomarkers in samples obtained using non-invasive methods. The present study is concerned with the identification of novel urinary markers of hepatic fibrosis. In a carbon-tetrachloride-induced liver fibrosis rat model, analysis of urine by 2-DGE revealed an increase in the concentration of a number of proteins in animals with hepatic fibrosis. Using in-gel trypsin digest and nano-scale liquid chromatography combined with electrospray ionisation tandem mass spectrometry, protein spots were identified as copper/zinc superoxide dismutase, D: -dopachrome tautomerase, beta-2-microglobulin and neutrophil gelatinase associated lipocalin. These proteins are known to have important roles in the inflammatory response.
As has been previously described, tetanus toxin (TeTx) and its H(C) fragment inhibit the sodium-dependent 5-hydroxytryptamine (5-HT) uptake in rat-brain synaptosomes, probably through a kinase mechanism affecting the 5-HT transporter. Now, the inhibition of 5-HT
uptake in neurons in primary culture by TeTx in a dose-dependent manner is described in this work. This effect is also produced by the nontoxic C-terminal fragment of the TeTx heavy chain (H(C)-fragment), indicating that 5-HT uptake inhibition is a consequence of the toxin binding to the plasmatic membrane and not to its catalytic activity. This conclusion is supported by the fact that the 5-HT accumulation was not inhibited by the light chain of TeTx or the toxoid, and was even potentiated by botulinum neurotoxin A. These results correlate with the activation of phosphoinositide-phospholipase C activity in the cultures used in this study, this activity only being enhanced by TeTx and by its Hc-fragment. On the other hand, the use of tyrosine phosphorylation modulators indicates that both Na3VO4 and basic fibroblast growth factor (bFGF) produce an enhancement of 5-HT uptake in this system, which is also sensitive to TeTx inhibition. On the other hand, genistein alone is able to reduce the 5-HT transport in cultured neurons, and this effect did not appear to be additive to that elicited by TeTx. This result suggests that TeTx and genistein may share some events in their respective mechanisms of action. Furthermore, the incubation at different concentrations of 12-O-tetradecanoylphorbol 13-acetate (TPA) confirms the involvement of protein kinase C (PKC) in 5-HT transport modulation in rat-brain neuronal primary cultures. In summary, we shall demonstrate in this work that TeTx induces, through its Hc fragment, an inhibition of both basal and stimulated serotonin uptakes in primary neuronal cultures, in parallel to the activation of phosphoinositide-phospholipase C activity and PKC activation.
It has been suggested that non-genotoxic carcinogens (NGCs) may cause modification of the DNA methylation status. We studied the effects of phenobarbital (PB) -- a non-genotoxic rodent liver carcinogen -- on the methylation
level of the promoter region of the p16 suppressor gene, as well as on hepatomegaly, DNA synthesis, and DNA-methyltransferase (DNMTs) activity in the rat liver. Male Wistar rats received PB in 1, 3 or 14 daily oral doses (at 24-h intervals), each equivalent to 1/10 of the LD(50) value. The study showed that PB has caused persistent elevation in relative liver weight (RLW) as well as a transient increase in DNA synthesis. This suggests that the PB-induced increase in RLW was due to a combination of both hyperplasia and hypertrophy of liver cells. The effect of PB on DNA synthesis corresponded to an increase in the methylation pattern of the p16 promoter sequence. Methylation of cytosine in the analyzed CpG sites of the p16 gene was found after short exposure of the animals to PB. Treatment of rats with PB for 1 and 3 days also produced an increase in nuclear DNMTs activity. After prolonged administration (14 days), DNA synthesis declined, returning to the control level. No changes in methylation of the p16 gene nor in DNMTs activity were observed. The reversibility of early induced changes in target tissues is a mark characteristic of tumor promoters. Thus, transient changes in methylation of the p16 gene, although their direct role in the mechanisms of PB toxicity, including its carcinogenic action, remains doubtful, may therefore be a significant element of such processes.
Nakamura Y, etal., Toxicology. 2007 Jun 25;235(3):176-84. Epub 2007 Mar 19.
The in vitro metabolism of permethrin and its hydrolysis products in rats was investigated. Cis- and trans-permethrin were mainly hydrolyzed by liver microsomes, and also by small-intestinal microsomes of rats. trans-Permethrin was much more effectively hydrolyzed than the cis-isomer. When NADPH was
added to the incubation mixture of the liver microsomes, three metabolites, 3-phenoxybenzyl alcohol (PBAlc), 3-phenoxybenzaldehyde (PBAld) and 3-phenoxybenzoic acid (PBAcid), were formed. However, only PBAlc was formed by rat liver microsomes in the absence of cofactors. The microsomal activities of rat liver and small intestine were inhibited by bis-p-nitrophenyl phosphate, an inhibitor of carboxylesterase (CES). ES-3 and ES-10, isoforms of the CES 1 family, exhibited significant hydrolytic activities toward trans-permethrin. When PBAlc was incubated with rat liver microsomes in the presence of NADPH, PBAld and PBAcid were formed. The NADPH-linked oxidizing activity was inhibited by SKF 525-A. Rat recombinant cytochrome P450, CYP 2C6 and 3A1, exhibited significant oxidase activities with NADPH. When PBAld was incubated with the microsomes in the presence of NADPH, PBAcid was formed. CYP 1A2, 2B1, 2C6, 2D1 and 3A1 exhibited significant oxidase activities in this reaction. Thus, permethrin was hydrolyzed by CES, and PBAlc formed was oxidized to PBAld and PBAcid by the cytochrome P450 system in rats.
Chronic obstructive pulmonary disease (COPD) is characterized by airway obstruction, inflammation, and mucus hypersecretion, features that are common in bronchitis, emphysema, and often asthma. However, current rodent models do not reflect this human disease. Because genetically predisposed spontane
ously hypertensive (SH) rats display phenotypes such as systemic inflammation, hypercoagulation, oxidative stress, and suppressed immune function that are also apparent in COPD patients, we hypothesized that SH rat may offer a better model of experimental bronchitis. We, therefore, exposed SH and commonly used Sprague Dawley (SD) rats (male, 13- to 15-weeks old) to 0, 250, or 350 ppm sulfur dioxide (SO(2)), 5 h/day for 4 consecutive days to induce airway injury. SO(2) caused dose-dependent changes in breathing parameters in both strains with SH rats being slightly more affected than SD rats. Increases in bronchoalveolar lavage fluid (BALF) total cells and neutrophilic inflammation were dose dependent and significantly greater in SH than in SD rats. The recovery was incomplete at 4 days following SO(2) exposure in SH rats. Pulmonary protein leakage was modest in either strain, but lactate dehydrogenase and N-acetyl glucosaminidase activity were increased in BALF of SH rats. Airway pathology and morphometric evaluation of mucin demonstrated significantly greater impact of SO(2) in SH than in SD rats. Baseline differences in lung gene expression pattern suggested marked immune dysregulation, oxidative stress, impairment of cell signaling, and fatty acid metabolism in SH rats. SO(2) effects on these genes were more pronounced in SH than in SD rats. Thus, SO(2) exposure in SH rats may yield a relevant experimental model of bronchitis.
Long-term exposure to particulate air pollution has been implicated as a risk factor for cardiovascular disease and mortality. Short-term exposure has also been suggested to contribute to complications of atherosclerosis. Aberrant regulation of smooth muscle cell proliferation is thought to associat
e with the pathophysiology of vascular disorders such as atherosclerosis. In this study, we investigate the influence of organic extracts of motorcycle exhaust particulates (MEPE) on rat vascular smooth muscle cell (VSMC) proliferation and related regulation signaling. Exposure of VSMCs to MEPE (10-100 microg/mL) enhanced serum-induced VSMC proliferation. The expression of proliferating cell nuclear antigen (PCNA) was also enhanced in the presence of MEPE. VSMCs treated with MEPE induced the increase in the extent of cyclooxygenase (COX)-2 mRNA and protein expression and prostaglandin E 2 production, whereas the level of COX-1 protein was unchanged. Moreover, MEPE increased the production of reactive oxygen species (ROS) in VSMCs in a dose-dependent manner. MEPE could also trigger time-dependently extracellular signal-regulated kinase (ERK)1/2 phosphorylation in VSMCs, which was attenuated by antioxidants N-acetylcysteine (NAC) and pyrrolidinedithiocarbamate (PDTC). The level of translocation of nuclear factor (NF)-kappaB-p65 in the nuclei of VSMCs was also increased under MEPE exposure. The potentiating effect of MEPE on serum-induced VSMC proliferation could be abolished by COX-2 selective inhibitor NS-398, specific ERK inhibitor PD98059, and antioxidants NAC and PDTC. Taken together, these findings suggest that MEPE may contribute to the enhancement of the pathogenesis of cardiovascular diseases by augmenting proliferation of VSMCs through a ROS-regulated ERK1/2-activated COX-2 signaling pathway.
Skrzydlewska E, etal., J Toxicol Environ Health A. 1999 Jul 23;57(6):431-42.
Methanol oxidation in the liver is accompanied by formation of formaldehyde and free radicals. These compounds can react with biologically active proteins, including proteolytic enzymes and their inhibitors. The activity of cathepsin G and elastase and their inhibitors such as alpha-1-antitrypsin an
d alpha-2-macroglobulin in plasma of rats given methanol orally in doses of 1.5, 3, and 6 g/kg was investigated for 7 days. The activity of cathepsin G and elastase was increased from 12 h to 5 d, proportionally to methanol dose. At the same time, activity of their inhibitors was reduced. Methanol ingestion in humans caused changes in activities of proteases and their inhibitors with similar direction as in rats. These changes in activity of proteases and their inhibitors produce significant disturbances in proteolytic-antiproteolytic balance after methanol administration.
Ginger extracts have been reported to have anti-inflammatory, anti-oxidant, and anti-cancer effects. [6]-shogaol is one of the most bioactive components of ginger rhizomes. This study assessed the [6]-shogaol's ability to protect cultured primary rat astrocytes against lipopolysaccharide (LPS)-induc
ed inflammation. [6]-shogaol was shown to suppress the release of pro-inflammatory cytokines and decreased the level of inducible nitric oxide syntheses (iNOS), cyclooxygenase-2 (COX-2), and phospho-NF-kB in LPS-treated astrocytes. Furthermore, [6]-shogaol treatment markedly up-regulated histone H3 acetylation and suppressed histone deacetylase (HDAC)1 expression. In addition, [6]-shogaol treatment also increased the expression of heat-shock protein (HSP)70. The neuroprotective, neurotrphic, and anti-inflammatory properties of [6]-shogaol may be translated to improvements in neurological performance. [6]-Shogaol's ability to inhibit HDAC was comparable to that of commonly used HDAC inhibitors Trichostatin A and MS275. Taken together, our results suggest that [6]-shogaol can significantly attenuate a variety of neuroinflammatory responses by inducing HSP70, that is associated with HDAC inhibition in cortical astrocytes.
Wang J, etal., J Toxicol Sci. 2015 Dec;40(6):711-8. doi: 10.2131/jts.40.711.
Many studies have investigated the association between the A118G polymorphism in the mu-opioid receptor gene and smoking behaviors, but the results remain controversial. This meta-analysis aimed to derive a more reliable estimate of the effect of the A118G polymorphism on smoking behaviors. We syst
ematically searched the PubMed/Medline, Embase and Web of Science databases for eligible articles published up to October 23, 2014. A total of six studies were selected. Odds ratios (ORs) as well as their corresponding 95% confidence intervals (CIs) were used to estimate the association between A118G polymorphism and smoking behaviors in four genetic models. Heterogeneity analysis and publication bias were also performed. Subgroup analysis was conducted according to different ethnicities. The meta-analysis was performed using either a fixed- or random-effects model as deemed appropriate. In the result of the meta-analysis, a significant association was detected in the dominant model in the Caucasian subgroup (OR = 3.26, 95% CI = 2.65-4.05). This result indicated that Caucasians carrying the G allele (AG + GG) of the A118G polymorphism in the mu-opioid receptor gene were more likely to be addicted to smoking compared with those with the AA homozygote. However, no significant association was found in other genetic models.
In conventional rodent toxicity studies the characterization of the adverse effects of a chemical relies primarily on gravimetric, and histopathological data. The aim of this study was to evaluate if the use of two-dimensional gel electrophoresis could generate
protein accumulation profiles, which were in accordance with conventional toxicological findings by investigating a model antiandrogen, flutamide (FM), whose toxic effects, as measured using standard approaches, are well characterized. Male Sprague-Dawley rats were orally exposed to FM (0, 6, 30, and 150 mg/kg/day) for 28 days. The expected inhibition of androgen-dependent tissue stimulation, increased luteinizing hormone and testosterone plasma levels, and Leydig cell hyperplasia were observed. Changes in testicular protein accumulation profiles were evaluated in rats exposed to 150 mg/kg/day FM. Several proteins involved in steroidogenesis (e.g., StAR, ApoE, Hmgcs1, Idi1), cell cycle, and cancer (e.g., Ddx1, Hspd1) were modulated by FM, and these data provided molecular evidence for the hormonal and testicular histopathology changes recorded. Changes in proteins associated with spermatogenesis were also recorded, and these are discussed within the context of the testicular phenotype observed following FM treatment (i.e., normal spermatogenesis but Leydig cell hyperplasia). Overall, our data indicate that the combination of conventional toxicology measurements with omic observations has the potential to improve our global understanding of the toxicity of a compound.
Mirzaee S, etal., Toxicology. 2010 Jan 12;267(1-3):159-64. Epub 2009 Nov 12.
Cytosolic and mitochondrial deoxynucleoside kinases (dNKs), as well as 5'deoxynucleotidases (5'-dNTs), control intracellular and intramitochondrial phosphorylation of natural nucleotides and nucleoside analogs used in antiviral and cancer chemotherapy. The balance in the activities of these two grou
ps of enzymes to a large extent determines both the efficacy and side effects of these drugs. Because of the broad and overlapping substrate specificities of the nucleoside kinases and 5'-NTs, their tissue distribution and roles in the metabolism of both natural nucleosides and their analogs are still not fully elucidated. Here, the activity of dNKs: dCK and TK (TK1 and TK2) as well as 5'-dNTs: CN1, CN2 and dNT (dNT1 and dNT2) were determined in 14 different adult mouse and rat tissues. In most cases tissue activities of TK1, TK2 and dCK were 2-3-fold higher in the mouse, a similar pattern was found with CN1 and dNTs although with several exceptions, e.g., TK2 activities in muscle extracts from rats were 2-10-fold higher than in the mouse. Furthermore CN1 activities in hepatic, renal and adipose extracts were 2-3-fold higher in the rat. CN2 had higher levels in the testis, spleen, pancreas and diaphragm and lower level in the lung of mouse compared to rat tissues. The result suggests that a major difference in these activity profiles between mouse and rat may account for discrepancies in pharmacological response of the two animals to certain nucleoside compounds, and may help to improve the usefulness of animal models in future efforts of drug discovery.
Screening prostatic carcinogens is time-consuming due to the time needed to induce preneoplastic and neoplastic lesions. To overcome this, we investigated alternative molecular markers for detection of prostatic carcinogens in a short period in rats. After treatment with 2-amino-1-methyl-6-phenylimi
dazo[4,5-b]pyridine (PhIP), expression of high-mobility group protein B2 (HMGB2) was up-regulated in rat ventral prostate. To evaluate the applicability of HMGB2 in the early detection of carcinogenicity of chemicals using animal models, we examined HMGB2 expression in prostate of rats. Six-week-old male F344 rats were gavaged for four weeks with a total of eight individual chemicals, divided into two categories based on prostate carcinogenicity. Animals were sacrificed at the end of the study and HMGB2 immunohistochemistry was performed. HMGB2 expression in least one prostate lobe was significantly increased by all four prostate carcinogens compared with the controls. In contrast, the four chemicals that were not carcinogenic in the prostate did not cause HMGB2 up-regulation. Additionally, high HMGB2 expression in neoplastic lesions in both rat and human was detected. Therefore HMGB2 expression may be a good screening tool for the identification of potential of prostate carcinogens.
Ahaghotu E, etal., Toxicol Lett. 2005 Dec 15;159(3):261-71. Epub 2005 Aug 8.
The permeation rate and skin retention of benzene and methylbenzenes were assessed in vitro using hairless rat skin. The effects of unocclusive dermal exposures of these chemicals (15 microl every 2h for 8h a day for 4 days) on the transepidermal water loss (TEWL), erythema and skin histopathology w
ere measured in CD hairless rats. The expression of IL-1 alpha and TNF-alpha in the skin and blood were measured at the end of dermal exposures. The flux of benzene was about 1.5-, 2.5- and 80-fold higher than toluene, xylene and tetramethyl benzene isomers (TMB), respectively, and the values were inversely correlated with molecular weight (r(2)=0.7455) and logoctanol-water partition coefficient (r(2)=0.7831). The retention of chemicals in stratum corneum (SC) was in the order of TMB>xylene>toluene approximately benzene. The TEWL and erythema data demonstrated that the irritation was in the following order: TMB>xylene>benzene. The histo-pathological examination showed that xylene and TMB induced granulocyte infiltration, swelling of the epidermis, and extensive disruption and damage of stratum corneum. Likewise, the expression of IL-1 alpha in the blood and TNF-alpha in the skin after dermal exposures was higher for TMB followed by xylene and benzene compared to control. In conclusion, the aromatic hydrocarbon chemicals induced cumulative irritation upon low-level repeat exposures for a 4-day period and the irritation increased with the number of methyl groups of benzene. The affinity of the chemical to SC and their gradual accumulation in the skin in the present study is the reason for the differences in the skin irritation profiles of different aromatic chemicals. Our ultimate goal is to develop a biologically based model that connects skin retention of chemical to the skin irritation response. The findings of the present study will be helpful in understanding the role of these chemicals in the jet fuel and various petroleum based fuels in inducing skin irritation response.
It is known that certain dietary fats can modulate rat testosterone metabolism. In the current study we have investigated testicular steroidogenic enzyme activities and serum testosterone levels in rats fed diets containing either different protein sources (casein, fishmeal, whey) or different lipid
sources (soybean oil, docosahexaenoic acid (DHA), seal oil, fish oil, lard). The diets examined reflect different marine oils and proteins which are significant components of Northern Canadian diets. Male rats (42-45 days old, 6 per group), were assigned to specific diets for 42 days. On the 43rd day of the study, rats were sacrificed and blood plasma and testes frozen (-80 degrees C) until analysis. Microsomal steroidogenic enzyme activities (3beta-HSD, 17-OHase, C-17,20-lyase, 17beta-HSD) were measured radiometrically. There were no differences in enzyme activities between the three dietary protein sources. In contrast, compared with the standard casein diet, all lipid sources caused reductions in C-17,20-lyase activity (>50%); seal oil and fish oil reduced 17-OHase activity (approximately 30%) and soybean oil, DHA fish oil and lard reduced 17beta-HSD activity (approximately 30%). No effect on 3beta-HSD activity was evident. Serum testosterone levels were determined using ELISA kits and were not affected by any diet with the exception of the soybean oil diet which was significantly elevated compared with the casein protein diet. Body and testis weights were not affected by diet. In conclusion, these data demonstrate that some dietary lipid sources caused reductions in testicular 17-OHase and C-17,20-lyase activities but not to the extent that serum T levels were affected, while soybean oil caused elevated serum testosterone in the absence of elevated steroidogenic enzyme activities.
Tsukahara S, etal., Toxicol Lett. 2009 Mar 10;185(2):79-84. Epub 2008 Dec 6.
The goal of our study was to determine if toluene affected the synthesis and secretion of testosterone in fetal rats. Dams were exposed to atmospheres that contained 0.09 ppm, 0.9 ppm or 9 ppm of toluene for 90 min/day from gestational days (GDs) 14.5 to 18.5 via nasal inhalation. Fetal plasma testo
sterone concentrations determined by enzyme immunoassay were significantly reduced on GD 18.5 after exposure to 0.9 and 9 ppm, but not to 0.09 ppm, of toluene in male, but not in female, fetuses. We measured, using real-time PCR methods, mRNA levels in fetal testes for several steroidogenic enzymes involved in testosterone synthesis and insulin-like 3 (Insl3), a maker of Leydig cell differentiation. The mRNA levels of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) were significantly reduced after exposure to 0.9-ppm toluene. However, the mRNA levels of cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17alpha-hydroxylase/c17-20 lyase, 17beta-hydroxysteroid dehydrogenase, and Insl3 were not significantly altered by exposure to 0.9-ppm toluene. In addition, immunohistochemical analysis showed reduced 3beta-HSD-immunoreactive areas in the interstitial region of fetal testes after exposure to 0.9 and 9 ppm, but not 0.09 ppm, toluene. These findings indicate that toluene reduced the synthesis and secretion of testosterone in fetal testes from rats possibly as a consequence of reduced 3beta-HSD expression.
Polychlorinated biphenyls (PCBs) are ubiquitous and persistent environmental contaminants that disturb normal endocrine functions including gonadal functions in humans and mammals. The present study was conducted to elucidate the protective role of vitamins C and E against Aroclor 1254-induced chang
es in Leydig cell steroidogenic acute regulatory (StAR) protein and steroidogenic enzymes mRNA expression. Adult male rats were dosed for 30 days with daily intraperitoneal (i.p.) injection of 2 mg/kg Aroclor 1254 or vehicle (corn oil). One group of rats was treated with vitamin C (100 mg/kg bw day) while the other group was treated with vitamin E (50 mg/kg bw day) orally, simultaneously with Aroclor 1254 for 30 days. One day after the last treatment, animals were euthanized and blood was collected for the assay of serum hormones such as luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone and estradiol. The serum androgen binding protein was also estimated. Testes were quickly removed and Leydig cells were isolated in aseptic condition. Purity of Leydig cells was determined by 3beta-hydroxysteroid dehydrogenase (3beta-HSD) staining methods. Purified Leydig cells were used for quantification of androgen and estrogen receptors. In addition, total RNA was isolated from control and treated Leydig cells to monitor the steady-state mRNA levels by RT-PCR for StAR protein, cytochrome P(450)scc, 3beta-HSD and 17beta-HSD. Aroclor 1254 treatment significantly reduced the serum LH, FSH, testosterone, estradiol and androgen binding protein. In addition to this, Leydig cell androgen and estrogen receptors were markedly decreased. RT-PCR analysis of StAR mRNA level did not alter Aroclor 1254 treatment while steroidogenic enzymes such as cytochrome P(450)scc, 3beta-HSD and 17beta-HSD mRNAs were drastically decreased in Aroclor 1254 treatment. However, the simultaneous administration of vitamins C or E in Aroclor 1254-exposed rats resulted a significant restoration of all the above-mentioned parameters to the control level. These observations suggest that vitamins C and E have ameliorative role against PCBs-induced testicular Leydig cells dysfunction.
Liu Y, etal., Toxicol Sci. 2023 Feb 15:kfad016. doi: 10.1093/toxsci/kfad016.
Decreased sperm quality is the main cause of male infertility. Studies have found that prenatal dexamethasone exposure (PDE) decreases sperm quality in male offspring after birth, but the mechanism is unclear. Wistar pregnant rats were subcutaneously injected with 0.1, 0.2 and 0.4 mg/kg.d dexamethas
one at gestational day 9-20. The testes and sperm of first-generation (F1) offspring were collected, and F1 offspring were mated with wild-type female rats to obtain F2. Compared with the control group, F1 offspring in PDE group had lower sperm count and motility after birth, and the deformity rate increased. F2 fetal rats' body length and weight decreased, and the intrauterine growth retardation rate increased. Meanwhile, PDE decreased the expression of connexin 43 (CX43) in offspring testes, while T-box transcription factor 2 (TBX2) promoter region histone 3 lysine 9 acetylation (H3K9ac) level and its expression were increased. Traced back to F1 fetus testes, PDE increased the expression of glucocorticoid receptor (GR) and P300, activated GR protein into the nucleus, and made GR act on the TBX2 promoter region. Further, a series of Sertoli cell interventions confirmed that dexamethasone promoted GR to recruit P300, increased the H3K9ac level of TBX2 promoter region and its expression, and inhibited the expression of CX43. This study confirmed that PDE decreased sperm quality of male offspring, which is related to the epigenetic programming of TBX2/CX43 in the Sertoli cells, provided a theoretical and experimental basis for guiding the rational use of drugs during pregnancy.
Nakamura A, etal., Exp Toxicol Pathol. 2007 Sep;59(1):1-7. Epub 2007 Jun 20.
To evaluate the pathological roles of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-1 in rat renal interstitial fibrosis, we examined the expression, localization and effect on growth of ADAMTS-1 in a normal rat kidney cell line (NRK-49F). Increased ADAMTS-1 mRNA expressio
n was observed in the kidney by in situ hybridization after induction of unilateral ureteral obstruction (UUO) in male Wistar rats, the mRNA was localized in the renal tubular epithelial cells in the outer stripe of the outer medulla in the UUO kidney. On the other hand, no positive signals were observed in the sham-operated-kidney. Western-blot analysis of stable human embryonic kidney 293 (HEK293) transformant cells expressing rat ADAMTS-1 containing the V5 tag using anti-V5 tag monoclonal antibody revealed the presence of two post-translationally processed bands in the cells: an 87-kDa band with a metalloproteinase motif and 65-kDa band with a thrombospondin motifs. On the other hand, secretion of the 65-kDa protein into the culture supernatants from the transformant cells was confirmed. Treatment with the culture supernatant of the transformant cells potently reduced the uptake of 3H-thymidine in the NRK-49F cells, no such inhibitory effect was observed with the culture medium of the HEK293 cells. These results suggest that the UUO-induced expression of ADAMTS-1 in the rat renal tubular epithelial cells may actively contribute to the inhibition of DNA synthesis in the renal interstitial fibroblasts via the 65-kDa moiety with thrombospondin motifs.
Vinson RK and Hales BF, Toxicol Sci. 2003 Jul;74(1):157-64. Epub 2003 May 2.
The ability of the conceptus to respond to genotoxic stress may be critical for normal development, particularly after exposure to genotoxic teratogens. Members of the phosphatidylinositol 3-kinase (PI3K) superfamily are in
volved in controlling cell cycle activity and maintaining genomic stability. The expression of PI3K family members ATM, ATR, and DNA-PKcs, and downstream genes p53, GADD45, and p21, was examined in the mid organogenesis rat conceptus in vivo on gestational days (GD) 10 through 12 and in vitro following exposure to genotoxic stress. ATM was the most highly expressed PI3K family member in both yolk sac and embryo proper, with transcript levels increasing ~fourfold in the embryo from GD 10 to 12. Transcript concentrations for ATR, DNA-PKcs, and downstream genes were low in both tissues; all genes had increased transcript levels exclusively in the GD 12 embryo. Transient oxidative stress, induced by short-term, in vitro embryo culture, had no effect on transcript levels in either tissue. Culture for 24 or 44 h significantly decreased ATM transcript levels in both embryo and yolk sac, but downstream genes were unaffected compared to GD-11 and -12 in vivo levels, respectively. Exposure to 4-hydroperoxycyclophosphamide (4-OOHCPA), an activated form of the nitrogen mustard cyclophosphamide (CPA), had no effect on transcript levels for any of the genes examined. Therefore, while transcripts for genotoxic stress-response genes are present in the mid organogenesis rat conceptus, their expression is not regulated by exposure in culture to either transient oxidative stress or a genotoxic alkylating agent. The inability of the conceptus to upregulate transcripts in response to insult may contribute to an increased susceptibility to stressors during organogenesis.
Arieli Y, etal., Respir Physiol Neurobiol. 2014 Jun 15;197:29-35. doi: 10.1016/j.resp.2014.03.006. Epub 2014 Mar 24.
We examined the hypothesis that repeated exposure to non-convulsive hyperbaric oxygen (HBO) as preconditioning provides protection against central nervous system oxygen toxicity (CNS-OT). Four groups of rats were used in the study. Rats in the control and the ne
gative control (Ctl-) groups were kept in normobaric air. Two groups of rats were preconditioned to non-convulsive HBO at 202 kPa for 1h once every other day for a total of three sessions. Twenty-four hours after preconditioning, one of the preconditioned groups and the control rats were exposed to convulsive HBO at 608 kPa, and latency to CNS-OT was measured. Ctl- rats and the second preconditioned group (PrC-) were not subjected to convulsive HBO exposure. Tissues harvested from the hippocampus and frontal cortex were evaluated for enzymatic activity and nitrotyrosine levels. In the group exposed to convulsive oxygen at 608 kPa, latency to CNS-OT increased from 12.8 to 22.4 min following preconditioning. A significant decrease in the activity of glutathione reductase and glucose-6-phosphate dehydrogenase, and a significant increase in glutathione peroxidase activity, was observed in the hippocampus of preconditioned rats. Nitrotyrosine levels were significantly lower in the preconditioned animals, the highest level being observed in the control rats. In the cortex of the preconditioned rats, a significant increase was observed in glutathione S-transferase and glutathione peroxidase activity. Repeated exposure to non-convulsive HBO provides protection against CNS-OT. The protective mechanism involves alterations in the enzymatic activity of the antioxidant system and lower levels of peroxynitrite, mainly in the hippocampus.
Huang XJ, etal., Toxicol Lett. 2009 Dec 15;191(2-3):167-73. Epub 2009 Sep 4.
Mequindox (MEQ) is a synthetic quinoxaline 1,4-dioxides (QdNOs) derivative which can effectively improve growth and feed efficiency in animals. This study was to investigate the dose-dependent long-term toxicity in the adrenal of male rats exposed to 180 days of
MEQ feed. Our data demonstrated that high doses of MEQ in the diet for 180 days led to adrenal damage and steroid hormone decrease, combined with sodium decrease and potassium increase in rat plasma. Significant changes of GSH and SOD in plasma were observed in the high doses (110, 275 mg/kg) groups. At the same doses, MEQ treatment down-regulated the mRNA levels of CYP11A1, CYP11B1 and CYP11B2 which located in mitochondria, but up-regulated mRNA levels of CYP21 and 3beta-HSD which located in endoplasmic reticulum. In conclusion, we reported the dose-dependent long-term toxicity of MEQ on adrenal gland in male rats, which raise awareness of its toxic effects to animals and consumers, and its mechanism may involve in oxidative stress and steroid hormone biosynthesis pathway.
Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by TPMT genetic polymorphisms. Recent studies identified germline NUDT15 variation as another critical determinant
of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four NUDT15 coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4-100% loss of nucleotide diphosphatase activity. Loss-of-function NUDT15 diplotypes were consistently associated with thiopurine intolerance across the three cohorts (P = 0.021, 2.1 x 10(-5) and 0.0054, respectively; meta-analysis P = 4.45 x 10(-8), allelic effect size = -11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity in vitro, and patients with defective NUDT15 alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating NUDT15 variants may inform personalized thiopurine therapy.
2-Nitro-p-phenylenediamine (2NPPD) is a dye used in semipermanent and permanent (tinting color) hair dye formulations. National Toxicology Program toxicology and carcinogenesis testing of 2NPPD has raised concerns about its
safety. Therefore, we initiated in vitro studies to measure absorption and metabolism of 2NPPD in human and fuzzy rat skin and rat jejunal tissue. Intestinal tissue metabolism of 2NPPD was compared to skin metabolism since toxicology data from oral 2NPPD studies will be used for future safety assessment purposes. Absorption was measured over 24 h by using flow-through diffusion cells with a receptor fluid consisting of Hepes-buffered Hank's balanced salt solution. Dosing vehicles were applied to skin and intestine in the diffusion cells for 30 min. 2NPPD metabolites were determined by high-performance liquid chromatography methodology. In human skin, the percentages of total applied dose absorbed (receptor fluid + skin) over 24 h were 9.2 +/- 5.7 (mean +/- SD) and 9.5 +/- 3.2 for the ethanol and semipermanent vehicles, respectively, with approximately 3% remaining in skin. In rat skin, the percentages of total applied dose absorbed over 24 h were 9.3 +/- 1.2 (mean +/- SE), 6.9 +/- 1.2, and 4.2 +/- 0.1 for the ethanol, semipermanent, and permanent formulation vehicles, respectively, with approximately 3% remaining in skin. In rat intestinal tissue, the percentage of total applied dose absorbed over 24 h was 10.9 +/- 1.2, with approximately 5% remaining in the tissue. In human and rat skin, 2NPPD was metabolized to triaminobenzene and N4-acetyl-2NPPD. 2NPPD was also metabolized to a sulfated 2NPPD metabolite in rat skin, but not in human skin. 2NPPD was extensively metabolized in both human and rat skin with ethanol application; metabolism was not as extensive with a semipermanent formulation application. In rat intestinal tissue, 62% of 2NPPD was metabolized upon absorption to triaminobenzene and N4-acetyl-2NPPD. Differences in the metabolic profiles (proportion of each metabolite formed) were found between the skin and intestinal tissue. These results suggest that 2NPPD is rapidly absorbed and extensively metabolized in both skin and intestinal tissue. The extent of metabolism and the metabolic profile were found to be species-, tissue-, and dosing vehicle-dependent. Metabolism information will be useful in predicting the extent of 2NPPD and/or 2NPPD metabolite systemic absorption relative to a dermal exposure, which will improve the health hazard assessment of 2NPPD.
Polychlorinated biphenyls (PCBs) are environmental contaminants that in humans and animals disturb normal endocrine functions including gonadal functions. The present studies were aimed at determining the direct effects of PCB on Leydig cell testosterone production and antioxidant system in vitro. A
dult Leydig cells were purified by Percoll gradient centrifugation method and the purity of Leydig cells was also determined by 3beta-hydroxysteroid dehydrogenase (3beta-HSD) staining method. Purified Leydig cells were exposed to different concentrations (10(-10) to 10(-7) M) of PCB (Aroclor 1254) for 6 and 12 h under basal and LH-stimulated conditions. After incubation, the cultured media were collected and used for the assay of testosterone. The treated cells were used for quantification of cell surface LH receptors and activity of steroidogenic enzymes such as cytochrome P450 side chain cleavage enzyme (P450scc), 3beta-HSD and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). In addition, Leydig cellular enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), gamma-glutamyl transpeptidase (gamma-GT), glutathione-S-transferase (GST) and non-enzymatic antioxidants such as vitamin C and E were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also estimated in Leydig cells. The results indicated that Aroclor 1254 (10(-8) and 10(-7) M) treatments significantly inhibit basal and LH-stimulated testosterone production. In addition to this, the activity of steroidogenic enzymes, enzymatic and non-enzymatic antioxidants were significantly diminished in a dose- and time-dependent manner. Moreover, the LPO and ROS were elevated in a dose- and time-dependent manner under basal and LH-stimulated conditions. These findings suggest that PCBs can act directly on Leydig cells to inhibit testosterone biosynthesis by reducing steroidogenic enzymes, enzymatic and non-enzymatic antioxidants.
7,12-Dimethylbenzanthracene (DMBA) is an abundant environmental contaminant, which undergoes bioactivation, primarily by the CYP1 family, both in liver and extra-hepatic tissues. Dietary acetylsalicylic acid (ASA) has been recently reported to inhibit DMBA-mediated mammary tumour formation in rats.
Chemopreventive substances may reduce the risk of developing cancer by decreasing metabolic enzymes responsible for generating reactive species (phase I enzymes) and/or increasing phase II enzymes that can deactivate radicals and electrophiles. To test these hypotheses, Sprague-Dawley female rats were orally administered ASA as lysine acetylsalicylate (50 mg per capita/day for 21 days in water), DMBA (10 mg per capita in olive oil on day 7, 14, and 21), ASA and DMBA in combination, and vehicles only, respectively. Six rats for each group were sacrificed on day 8, 15, and 22. The DMBA-mediated increase in hepatic CYP1A expression and related activities was not significantly affected by ASA, which, conversely, enhanced in a time-dependent manner the liver reduced glutathione content (up to 52%) and the activity of NAD(P)H-quinone oxidoreductase (up to 34%) in DMBA-treated rats. It is proposed that the positive modulation of the hepatic antioxidant systems by ASA may play a role in the chemoprevention of mammary tumourigenesis induced by DMBA in the female rat.
Newman ZL, etal., Biochem Biophys Res Commun. 2010 Aug 6;398(4):785-9. Epub 2010 Jul 16.
Anthrax lethal toxin (LT) is an important virulence factor for Bacillus anthracis. In mice, LT lyses macrophages from certain inbred strains in less than 2h by activating the Nlrp1b inflammasome and caspase-1, while macrophages from other strains remain resistan
t to the toxin's effects. We analyzed LT effects in toxin-sensitive and resistant rat macrophages to test if a similar pathway was involved in rat macrophage death. LT activates caspase-1 in rat macrophages from strains harboring LT-sensitive macrophages in a manner similar to that in toxin-sensitive murine macrophages. This activation of caspase-1 is dependent on proteasome activity, and sensitive macrophages are protected from LT's lytic effects by lactacystin. Proteasome inhibition also delayed the death of rats in response to LT, confirming our previous data implicating the rat Nlrp1 inflammasome in animal death. Quinidine, caspase-1 inhibitors, the cathepsin B inhibitor CA-074Me, and heat shock also protected rat macrophages from LT toxicity. These data support the existence of an active functioning LT-responsive Nlrp1 inflammasome in rat macrophages. The activation of the rat Nlrp1 inflammasome is required for LT-mediated rat macrophage lysis and contributes to animal death.
Cadmium (Cd) has been reported to cause cell cycle arrest in various cell types by p53-dependent and -independent mechanisms. This study was designed to investigate cell cycle progression in kidney cells that are the target of chronic Cd toxicity. Rat renal prox
imal tubular epithelial cells, NRK-52E, were treated with up to 20 microM CdCl2 in DMEM containing 10% calf serum for up to 24 h. Flow cytometric analysis revealed time- and concentration-dependent increases in cells in G2/M phase of the cell cycle. As compared to the control cells, the cells exposed to 20 microM Cd showed a doubling of the number of cells in this phase after 24 h. The cell cycle arrest was associated with a decrease in protein levels of both cyclins A and B. Further investigation into the mechanism revealed that Cd treatment led to down-modulation of cyclin-dependent kinases, Cdk1 and Cdk2, apparently by elevating the expression of cyclin kinase inhibitors, KIP1/p27 and WAF1/p21. Furthermore, the wild-type p53 DNA-binding activity was up-regulated. Based on these observations, it appears that Cd causes G2/M phase arrest in NRK-52E cells via elevation of p53 activity, increasing the expression of cyclin kinase inhibitors p27 and p21, and decreasing the expression of cyclin-dependent kinases Cdk1 and 2, and of cyclins A and B.
Nishizato Y, etal., Toxicol In Vitro. 2010 Mar;24(2):677-85. Epub 2009 Aug 7.
Steroidogenesis in the adrenals, testes, and ovaries plays an important roles in hormonal homeostasis in vivo and is mediated by various enzymes, such as acid cholesterol esterase (CEase), neutral CEase, CYP11A, 3beta-hydroxysteroid dehydrogenase (HSD), CYP21, CYP11B, CYP17, CYP19 and 17beta-HSD. Co
mpounds that are potent inhibitors of one or more steroidogenic enzymes can thus cause serious endocrine toxicity so that relevant assay systems for detecting such enzyme inhibition are useful for safety assessment. Methods already reported involve incubation of radiolabeled steroid precursors with enzyme sources followed by separation of products by TLC or other methods. However, it is unclear whether the systems in use are kinetically-optimized (i.e., reactions performed in the linear range in terms of both reaction time and substrate concentrations), so that they might not be applicable for appropriate inhibition studies. The purpose of this present study was to establish kinetically-optimized methods for rat adrenal, testis, and ovary tissues with radio-HPLC. After development of HPLC methods for separation of precursor substrates and derived metabolites, we investigated the time course and substrate concentration dependence of individual reactions, using radiolabeled substrates and enzyme sources (mitochondria-lysosomal, microsomal, and cytosolic fractions from rat adrenal, testis and ovary tissues). Linearity of metabolism was confirmed in terms of both reaction time and substrate concentrations, and we conclude that this approach can be utilized to assess the inhibition profiles of compounds impacting on steroidogenic enzyme activity.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes hepatic accumulation of biliverdin and its monoglucuronide in moderately TCDD-resistant line B rats, but not in highly TCDD-resistant line A rats. In the mammalian heme degradation process, heme is cleaved to biliverdin by the rate-limiting enzyme he
me oxygenase-1 (HO-1). Subsequently, biliverdin IXalpha reductase (BVRA) catalyzes the reduction of biliverdin to bilirubin. In heme biosynthesis, the rate-limiting enzyme is delta-aminolevulinic acid synthetase 1 (ALAS1). The effect of TCDD on HO-1, BVRA and ALAS1 was studied at the levels of mRNA (all three enzymes), protein expression (HO-1), and enzymatic activity (BVRA, liver only) in order to determine whether the accumulation of biliverdin could be due to their altered expression. In both lines A and B, 300 microg/kg TCDD transiently repressed hepatic HO-1 mRNA on day 2 but induced HO-1 protein expression at later time-points; however, the impact emerged earlier (day 14 vs. day 35) in line B rats. In spleen, TCDD repressed HO-1 mRNA and protein expression in lines A and B through days 2-35, but did not affect its mRNA levels in TCDD-sensitive L-E rats (10 days after 100 microg/kg). In all rat strains/lines, there was a strong repression of ALAS1 and a moderate induction of BVRA mRNA in liver, but mostly not in spleen. Hepatic BVRA activity was increased in lines A and B on day 14. At 5 weeks, it was still elevated in line A but reduced to 51% of control in line B. The results suggest that hepatic heme degradation is induced by TCDD in rats; however, this does not alone explain the accumulation of biliverdin in line B rats. Other factors such as the late repression of BVRA found here and possibly oxidative stress may be important contributors to biliverdin accumulation in these rats.
Augusti PR, etal., Food Chem Toxicol. 2008 Jan;46(1):212-9. Epub 2007 Aug 14.
Reactive oxygen species are implicated as mediators of tissue damage in the acute renal failure induced by inorganic mercury. Astaxanthin (ASX), a carotenoid with potent antioxidant properties, exists naturally in various plants, algae, and seafoods. This paper evaluated the ability of ASX to preven
t HgCl(2) nephrotoxicity. Rats were injected with HgCl(2) (0 or 5 mg/kg b.w., sc) 6h after ASX had been administered (0, 10, 25, or 50mg/kg, by gavage) and were killed 12h after HgCl(2) exposure. Although ASX prevented the increase of lipid and protein oxidation and attenuated histopathological changes caused by HgCl(2) in kidney, it did not prevent creatinine increase in plasma and delta-aminolevulinic acid dehydratase inhibition induced by HgCl(2). Glutathione peroxidase and catalase activities were enhanced, while superoxide dismutase activity was depressed in HgCl(2)-treated rats when compared to control and these effects were prevented by ASX. Our results indicate that ASX could have a beneficial role against HgCl(2) toxicity by preventing lipid and protein oxidation, changes in the activity of antioxidant enzymes and histopathological changes.
Francisco JA, etal., Blood. 1997 Jun 15;89(12):4493-500.
G28-5 sFv-PE40 is a single-chain immunotoxin targeted to CD40, which is highly expressed on human hematologic malignancies, including non-Hodgkin's lymphoma, B-lineage leukemias, multiple myeloma, and Hodgkin's disease, as well as certain carcinomas. In vitro a
nalysis showed that this monovalent immunotoxin had a binding affinity of 3 nmol/L, within 15-fold of the bivalent parental monoclonal antibody. G28-5 sFv-PE40 was stable when incubated in mouse serum at 37 degrees C for 6 hours and cleared from the circulation of mice with a half-life of 16.7 minutes. This immunotoxin was effective in treating human Burkitt's lymphoma xenografted SCID mice with complete responses, defined by an asymptomatic phenotype for greater than 120 days, obtained at doses of 0.13 to 0.26 mg/kg. The efficacy of treatment was dependent on the schedule used, with every three days for five injections being the most effective tested. The toxicity of G28-5 sFv-PE40 was examined in SCID mice, rats, and monkeys, with the maximum tolerated dose being 0.48, 1.0, and 1.67 mg/kg, respectively. Comparative immunohistology showed that the G28-5 specificity was qualitatively similar between human and monkey tissue. In summary, G28-5 sFv-PE40 was effective at inducing complete antitumor responses in lymphoma xenografted mice at doses that were well tolerated in mice, rats, and monkeys.
Zhang Y, etal., Mol Med Rep. 2020 Jan;21(1):393-404. doi: 10.3892/mmr.2019.10810. Epub 2019 Nov 11.
Cardiovascular disease is the predominant complication and leading cause of mortality in patients with chronic kidney disease (CKD). Previous studies have revealed that uremic toxins, including indoxyl sulfate (IS), participate in cardiac hypertrophy. As a heme‑
thiolate monooxygenase, cytochrome P450 family 1 subfamily B member 1 (CYP1B1) is able to metabolize arachidonic acid into hydroxyeicosatetraenoic acids, which are thought to serve a central function in the pathophysiology of the cardiovascular system. However, whether CYP1B1 is involved in cardiac hypertrophy induced by uremic toxins remains unknown. The present study revealed that the expression of the CYP1B1 gene was significantly (P<0.05, CKD or IS vs. control) upregulated by CKD serum or IS at the transcriptional and translational level. Furthermore, IS treatment resulted in the nuclear translocation of aryl hydrocarbon receptor (AhR), an endogenous ligand of IS. Binding of AhR in the promoter region of CYP1B1 was confirmed using a chromatin immunoprecipitation assay in the cardiomyoblast H9c2 cell line. In addition, knockdown of AhR or CYP1B1 reversed the production of cardiac hypertrophy markers. The in vivo injection of a CYP1B1 inhibitor significantly (P<0.05, Inhibitor vs. control) attenuated cardiac hypertrophy in mice. The data from the present study clearly demonstrated that CYP1B1 was involved in cardiac hypertrophy induced by uremic toxins.
Sachana M, etal., Toxicol In Vitro. 2008 Aug;22(5):1387-91. Epub 2008 Mar 18.
The aim of this work was to assess the toxic effects of the phosphorothionate insecticide chlorpyrifos (CPF) and its major in vivo metabolite chlorpyrifos oxon (CPO) on differentiating rat C6 glioma cells. At sublethal concentrations (1-10 microM), both compound
s were able to inhibit the development of extensions from C6 cells induced to differentiate by sodium butyrate. Western blot analysis of C6 cell lysates revealed that 4 h exposure to CPF was associated with decreased levels of the cytoskeletal protein MAP1B compared to controls, whereas the levels of the cytoskeletal proteins tubulin and MAP2c were not significantly affected. Western blot analysis of extracts of cells treated with CPO showed a significant, concentration-dependent decrease in the levels of tubulin after 24 h. MAP-1B levels were also significantly decreased. The above changes were not temporally related to acetylcholinesterase (AChE) inhibition. These results suggest that both CPF and CPO can exert toxic effects directly on glial cell differentiation and that the latter compound has a potent effect on the microtubule network.
Overexposure to glucocorticoid during fetal development can result in intrauterine growth retardation (IUGR) as well as other diseases after birth. The purpose of this study is to investigate the possibility of glucocorticoid disturbance-mediated nicotine-induced IUGR after chronic prenatal exposure
. Nicotine at 1.0mg/kg twice a day was administered subcutaneously to pregnant rats from gestational day (GD) 8 to GD 15 (mid-gestation) or GD 21 (late-gestation). Placental weights and fetal developmental parameters were recorded. Corticosterone levels were determined by radioimmunoassay. The mRNA expressions of adrenal steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side chain cleavage (P450scc) and placental 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta-HSD-2) were determined using real-time quantitative RT-PCR. The results showed that prenatal chronic nicotine exposure causes IUGR in rats (P<0.01); in response to nicotine exposure, maternal serum corticosterone levels were elevated at mid- and late-gestations (P<0.05); mRNA expressions of StAR and P450scc increased in maternal adrenals (P<0.05 or 0.01) but decreased in fetal adrenals (P=0.16 or 0.11). Furthermore, the mRNA levels of placental 11 beta-HSD-2 were reduced at mid- and late-gestations (P<0.05). These results suggest that nicotine-induced IUGR is associated with the disturbances of glucocorticoid homeostasis in maternal and fetal rats. A possible underlying mechanism is that long term nicotine administration leads to fetal overexposure to maternal glucocorticoid by the combined effect of increased maternal glucocorticoid level and impaired placental barrier to it, all of which eventually leads to the fetal adrenocortical dysfunction and IUGR.
We reported earlier that exposure of rats to 3-methylcholanthrene (MC) causes sustained induction of hepatic cytochrome P450 (CYP)1A expression for up to 45 days by mechanisms other than persistence of the parent MC (Moorthy, J. 2000. Pharmacology. Exp. Ther. 294, 313-322). The CYP1A genes are membe
rs of the Ah gene battery that also encode CYP1B1 and phase II enzymes such as glutathione S-transferase (GST-alpha), UDP glucuronyl transferase (UGT)1A, NAD(P)H (nicotinamide adenine dinucleotide phosphate, reduced):quinone oxidoreductase I (NQO1), aldehyde dehydrogenase (ALDH), etc. Therefore, in this investigation, we tested the hypothesis that MC elicits persistent induction of CYP1B1 and phase II genes, which are in part regulated by the Ah receptor (AHR). Female Sprague-Dawley rats were treated with MC (100 mumol/kg), ip, once daily for 4 days, and expression of CYP1B1 and several phase II (e.g., GST-alpha, NQO1) genes and their corresponding proteins were determined in lung and liver. The major finding was that MC persistently induced (3- to 10-fold) the expression of several phase II enzymes, including GST-alpha, NQO1, UGT1A1, ALDH, and epoxide hydrolase in both tissues for up to 28 days. However, MC did not elicit sustained induction of CYP1B1. Our results thus support the hypothesis that MC elicits coordinated and sustained induction of phase II genes presumably via persistent activation of the AHR, a phenomenon that may have implications for chemical-induced carcinogenesis and chemopreventive strategies in humans.
Epidemiological data are conflicting in the link between 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure and breast cancer causation. We have hypothesized that timing of exposure to endocrine disruptors, such as TCDD, will alter breast cancer susceptibility. Using a carcinogen induced rat mamma
ry cancer model, we have shown that prenatal exposure to TCDD alters mammary gland differentiation and increases susceptibility for mammary cancer. Investigations into imprinting via DNA methylation mechanisms showed that there were no changes in protein expression in DNA methyltransferases, ER-alpha, ER-beta, GST-pi, or MDGI. Using 2D gels and mass spectrometry, we have found seven proteins to be differentially regulated, including a decrease in superoxide dismutase 1 (SOD1). Down-regulation of SOD1 could provide an environment ill equipped to deal with subsequent free radical exposure. We conclude that prenatal TCDD can predispose for mammary cancer susceptibility in the adult offspring by altering the mammary proteome.
Wu J, etal., Chem Res Toxicol. 2009 Apr;22(4):668-75. doi: 10.1021/tx800406z.
Nonylphenol (NP) is a common environmental contaminant that is known to disrupt the reproductive system. The testicular Sertoli cells play a pivotal role in the regulation of spermatogenesis and are susceptible to NP-induced reproductive lesions. Our goal was to ascertain whether NP could induce ap
optosis in Sertoli cells and to explore the preapoptotic changes in Sertoli cells at low NP concentrations, similar to environmental conditions. In order to survey events that occur at the protein level in Sertoli cells after exposure to NP, we used a proteomic approach with two-dimensional gel electrophoresis (2DE) and mass spectrometry to identify proteins with altered expression in rat Sertoli cells treated with 0.01 and 0.1 microM NP for 24 h. We separated 63 protein spots and identified 41 that were differently expressed in the NP-treated groups and the control. Of these 41 spots, we focused on Raf kinase inhibitor protein (RKIP), Annexin A7 (ANXA7), ERp57, and Peroxiredoxin 6 (PRDX6) for further analysis by Western blot. These proteins are involved in the response of Sertoli cells to programmed cell death. These data help to outline mechanisms by which NP might induce apoptotic tendencies in Sertoli cells.
Cygalova L, etal., Toxicol Lett. 2008 May 30;178(3):176-80. Epub 2008 Mar 21.
Breast cancer resistance protein (BCRP/ABCG2) is an ABC family drug efflux transporter expressed in a number of physiological tissues including placenta. Here we investigated the expression and function of Bcrp in the rat placenta and fetus during pregnancy. We show that the expression of Bcrp mRNA
in placenta peaks on gestation day (gd) 15 and declines significantly to one third up to term. In fetal body tissue, 6.9 and 7.4-fold Bcrp mRNA increase was detected on gds 15 and 18, respectively, compared to the early gd 12. The expression of Bcrp mRNA in fetal organs on gds 18 and 21 is also demonstrated. Additionally, the function of placental and fetal Bcrp during pregnancy was studied by fetal exposure to cimetidine infused to the maternal circulation. The relative amount of drug that penetrated to fetus was highest on gd 12 and decreased to one tenth thereafter. Studies on cimetidine distribution in fetus revealed 2- and 4.4-times lower penetration to the brain on gds 18 and 21, respectively, compared to the whole fetal tissue. Our results indicate that the rat fetus is protected by Bcrp against potentially detrimental substances from gd 15 onwards. Moreover, we propose that the protection of fetus by placental Bcrp is further strengthened by fetal Bcrp.
Mentha spicata Labiatae, commonly known as spearmint, can be used for various kinds of illnesses in herbal medicines and food industries. One of the prominent functions of this plant extract is its anti-androgenic activity. The present study investigated the probable correlation between oxidative st
ress in hypothalamic region and anti-androgenic action of this plant's aqueous extract on rats. Decreased activities of enzymes like superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in hypothalamus of treated rats indicated spearmint induced oxidative stress. Further RT-PCR and immunoblot analysis demonstrated the decreased expression of some of the steroidogenic enzymes, cytochrome P450scc, cytochrome P450C17, 3beta-Hydroxysteroid dehydrogenase (3beta-HSD), 17beta-Hydroxysteroid dehydrogenase (17beta-HSD) and other related proteins like, steroidogenic acute regulatory protein, androgen receptor and scavenger receptor class B-1. Further, in vitro enzyme assays demonstrated depressed activities of testicular 3beta-HSD and 17beta-HSD enzymes. Histopathology indicated a decreased sperm density in cauda epididymis and degeneration of ductus deference. Our study suggested that spearmint probably induced oxidative stress in hypothalamus resulting in decreased synthesis of LH and FSH which in turn down-regulated the production of testicular testosterone through the disruption of a number of intermediate cascades.
Methoxychlor, an organochlorine pesticide, has been reported to induce reproductive abnormalities in male reproductive tract. To get more insight into the mechanism(s) of gonadal toxicity provoked by methoxychlor, we investigated whether treatment with methoxych
lor at low observed adverse effect level (LOAEL) would alter the activities of steroidogenic enzymes such as Delta(5)3beta-hydroxysteroid dehydrogenase (3beta-HSD) and Delta(5)17beta-hydroxysteroid dehydrogenase (17beta-HSD), the expression levels of steroidogenic acute regulatory (StAR) protein and androgen binding protein (ABP) in the testis of adult male rats. The experimental rats were exposed to a single dose of methoxychlor (50 mg/kg body weight) orally. The rats were killed at 0, 3, 6, 12, 24 and 72 h following treatment using anesthetic ether and testes were collected, processed and used to measure the activities of 3beta-HSD, 17beta-HSD, levels of hydrogen peroxide produced and the expression levels of StAR protein, and ABP. Methoxychlor administration resulted in a sequential reduction in the expression of StAR protein and activities of 3beta-HSD, 17beta-HSD with concomitant increase in the levels of hydrogen peroxide in the testis. These changes were significant between 6-12 h following treatment. The levels of ABP declined at 6-12 h following exposure to methoxychlor. The present study demonstrates transient effect of methoxychlor at LOAEL on testicular steroidogenesis and the possible role of hydrogen peroxide in mediating these effects.
Simeckova P, etal., Toxicology. 2009 Jun 16;260(1-3):104-11. Epub 2009 Mar 28.
The toxic modes of action of non-dioxin-like polychlorinated biphenyls (PCBs) in liver cells are still only partially understood. Several recent studies have indicated that PCBs may interfere with cell membrane protein functions. Therefore, we analyzed in the pr
esent study the effects of di-ortho-substituted 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) on proteins involved in the formation of adherens junctions in a model of rat liver progenitor cells - WB-F344 cell line. PCB 153, at micromolar concentrations, induced a gradual degradation of E-cadherin, beta-catenin or plakoglobin (gamma-catenin) proteins. This effect was not due to changes in gene expression, as PCB 153 had no effect on mRNA levels of the above mentioned proteins. Moreover, apart from the reduction of total beta-catenin pool, PCB 153 also decreased levels of the active beta-catenin form, dephosphorylated at residues Ser37 and Thr41, which is the key co-activator of Wnt-induced TCF/LEF-dependent gene expression. Therefore, we also evaluated the impact of PCB 153 on expression of Axin2, a known transcriptional target of canonical Wnt signaling. PCB 153 reduced basal Axin2 mRNA levels and it inhibited induction of Axin2 expression by recombinant mouse Wnt3a. Nevertheless, PCB 153 had no effect on phosphorylation of glycogen synthase kinase-3beta (GSK-3beta), which is supposed to target beta-catenin for its proteasomal degradation. This suggested that GSK-3beta activity is not modulated by PCB 153 and, consequently, not involved in the observed PCB 153-induced decrease of both total and active beta-catenin levels. Protein levels of E-cadherin and beta-catenin were partially restored with lysosomal inhibitor leupeptin, thus suggesting a possible role of lysosomes in the observed degradation of adherens junction proteins. Taken together, the present data suggest that PCB 153 may interfere with functions of adherens junction proteins involved in both cell-to-cell communication and intracellular signaling. Such mechanisms might be involved in the effects of non-dioxin-like PCBs contributing to liver tumor promotion.
The purpose of this study was to investigate whether the expression of specific genes in peripheral blood can be used as surrogate marker(s) to detect and distinguish target organ toxicity induced by chemicals in rats. Rats were intraperitoneally administered a
single, acute dose of a well-established hepatotoxic (acetaminophen) or a neurotoxic (methyl parathion) chemical. Administration of acetaminophen (AP) in the rats resulted in hepatotoxicity as evidenced from elevated blood transaminase activities. Similarly, administration of methyl parathion (MP) resulted in neurotoxicity in the rats as evidenced from the inhibition of acetyl cholinesterase activity in their blood. Administration of either chemical also resulted in mild hematotoxicity in the rats. Microarray analysis of the global gene expression profile of rat blood identified distinct gene expression markers capable of detecting and distinguishing hepatotoxicity and neurotoxicity induced by AP and MP, respectively. Differential expressions of the marker genes for hepatotoxicity and neurotoxicity were detectable in the blood earlier than the appearance of the commonly used clinical markers (serum transaminases and acetyl cholinesterase). The ability of the marker genes to detect hepatotoxicity and neurotoxicity was further confirmed using the blood samples of rats administered additional hepatotoxic (thioacetamide, dimethylnitrobenzene, and carbon tetrachloride) or neurotoxic (ethyl parathion and malathion) chemicals. In summary, our results demonstrated that blood gene expression markers can detect and distinguish target organ toxicity non-invasively.
Wei CH and Koh C, J Biol Chem 1978 Mar 25;253(6):2061-6.
A toxic lectin, ricin D, present in the seeds of Ricinus communis has been purified and crystallized in a form suitable for high resolution crystallographic structure studies. This protein is different from a previously found form of ricin (also present in the s
ame seeds), the only ricin for which a preliminary x-ray investigation has been reported so far. Ricin D crystallizes from an aqueous solution in an orthorhombic unit cell of symmetry P2(1)2(1)2(1) and a = 79.0, b = 114.7, and c = 72.8 A. The asymmetric unit contains one molecule with an average molecular weight of 62,400. The crystal is fairly stable to x-radiation and has a water content of approximately 54% by volume. It appears to comprise two closely related species of proteins, the major species corresponding to recin D and the other presumably corresponding to a deamidation product of ricin D. The two species have nearly identical molecular size and amino acid compositions, but different charges.
Li R, etal., Regul Toxicol Pharmacol. 2007 Aug;48(3):284-91. Epub 2007 May 21.
Asthma is a chronic inflammatory disease characterized by infiltration and activation of various inflammatory cells and mucus secretion. To investigate the effects of SO(2) on the expressions of asthma related-genes, male Wistar rats were challenged by ovalbumin (OVA) or SO(2) (2 ppm) inhalation alo
ne or together. Bronchoalveolar lavage and histopathologic examination were performed 24h after the last treatment. The mRNA and protein levels of MUC5AC and ICAM-1 were analyzed in lungs and tracheas using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay, immunohistochemistry method and Western blot analysis, respectively. Exposure to OVA or to OVA plus inhaled SO(2) significantly caused increases of the mRNA and protein levels of MUC5AC and ICAM-1 in lungs and tracheas of rats compared with the control (P <0.05 or P <0.01), but the increases of mRNA and protein levels after SO(2) inhalation were not statistically significant. Exposure to OVA plus inhaled SO(2) significantly not only induced the mRNA and protein expressions of these genes, but also induced the infiltration of inflammatory cells in lungs and tracheas and the increase of the numbers of inflammatory cells in bronchoalveolar lavage fluids (BALF), versus exposure to OVA alone. Meanwhile, a synergistic effect on the pathological changes between SO(2) and OVA was observed in lungs after SO(2) and OVA exposure. These results suggested that SO(2) could increase the expressions of MUC5AC and ICAM-1 on the transcription and translation levels in the lungs and tracheas from asthmatic rats, which might be one of the possible mechanisms that SO(2) pollution aggravates asthma disease.
Gopalakrishnan R, etal., J Toxicol Environ Health A 2002 Aug 9;65(15):1077-91.
Previous in vitro studies demonstrated that the rat esophageal carcinogen N-nitrosomethylbenzylamine (NMBA) is metabolically activated by cytochrome P-450s (CYP) 2A3 and 2E1. However, the in vivo role of these P-450s in the metabolism of NMBA has not been fully evaluated. In this study, the effects
of single and multiple doses of NMBA were investigated on CYP2A3 and CYP2E1 mRNA expression in the rat esophagus and lung. Seven- to 8-wk old male Fischer 344 rats were administered a single subcutaneous dose of NMBA at either 0.5 mg/kg or 2 mg/kg body weight, after which the rats were sacrificed at 1, 3, 6, 12, 24, 48, and 72 h. In the multiple-dose experiment, 2 groups of rats were dosed with 0.5 mg/kg body weight NMBA 3 times per week for 1 wk or 3 wk. The animals were sacrificed 24 h following the last treatment. Semiquantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis demonstrated a reduction of CYP2A3 mRNA expression in lung and esophagus from NMBA-treated animals compared to dimethyl sulfoxide (DMSO)-treated vehicle controls. This reduction in CYP2A3 mRNA was significant at 48 h in the esophagus and at 24 and 48 h in the lung following a single dose of 2 mg/kg body weight NMBA. In contrast, CYP2E1 mRNA expression remained unchanged in rat lung following NMBA treatment and no consistent pattern of expression could be observed in the esophagus. In the multiple-dose study, a 32% and 25% reduction in esophageal CYP2A3 mRNA expression was observed at 1 and 3 wk, respectively. Similar reductions in CYP2A3 mRNA expression were also observed in the lung. Further, esophageal explants derived from animals pretreated with NMBA in vivo demonstrated a reduced ability to metabolize the carcinogen in vitro as compared to explants from vehicle control animals. Taken together, these data provide further support for a potential role of CYP2A3 in NMBA metabolism in the rat esophagus. Data suggest that CYP2A3 levels in the rat esophagus can be a determinant of its ability to metabolize this carcinogen in vivo.
Nakamura N, etal., J Toxicol Sci. 2020;45(8):435-447. doi: 10.2131/jts.45.435.
The imbalance of testosterone to estradiol ratio has been related to the development of prostate diseases. Although rat models of prostate diseases induced by endocrine-disrupting chemicals (EDCs) and/or hormone exposure are commonly used to analyze gene expression profiles in the prostate, most stu
dies utilize a single endpoint. In this study, microarray analysis was used for gene expression profiling in rat prostate tissue after exposure to EDCs and sex hormones over multiple time points (prepubertal through adulthood). We used dorsolateral prostate tissues from Sprague-Dawley rats (male offspring) and postnatally administered estradiol benzoate (EB) on postnatal days (PNDs) 1, 3, and 5, followed by treatment with additional hormones [estradiol (E) and testosterone (T)] on PNDs 90-200, as described by Ho et al. Microarray analysis was performed for gene expression profiling in the dorsolateral prostate, and the results were validated via qRT-PCR. The genes in cytokine-cytokine receptor interaction, cell adhesion molecules, and chemokines were upregulated in the EB+T+E group on PNDs 145 and 200. Moreover, early-stage downregulation of anti-inflammatory gene: bone morphogenetic protein 7 gene was observed. These findings suggest that exposure to EB, T, and E activates multiple pathways and simultaneously downregulates anti-inflammatory genes. Interestingly, these genes are reportedly expressed in prostate cancer tissues/cell lines. Further studies are required to elucidate the mechanism, including analyses using human prostate tissues.
Strategies to diminish cadmium (Cd) absorption are highly desirable especially where Cd exposure due to environmental contamination is still inevitable. Cd toxicity may be influenced by dietary components, such as fiber and minerals. Multimixtures are low-cost c
ereal bran supplements used in Brazil and in other countries to counteract malnutrition in low-income populations. This study was aimed at evaluating whether multimixture would reduce Cd effects in young rats. Animals received a diet with or without the multimixture plus 0, 5, or 25 mg Cd/kg (control, Cd-5, and Cd-25 groups) during 30 days. The Cd-5 groups were similar to control groups in all parameters analyzed, except in the higher renal Cd concentration. However, the Cd-25 groups had lower biological growth parameters and renal delta-aminolevulinate dehydratase activity, besides higher renal Cd concentration and plasma alanine aminotransferase activity compared to the controls. The multimixture did not prevent Cd effects in the Cd-25 group, but caused a small reduction in renal Cd concentration in the Cd-5 group. Although this multimixture was ineffective to prevent Cd effects at the higher concentration, it seemed to reduce Cd accumulation at the lower Cd dietary concentration, which is similar to levels of human exposure in some polluted areas.
Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4) overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin en
hances platelet MRP4 levels through peroxisome proliferator activated receptor-alpha (PPARalpha). In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293) to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity. We first investigated the effect of high-dose aspirin in Hek-293 and we showed that aspirin is able to increase cell toxicity dose-dependently. Furthermore, aspirin effects, induced at low dose, already enhance MRP4 gene expression. Based on these findings, we compared cell viability in Hek-293, after high-dose aspirin treatment, in MRP4 overexpressing cells, either after aspirin pretreatment or in MRP4 transfected cells; in both cases, a decrease of selective aspirin cell growth inhibition was observed, in comparison with the control cultures. Altogether, these data suggest that exposing cells to low nontoxic aspirin dosages can induce gene expression alterations that may lead to the efflux transporter protein overexpression, thus increasing cellular detoxification of aspirin.
Tsatsakis AM, etal., Toxicol Lett. 2009 Apr 10;186(1):66-72. Epub 2008 Oct 28.
Allelic variants of CYP1A1 and PON1 have been extensively studied as susceptibility factors in toxic response, although little is known about the role of these variants as risk factors for the plethora of diseases appearing in the human population. In this study
we investigated the hypothesis of correlation of CYP1A1 and PON1 enzymes with the incidence of various medical examination findings in a Greek rural population professionally exposed to a variety of pesticides. The medical history of 492 individuals, randomly selected for the total population of 42,000, was acquired by interviews and their genotype determined for the CYP1A1*2A, PON1 M/L and PON1 Q/R polymorphisms. The assessment of exposure to pesticides of the population was verified by analytical methods. Analysis of the genetic data revealed that the allele frequencies of PON1 R, M and CYP1A1*2A alleles were 0.243, 0.39 and 0.107 respectively. The CYP1A1*2A polymorphism was found to have significant association with chronic obstructive pneumonopathy (p=0.045), peripheral circulatory problems (trend p=0.042), arteritis (p=0.022), allergies (trend p=0.046), hemorrhoids (trend p=0.026), allergic dermatitis (p=0.0016) and miscarriages (p=0.012). The PON1 Q/R polymorphism was found to have significant association with hypertension (p=0.046) and chronic constipation (p=0.028) whereas, the L/M polymorphism, with diabetes (p=0.036), arteritis (trend p=0.022) and hemorrhoids (trend p=0.027). Our results demonstrated an association between the CYP1A1/PON1 polymorphisms and several medical examination findings, thus indicating the possible involvement of the human detoxification system to health effects in a rural population exposed professionally to pesticides.
Sato S, etal., Eur J Dermatol. 2015 Sep-Oct;25(5):457-62. doi: 10.1684/ejd.2015.2621.
BACKGROUND: Toxic epidermal necrolysis (TEN) is a lethal complication of drugs, thus early diagnosis and treatment are important. However, there are no satisfactory clinical biomarkers of TEN. OBJECTIVES: We investigated miR-124 and miR-214 expressions in serum
and skin tissues of severe drug eruptions to evaluate the possibility of biomarkers of TEN. MATERIALS & METHODS: microRNAs were extracted from serum and skin tissues. Serum samples were obtained from 7 TEN patients, 5 Stevens-Johnson syndrome (SJS) patients, 11 erythema multiforme (EM) minor patients and 21 healthy volunteers. Skin tissues were obtained from 4 TEN patients, 3 SJS patients, 8 EM minor patients, 3 psoriasis and 3 atopic dermatitis patients. Six control skin samples were obtained. MicroRNA concentrations were determined by PCR array and real-time PCR. RESULTS: The concentrations of miR-124 in sera from TEN were significantly higher than those from healthy controls. In the characteristics curve analysis of serum miR-124 for differentiating TEN patients from normal subjects, the area under curve was 0.94. The serum miR-124 concentration was strongly correlated with the erosion area and the SCORTEN scale. The expression of miR-214 was significantly increased in the skin of TEN. CONCLUSION: The serum miR-124 concentration can be used as a disease activity marker for severe drug eruptions, reflecting the severity of keratinocyte apoptosis.
Wang X, etal., J Neurosci. 2011 Oct 12;31(41):14496-507. doi: 10.1523/JNEUROSCI.3059-11.2011.
Melatonin mediates neuroprotection in several experimental models of neurodegeneration. It is not yet known, however, whether melatonin provides neuroprotection in genetic models of Huntington's disease (HD). We report that melatonin delays disease onset and mortality in a transgenic mouse model of
HD. Moreover, mutant huntingtin (htt)-mediated toxicity in cells, mice, and humans is associated with loss of the type 1 melatonin receptor (MT1). We observe high levels of MT1 receptor in mitochondria from the brains of wild-type mice but much less in brains from HD mice. Moreover, we demonstrate that melatonin inhibits mutant htt-induced caspase activation and preserves MT1 receptor expression. This observation is critical, because melatonin-mediated protection is dependent on the presence and activation of the MT1 receptor. In summary, we delineate a pathologic process whereby mutant htt-induced loss of the mitochondrial MT1 receptor enhances neuronal vulnerability and potentially accelerates the neurodegenerative process.
Zachow R and Uzumcu M, Reprod Toxicol. 2006 Nov;22(4):659-65. Epub 2006 Jun 5.
The exquisitely balanced hormonal mechanisms that control female fertility can be affected by several internal and external factors including pathogens, genetic maladies, and environmental agents. In the latter group are natural and synthetic agents known as endocrine disruptors. One such compound,
2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), is the predominant metabolite of the pesticide methoxychlor. The effects of HPTE on ovarian steroidogenesis have not been previously reported and were investigated in the present study. Granulosa cells harvested from immature rats were treated with follicle-stimulating hormone (FSH) or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (db-cAMP) in the presence or absence of HPTE. After 48h, progesterone (P4) and estradiol-17beta (E2) concentrations were measured in the culture media. Steady-state levels of the mRNAs encoding steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase type 1 (3beta-HSD), and P450 aromatase (P450arom) were examined using real-time PCR. Both FSH- and db-cAMP-stimulated P(4) accumulation were impaired by HPTE. In contrast, FSH-, but not db-cAMP-stimulated, E2 content was suppressed by HPTE. The FSH-dependent increase in the abundance of P450scc, 3beta-HSD, and P450arom mRNAs was blocked by HPTE; however, StAR expression was not altered. Although db-cAMP-dependent P450arom was moderately reduced by HPTE, the levels of db-cAMP-dependent StAR, P450scc, and 3beta-HSD mRNAs were increased in the presence of HPTE. These data collectively show that HPTE can disrupt P4 and E2 production in granulosa cells, with implications for sites of action both preceding and following the generation of cAMP. The steroid-modulatory effects of HPTE in granulosa cells appear to involve the general suppression of the FSH-dependent expression of mRNAs encoding steroid pathway proteins, whereas the disparate effects of HPTE on cAMP-dependent mRNA content in this regard suggest a broader and more complex mechanism of action.
Cytochrome P-450s (CYPs) detoxify a wide variety of xenobiotics and environmental contaminants, but can also bioactivate carcinogenic polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), to DNA-reactive species. The primary CYPs involved in the metabo
lism and bioactivation of BaP are CYP1A1 and CYP1B1. Furthermore, BaP can induce expression of CYP1A1 and CYP1B1 via the aryl hydrocarbon receptor. Induction of CYP1A1 and CYP1B1 by BaP in target (lung) and non-target (liver) tissues was investigated utilizing precision-cut rat liver and lung slices exposed to BaP in vitro. Tissue slices were also prepared from rats pretreated in vivo with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to induce expression of CYP1A1 and CYP1B1. In addition, in vivo exposure studies were performed with BaP to characterize and validate the use of the in vitro tissue slice model. In vitro exposure of liver and lung slices to BaP resulted in a concentration-dependent increase in CYP1A1 and CYP1B1 mRNA and protein levels, which correlated directly with the exposure-related increase in BaP-DNA adduct levels observed previously in the tissue slices [Harrigan, J.A., Vezina, C.M., McGarrigle, B.P., Ersing, N., Box, H.C., Maccubbin, A.E., Olson, J.R., 2004. DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo(a)pyrene. Toxicological Sciences 77, 307-314]. Pretreatment of animals in vivo with TCDD produced a marked induction of CYP1A1 and CYP1B1 expression in the tissue slices, which was similar to the levels of CYP1A1 and CYP1B1 mRNA achieved in liver and lung following in vivo treatment with BaP. Following in vitro exposure to BaP, the levels of CYP1A1 were greater in the lung than the liver, while following all exposures (in vitro and in vivo), the levels of CYP1B1 mRNA were greater in lung tissue compared to liver. The higher expression of CYP1A1 and CYP1B1 in the lung was associated with higher levels of BaP-DNA adducts in the lung slices (Harrigan et al.'s work) and together, these results may contribute to the tissue specificity of BaP-mediated carcinogenesis.
Transcriptomics was performed to gain insight into mechanisms of food additives butylated hydroxytoluene (BHT), curcumin (CC), propyl gallate (PG), and thiabendazole (TB), additives for which interactions in the liver can not be excluded. Additives were administered in diets for 28 days to Sprague-D
awley rats and cDNA microarray experiments were performed on hepatic RNA. BHT induced changes in the expression of 10 genes, including phase I (CYP2B1/2; CYP3A9; CYP2C6) and phase II metabolism (GST mu2). The CYP2B1/2 and GST expression findings were confirmed by real time RT-PCR, western blotting, and increased GST activity towards DCNB. CC altered the expression of 12 genes. Three out of these were related to peroxisomes (phytanoyl-CoA dioxygenase, enoyl-CoA hydratase; CYP4A3). Increased cyanide insensitive palmitoyl-CoA oxidation was observed, suggesting that CC is a weak peroxisome proliferator. TB changed the expression of 12 genes, including CYP1A2. In line, CYP1A2 protein expression was increased. The expression level of five genes, associated with p53 was found to change upon TB treatment, including p53 itself, GADD45alpha, DN-7, protein kinase C beta and serum albumin. These array experiments led to the novel finding that TB is capable of inducing p53 at the protein level, at least at the highest dose levels employed above the current NOAEL. The expression of eight genes changed upon PG administration. This study shows the value of gene expression profiling in food toxicology in terms of generating novel hypotheses on the mechanisms of action of food additives in relation to pathology.
Atrazine is currently one of the most widely used herbicides in the United States and elsewhere. Here we examined 24 h in vitro and in vivo effects of atrazine on androgen production and on expression and activity of steroidogenic enzymes and regulatory proteins involved in cyclic adenosine monophos
phate (cAMP)-signaling pathway in peripubertal rat Leydig cells. When in vitro added, 1-50 muM atrazine increased basal and human chorion gonadotropin-stimulated testosterone production and accumulation of cAMP in the medium of treated cells. The stimulatory action of atrazine on androgen production but not on cAMP accumulation was abolished in cells with inhibited protein kinase A. Atrazine also stimulated the expression of mRNA transcripts for steroidogenic factor-1, steroidogenic acute regulatory protein, cytochrome P450 (CYP)17A1, and 17beta-hydroxysteroid dehydrogenase (HSD), as well as the activity of CYP17A1 and 17betaHSD. The stimulatory effects of atrazine on cAMP accumulation and androgen production were also observed during the first 3 days of in vivo treatment (200 mg/kg body weight, by gavage) followed by a decline during further treatment. These results indicate that atrazine has a transient stimulatory action on cAMP signaling pathway in Leydig cells, leading to facilitated androgenesis.
Briseid K and Berstad J, Acta Pharmacol Toxicol (Copenh). 1981 Jul;49(1):43-51.
Factor XII has been assayed as kaolin-activated prekallikrein activator in rat citrated plasma pretreated with acetone (Briseid et al. 1978 & 1979; Briseid & Berstad 1979). In the present work benzamidine added during blood collection increased the extent of activation by a factor of 6. Rat high mol
ecular weight kininogen (HMWK) added to acetone-treated citrated plasma likewise increased the activation, providing evidence of the protection by benzamidine of the cofactor function of HMWK. All cofactor capacity was retained after the removal of the kinin part of HMWK. Experiments carried out with plasminogen-free plasma showed that plasmin could hardly be the the factor responsible for the destruction of HMWK. The stoichiometric factor XII concentration-effect curve obtained by diluting acetone-treated rat plasma with acetone-treated human factor XII deficient plasma showed that factor XII is present in functional excess, the concentration of HMWK deciding the extent of activation. By diluting acetone-treated rat plasma with buffer, HMWK concentration-effect curves were obtained which were approximately linear over a range of 0.03-0.40 microgram (bradykinin equivalents) per ml kaolin incubate. No further activation of factor XII was obtained at 0.80 microgram/ml.
Atrazine is an herbicide considered as a potent endocrine disruptor, causing adverse effects on both gender of mammalian and non-mammalian species. Despite the known adverse effects of Atrazine, little is known about its action on male genital system, especially in adults. We evaluated the effects o
f Atrazine (50 mg/kg, 200 mg/kg and 300 mg/kg) in the 3beta-hydroxysteroid dehydrogenase (3beta-HSD) expression, plasmatic and testicular estrogen and testosterone levels, androgen receptor expression and morphological changes in adult rat testes. Atrazine at doses higher than 50 mg/kg resulted in decreased body weight, increased adrenal weight and transient increase in testis weight, followed by testis atrophy. A reduction in testosterone but increase in estradiol levels was observed. We showed for the first time that testicular 3beta-HSD protein was decreased, whereas in the adrenal it was unchanged. The results suggest that 3beta-HSD inhibition may represent an alternative mechanism through which Atrazine affects the testicular androgenesis, leading to changes in spermatogenesis.
Ryan KR, etal., Toxicol Ind Health. 2017 May;33(5):385-405. doi: 10.1177/0748233716653912. Epub 2016 Jun 23.
Metalworking fluids (MWFs) are complex formulations designed for effective lubricating, cooling, and cleaning tools and parts during machining operations. Adverse health effects such as respiratory symptoms, dermatitis, and cancer have been reported in workers exposed to MWFs. Several constituents o
f MWFs have been implicated in toxicity and have been removed from the formulations over the years. However, animal studies with newer MWFs demonstrate that they continue to pose a health risk. This investigation examines the hypothesis that unrecognized health hazards exist in currently marketed MWF formulations that are presumed to be safe based on hazard assessments of individual ingredients. In vivo 13-week inhalation studies were designed to characterize and compare the potential toxicity of four MWFs: Trim VX, Cimstar 3800, Trim SC210, and Syntilo 1023. Male and female Wistar Han rats or Fischer 344N/Tac rats and B6C3F1/N mice were exposed to MWFs via whole-body inhalation at concentrations of 0, 25, 50, 100, 200, or 400 mg/m3 for 13 weeks, after which, survival, body and organ weights, hematology and clinical chemistry, histopathology, and genotoxicity were assessed following exposure. Although high concentrations were used, survival was not affected and toxicity was primarily within the respiratory tract of male and female rats and mice. Minor variances in toxicity were attributed to differences among species as well as in the chemical components of each MWF. Pulmonary fibrosis was present only in rats and mice exposed to Trim VX. These data confirm that newer MWFs have the potential to cause respiratory toxicity in workers who are repeatedly exposed via inhalation.
Nakamura M, etal., J Toxicol Sci. 2018;43(10):611-621. doi: 10.2131/jts.43.611.
Mineralocorticoid receptor (MR)/NADPH oxidase (NOX) signaling is involved in the development of obesity, insulin resistance, and renal diseases; however, the role of this signaling on steatotic preneoplastic liver lesions is not fully elucidated. We determined the effects of the MR antagonist potass
ium canrenoate (PC) on MR/NOX signaling in hepatic steatosis and preneoplastic glutathione S-transferase placental form (GST-P)-positive liver foci. Rats were subjected to a two-stage hepatocarcinogenesis model and fed with basal diet or high fat diet (HFD) that was co-administered with PC alone or in combination with the antioxidant alpha-glycosyl isoquercitrin (AGIQ). PC reduced obesity and renal changes (basophilic tubules that expressed MR and p22phox) but did not affect blood glucose tolerance and non-alcoholic fatty liver disease activity score (NAS) in HFD-fed rats. However, the drug increased the area of GST-P-positive liver foci that expressed MR and p22phox as well as increased expression of NOX genes (p22phox, Poldip2, and NOX4). PC in combination with AGIQ had the potential of inhibiting the effects of PC on the area of GST-P-positive liver foci and the effects were associated with increasing expression of an anti-oxidative enzyme (Catalase). The results suggested that MR/NOX signaling might be involved in development of preneoplastic liver foci and renal basophilic changes in HFD-fed rats; however, the impacts of PC were different in each organ.
Li D, etal., Toxicol Sci. 2021 Jan 6;179(1):31-43. doi: 10.1093/toxsci/kfaa162.
Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Reliable and translational biomarkers are needed for early detection of DILI. microRNAs (miRNAs) have received wide attention as a novel class of potential DILI biomarkers. However, it is unclear how DILI drugs other than ac
etaminophen may influence miRNA expression or which miRNAs could serve as useful biomarkers in humans. We selected ketoconazole (KCZ), a classic hepatotoxin, to study miRNA biomarkers for DILI as a proof of concept for a workflow that integrated in vivo, in vitro, and bioinformatics analyses. We examined hepatic miRNA expression in KCZ-treated rats at multiple doses and durations using miRNA-sequencing and correlated our results with conventional DILI biomarkers such as liver histology. Significant dysregulation of rno-miR-34a-5p, rno-miR-331-3p, rno-miR-15b-3p, and rno-miR-676 was associated with cytoplasmic vacuolization, a phenotype in rat livers with KCZ-induced injury, which preceded the elevation of serum liver transaminases (ALT and AST). Between rats and humans, miR-34a-5p, miR-331-3p, and miR-15b-3p were evolutionarily conserved with identical sequences, whereas miR-676 showed 73% sequence similarity. Using quantitative PCR, we found that the levels of hsa-miR-34a-5p, hsa-miR-331-3p, and hsa-miR-15b-3p were significantly elevated in the culture media of HepaRG cells treated with 100 µM KCZ (a concentration that induced cytotoxicity). Additionally, we computationally characterized the miRNA candidates for their gene targeting, target functions, and miRNA/target evolutionary conservation. In conclusion, we identified miR-34a-5p, miR-331-3p, and miR-15b-3p as translational biomarker candidates for early detection of KCZ-induced liver injury with a workflow applicable to computational toxicology studies.
Tong X and Lu F, Parasitol Res. 2015 May;114(5):1897-905. doi: 10.1007/s00436-015-4377-3. Epub 2015 Feb 20.
Ocular toxoplasmosis (OT) is the major cause of infective uveitis. Since the eye is a special organ protected by immune privilege, its immune response is different from general organs with Toxoplasma gondii infection. Here,
we used Kunming outbred mice to establish OT by intravitreal injection of T. gondii RH strain tachyzoites, IL-33 expression in the eyes was localized by immunostaining, the levels of interleukin (IL)-33 and ST2 (IL-33 receptor) and T-helper (Th)1 and Th2-associated cytokines in the eye and cervical lymph nodes (CLNs) of infected mice were measured, and their correlations were analyzed. Our results showed that the pathologies of the eye and CLN tissues and the IL-33 positive cells in the eye tissues of ocular T. gondii-infected mice were all increased at days 2, 6, and 9 postinfection (p.i.), accompanied with significantly increased transcript levels of IL-33, ST2, IL-1beta, IFN-gamma, IL-12p40, IL-10, and IL-13 in both the eyes and CLNs, and increased IL-4 expressions in the eyes of T. gondii-infected mice. There were significant correlations between the levels of IFN-gamma and ST2, IL-4 and ST2, and IL-13 and ST2 in the eye tissues (P < 0.001), significant correlations between the levels of IFN-gamma and ST2 (P < 0.001) as well as between IL-13 and ST2 (P < 0.05) in the CLNs, and significant correlations between the levels of IL-1beta and IL-33 in the eyes (P < 0.05) and between IL-1beta and IL-33/ST2 in the CLNs (P < 0.001 and P < 0.01, respectively). Our data indicated that IL-33/ST2 may involve the regulation of ocular immunopathology induced by T. gondii infection.
Kava (Piper methysticum), used for relaxation and pain relief, has been one of the leading dietary supplements and several reports linking hepatic functional disturbances and liver failure to kava have resulted in a ban on sales in Europe and Canada and the issuance of warnings by the US FDA. The Na
tional Toxicology Program conducted 14-week rat studies to characterize the toxicology of kava exposure in Fischer 344 rats [National Toxicity Program. 90 day gavage toxicity studies of KAVA KAVA EXTRACT in Fischer rats and B6C3F1 mice. Research Triangle Park, NC; 2005a; National Toxicity Program. Testing status of agents at NTP (KAVA KAVA EXTRACT M990058). Research Triangle Park, NC; 2005b. (http://ntp.niehs.nih.gov/index.cfm?objectid=071516E-C6E1-7AAA-C90C751E23D 14C1B)]. Groups of 10 male and 10 female rats were administered kava extract by gavage at 0, 0.125, 0.25, 0.5, 1.0, and 2.0 g/kg/day. Increased gamma-glutamyl-transpeptidase (GGT) activities were observed in the 2.0 g/kg males and 1.0 and 2.0 g/kg females, as well as increased serum cholesterol levels in males and females at 0.5 g/kg and higher. Increases in incidence and severity of hepatocellular hypertrophy (HP) were noted in males at 1.0 g/kg and females at 0.5 g/kg and higher, as well as increased liver weights. Immunohistochemical analyses of the expression of cytochrome-P450 (CYP) enzymes in liver of the control and 1.0- and 2.0-g/kg-treated groups indicated decreased expression of CYP2D1 (human CYP2D6 homolog) in 2.0 g/kg females and increased expression of CYP1A2, 2B1, and 3A1 in 1.0 and 2.0 g/kg groups of both sexes. The no observed adverse effect levels were decided as 0.25 g/kg in both genders, based on neurotoxic effects, increases in GGT, cholesterol, liver weight, and HP and decreases in body weight. Kava-induced hepatic functional changes in the F344 rat might be relevant to human clinical cases of hepatotoxicity following exposure.
Deoxynivalenol (DON) is an important Fusarium toxin of concern for food safety. The inhalation of powder contaminated with DON is possible and may cause lung toxicity. In this study, we analyzed the gene expression profile o
f A549 cells treated for 24 hr with 0.2 microg/mL DON by microarray analysis. In total, 16 genes and 5 noncoding RNAs were significantly affected by DON treatment. The repression of B3GALT4, MEIS3, AK7, SEMA3A, KCNMB4, and SCARA5 was confirmed by quantitative PCR. We investigated the DON toxicity on A549 cells that exogenously expressed these 6 genes. The result indicated that A549 cells that transiently expressed MEIS3 were tolerant to the deleterious effects of DON. Our data show that DON affected the expression of genes with various functions, and suggest that the repression of MEIS3 plays roles in the deleterious effect of DON in A549 lung epithelial cells.
Interference with nitric oxide production is a possible mechanism for lead neurotoxicity. In this work, we studied the effects of sub-acute lead administration on the distribution of NOS isoforms in the hippocampus with respect to blood and hippocampal lead leve
ls. Lead acetate (125, 250 and 500ppm) was given via drinking water to adult male Wistar rats for 14 days. We determined blood and hippocampal lead levels by atomic absorption spectrophotometry. Antibodies against three isoforms of NOS were used to analyze expression and immunolocalization using western blotting and immunohistochemistry, respectively. Blood and hippocampal lead levels were increased in a dose-dependent manner in groups treated with lead acetate. We found diminished expression and immunoreactivity of nNOS and eNOS at 500ppm as compared to the control group. No expression and immunoreactivity was observed in hippocampus for iNOS. The observed high levels of lead in the blood reflect free physiological access to this metal to the organism and were related to diminished expression and immunoreactivity for nNOS and eNOS.
Streck RD, etal., Birth Defects Res B Dev Reprod Toxicol. 2003 Feb;68(1):57-69.
BACKGROUND: Acetylsalicylic acid (ASA) is a rat teratogen, and exposures on gestational days (GDs) 9 and 10 induce diaphragm, cardiac, and midline defects. ASA inhibits members of the cyclooxygenase (COX) family and potentially members of the carbonic anhydrase (CA) family. The objective of this stu
dy was to determine whether the mRNA developmental expression pattern for any COX or CA isoform was consistent with a model in which ASA teratogenicity is mediated through direct interaction with one of these enzymes within embryos or within the adjacent ectoplacental cone (EPC) or yolk sac. METHODS: Staged embryos, over a range (GD 9.5-12) that included ASA-sensitive and ASA-insensitive stages of organogenesis, were assayed for COX and CA mRNA levels by three techniques: microarrays; in situ hybridization quantitated by a micro-imager; and quantitative reverse transcription polymerase chain reaction. ASA- and vehicle-treated embryos also were compared to determine whether inhibition led to upregulated COX or CA mRNA expression. RESULTS: COX-2 mRNA was undetectable in embryos throughout organogenesis by any assay (although it was abundant in EPC). In contrast, COX-1 mRNA was moderately abundant in embryos throughout organogenesis. One CA isoform, CA-4, demonstrated developmentally regulated embryonic mRNA expression that coincided with ASA sensitivity ASA exposure failed to induce upregulation of any of these mRNAs. CONCLUSIONS: Although ASA may affect the embryo indirectly through interaction with COX-2 within EPC, failure to detect embryonic COX-2 mRNA argues against COX-2 functioning as a direct mediator of ASA teratogenic activity in induction of cardiac, diaphragm, and midline defects. Correlation of COX-1 and CA-4 expression with ASA sensitivity suggested that embryonic COX-1 and possibly CA4 are much more likely candidates for mediators of ASA developmental toxicity.
Helenalin is a potent anti-inflammatory and anti-neoplastic agent isolated from several plant species of the Asteracea family. Here, we have investigated the effects of helenalin on steroidogenesis activated by adrenocorticotropic hormone (ACTH) and human chorionic gonadotropin (hCG) in primary cult
ures of rat adrenocortical and Leydig cells. Our findings demonstrate that helenalin inhibits both ACTH- and hCG-activated steroidogenesis in these cells. This effect was already evident after 2-3 h treatment with helenalin. In contrast, steroidogenesis from 22R-OHC, a cell-permeable form of cholesterol, was not inhibited by helenalin, suggesting that the expression of the steroidogenic acute regulartory (StAR) protein might be inhibited by this compound. Indeed, helenalin attenuated StAR protein expression activated by ACTH and hCG in adrenocortical and Leydig cells as assessed by PAGE/Western analyses. This inhibitory action of helenalin on steroidogenic cell functions indicates novel mechanisms of action of this compound which may be of potential therapeutic interest. However, it also poses safety concerns relating to possible negative side-effects on anabolism and systemic stress.
Charles AL, etal., Food Chem Toxicol. 2007 Dec;45(12):2390-6. Epub 2007 Jun 16.
The expression level of phase I (CYP1A1 and CYP1A2) and phase II (GST, and UGT) enzyme-coded genes were measured in liver microsomes of 30 Sprague-Dawley rats fed sea weed (Monostroma nitidum). Quantitative and qualitative analysis of the detoxifying enzymes wer
e investigated using reverse transcription polymerase reaction (RT-PCR) and real time polymerase reaction (Real-time PCR) techniques. The antioxidative properties of seaweed were screened and investigated for its hepatoprotective activity in rat. There was no significant induction of GSTYa1, GSTYa2, and CYP1A2. However, an M. nitidum diet was found to significantly increase UGT1A1 and UGT1A6 mRNA levels and to decrease CYP1A1 mRNA levels in rat liver. Structural studies confirmed the presence of sulfated polysaccharides in the seaweed samples. The results demonstrate the potential of seaweed as a natural source of sulfated polysaccharide substances with potential use in chemoprevention medicine.
Iyer L, etal., Pharmacogenomics J. 2002;2(1):43-7.
The metabolism of irinotecan (CPT-11) involves sequential activation to SN-38 and detoxification to the pharmacologically inactive SN-38 glucuronide (SN-38G). We have previously demonstrated the role of UGT1A1 enzyme in the glucuronidation of SN-38 and a signif
icant correlation between in vitro glucuronidation of SN-38 and UGT1A1 gene promoter polymorphism. This polymorphism (UGT1A1*28) is characterized by the presence of an additional TA repeat in the TATA sequence of the UGT1A1 promoter, ((TA)7TAA, instead of (TA)6TAA). Here we report the results from a prospective clinical pharmacogenetic study to determine the significance of UGT1A1*28 polymorphism on irinotecan disposition and toxicity in patients with cancer. Twenty patients with solid tumors were treated with a 90 min i.v. infusion of irinotecan (300 mg m(-2)) once every 3 weeks. The frequency of UGT1A1 genotypes was as follows: 6/6--45%, 6/7--35% and 7/7--20%, with allele frequencies of 0.375 and 0.625 for (TA)7TAA and (TA)6TAA, respectively. Patients with the (TA)7TAA polymorphism had significantly lower SN-38 glucuronidation rates than those with the normal allele (6/6>6/7>7/7, P = 0.001). More severe grades of diarrhea and neutropenia were observed only in patients heterozygous (grade 4 diarrhea, n = 1) or homozygous (grade 3 diarrhea/grade 4 neutropenia, n = 1 and grade 3 neutropenia, n = 1) for the (TA)7TAA sequence. The results suggest that screening for UGT1A1*28 polymorphism may identify patients with lower SN-38 glucuronidation rates and greater susceptibility to irinotecan induced gastrointestinal and bone marrow toxicity.
The anaphylatoxins C3a and C5a are involved in the pathophysiology of microbial as well as allergic inflammation in the lungs. Besides their expression in leukocytes, receptors for C3a and C5a (C3aR and C5aR) have been noted in alveolar and bronchial epithelial
cells, bronchial smooth muscle cells as well as in vascular endothelial and smooth muscle cells of normal and inflamed human and murine lungs. Recently, however, expression of anaphylatoxin receptors in parenchymal cells of the lung (and kidney) has been challenged. Using well-characterized monoclonal antibodies (mabs) against murine and rat anaphylatoxin receptors, we reexamined the pulmonary distribution of C3aR and C5aR. Immunohistochemistry was performed on frozen sections of lung tissues from normal mice and rats as well as from animals subjected to lipopolysaccharide (LPS)-induced inflammation or from MRL/lpr mice suffering from autoimmune disease. Furthermore, ovalbumin (OVA)-induced models of allergic asthma in the rat and mouse were investigated. Prominent expression of both anaphylatoxin receptors was detectable in resident as well as infiltrating leukocytes. No C3aR protein was observed in alveolar macrophages. Upon LPS- and OVA-challenge as well as in autoimmune inflammation, numbers of infiltrating leukocytes expressing prominent amounts of anaphylatoxin receptors increased. Even under these highly inflammatory conditions, however, expression of C3aR and C5aR was not inducible in parenchymal cells. Thus, our findings identify infiltrating leukocytes as a prominent source of anaphylatoxin receptors in inflamed lungs. A direct involvement of parenchymal cells in anaphylatoxin-mediated pulmonary inflammation is unlikely.
It is well-known that indomethacin (the cyclooxygenase 1 & 2 inhibitor) and RU486 (or mifepristone, the progesterone receptor antagonist) block follicular rupture in rats. To characterize genetic alterations in unruptured follicles, gene expression profiles in ovarian follicle were analyzed in indom
ethacin- and RU486-treated female Sprague-Dawley rats. Ovaries are collected at 22:00 on the proestrus day and 10:00 on the following estrus day after a single dose of indomethacin and RU486. Histopathologically, changes depicting responses to LH surge were observed in ovaries, uteri and vagina. Total RNA was extracted from pre-ovulatory follicles or unruptured follicles collected by laser microdissection and analyzed by Genechip(®). Among genes showing statistically significant changes compared to control groups, following changes were considered relevant to induction of unruptured follicles. In indomethacin-treated rats, Wnt4 was down-regulated, suggesting effect on tissue integrity and steroid genesis. In RU486-treated rats, Adamts1, Adamts9, Edn2, Ednra, Lyve1, Plat, and Pparg were down-regulated. These changes suggest effects on proteolysis for extra cellular matrix or surrounding tissue (Adamts1 & 9, and Plat), constriction of smooth muscle surrounding follicles (Edn2, Ednra, and Pparg), follicular fluid (Lyve1), and angiogenesis (Pparg). Down-regulation of angiogenesis related genes (Angpt2, Hmox1, and Vegfa) was observed in both treatment groups. Here, we clarify genetic alterations induced by the inhibition of cyclooxygenase or progesterone receptor.
Bratt JM, etal., Toxicol Appl Pharmacol. 2010 Jan 1;242(1):1-8. Epub 2009 Oct 2.
Arginase1 and nitric oxide synthase2 (NOS2) utilize l-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N(omega)-hydroxy-nor-l-arginine (nor-NOHA) significantly incre
ased total l-arginine content in the airway compartment. We hypothesized that such an increase in l-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that l-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which is a major source of NO production in the inflamed airway, although arginase inhibition may also be affecting the turnover of arginine by the other NOS isoforms, NOS1 and NOS3. The increased l-arginine content in the airway compartment of mice treated with nor-NOHA may directly or indirectly, through NOS2, control arginase expression both in response to OVA exposure and at a basal level.
Michel C, etal., Chem Res Toxicol. 2005 Apr;18(4):611-8. doi: 10.1021/tx049705v.
Evaluation of the nongenotoxic potential early during the development of a drug presents a major challenge. Recently, two genes were identified as potential molecular markers of rodent hepatic carcinogenesis: transforming growth factor-beta stimulated clone 22 (
TSC-22) and NAD(P)H cytochrome P450 oxidoreductase (CYP-R) (1). They were identified after comparing the gene expression profiles obtained from the livers of Sprague-Dawley rats treated with different genotoxic and nongenotoxic compounds in a 5 day repeat dose in vivo study. To assess the potential of these two genes as acute markers of carcinogenesis, we investigated their modulation during a long-term nongenotoxic study in the rat using a classic initiation-promotion regime. Clofibric acid (CLO), which belongs to the broad class of chemicals known as peroxisome proliferators, was used as a nongenotoxic hepatocarcinogen. Male F344 rats were given a single nonnecrogenic injection of diethylnitrosamine (0 or 30 mg/kg) and fed a diet containing none or 5000 ppm CLO for up to 20 months. Necropsies of five rats per groups were performed at 18, 46, 102, 264, 377, 447 (control, DEN, and DEN + CLO rats), 524, and 608 days (for the CLO and control rats). Gross macroscopic and microscopic evaluation and gene expression profiling (on Affymetrix microarrays) were performed in peritumoral and tumoral liver tissues. Bioanalysis of the liver gene expression data revealed that TSC-22 was strongly down-regulated early in the study. Its underexpression was maintained throughout the study but disappeared upon CLO withdrawal. These modulations were confirmed by real-time polymerase chain reaction. However, CYP-R gene expression was not significantly altered in our study. Taken together, our results showed that TSC-22, but not CYP-R, has the potential to be an acute early molecular marker for nongenotoxic hepatocarcinogenesis in rodents.
The present study investigates the testicular and adrenocortical activities under different doses and durations of chromium (Cr) exposure and their interactions. Mature male Sprague Dawley rats were injected daily with three different doses (0.2, 0.4, and 0.6 mg/kg bw) of Cr salt (K(2)Cr(2)O(7)) int
raperitonealy for 13 and 26 days, respectively. The medium (0.4 mg/kg bw/day) and higher dose (0.6 mg/kg bw/day) of Cr significantly (p<0.05) decrease accessory sex organs weight, testicular Delta(5)3beta-hydroxysteroid dehydrogenase (HSD) and 17beta-HSD activities, epididymal sperm count, effective spermatid degeneration, serum testosterone, LH level, testicular catalase and superoxide dismutase (SOD) activities while testicular lipid peroxidation, serum FSH, corticosterone level, adrenal weight and adrenal Delta(5)3beta-HSD activity increased significantly than that of control and lower dose (0.2 mg/kg bw/day) Cr exposed animals. Testicular histoarchitechture shows deterioration after critical dose (0.4 mg/kg bw/day) and duration (26 days) of Cr exposure. Cr induced alterations on testicular and adrenocortical activities are dose and duration dependent. Adrecortical hyperactivity accompanied by testicular oxidative stress might have a crucial role for Cr induced male reproductive impairment.
Morris HP and Slaughter LJ, J Toxicol Environ Health 1979 Mar-May;5(2-3):433-52.
A spectrum of chemically induced transplantable adenocarcinomas of the rat hepatocyte was developed in inbred strains of rats. For the most part, the tumors showed remarkable stability in growth rate between 1973 and 1976, as determined by months between transfers. A few tumors were slower-growing i
n 1976 than in 1973, and a few tumors of intermediate growth rate were somewhat slower-growing in 1973 than in 1976. Percentage distributions of chromosomes of six aneuploid hepatoma are presented. The most homogeneous cell lines were a haploid and a hyperdiploid line. The karyotype of each hepatoma had a consistent number of abnormal chromosomes. Lung metastases were observed in almost all cell lines.
The study aimed to evaluate the effect of L-carnitine on hepatic cytochrome P450-dependent monooxygenases exposed to methanol. Male Spraque-Dawley rats were given methanol (1/4 LD50 and 1/2 LD50) together with L-carnitine (1g/kg body weight). The parameters of microsome electron transport chains I a
nd II and the levels of CYP2E1, CYP2B1/2 and CYP1A2 were measured 8, 12, 24, 48, 72 and 96 h after exposure. L-carnitine did not affect cytochrome P450 but it significantly increased at 72 and 96 h NADPH-cytochrome P450 reductase. It stimulated cytochrome b5 at 48 and 96 h and NADH-cytochrome b5 reductase activity at 12, 72 and 96 h. Methanol, especially the lower dose, inhibited cytochrome P450 after 48 h, but the higher methanol dose inhibited NADH-cytochrome b5 reductase activity in this time. L-carnitine, combined with the lower dose of methanol, stimulated NADPH-cytochrome P450 reductase after 48 h and cytochrome b5 and NADH-cytochrome b5 reductase over the whole period of observation. L-carnitine stimulated CYP2B1/2 but not CYP2E1 and CYP1A2. Methanol stimulated CYP2E1 at 24 h, but CYP1A2 at 96 h in the studied doses. CYP2B1/2 was induced by the lower dose of methanol at 24 h but by the higher one at 96 h. When given together, L-carnitine and methanol (1/2 LD50) significantly stimulated CYP2E1 up to 170% at 24 h and 145% at 96 h.
Toxic industrial chemicals induce liver injury, which is difficult to diagnose without invasive procedures. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimen
tally evaluate a panel of 67 genes predicted to be associated with the fibrosis pathology by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague Dawley rats dosed with varying concentrations of 3 fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4'-methylenedianiline) and 2 nonfibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. The 67-plex gene panel accurately diagnosed fibrosis in both microarray and multiplexed-gene expression assays. Necrosis and inflammatory infiltration were comorbid with fibrosis. ANOVA with contrasts identified that 51 of the 67 predicted genes were significantly associated with the fibrosis phenotype, with 24 of these specific to fibrosis alone. The protein product of the gene most strongly correlated with the fibrosis phenotype PCOLCE (Procollagen C-Endopeptidase Enhancer) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (P < .05). Semiquantitative global mass spectrometry analysis of the plasma identified an additional 5 protein products of the gene panel which increased after fibrogenic toxicant administration: fibronectin, ceruloplasmin, vitronectin, insulin-like growth factor binding protein, and α2-macroglobulin. These results support the data mining approach for identifying gene and/or protein panels for assessing liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology.
Costa FR, etal., PLoS One. 2016 Mar 30;11(3):e0152622. doi: 10.1371/journal.pone.0152622. eCollection 2016.
Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily,
is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection.
Ninomiya Y, etal., Physiol Behav. 1994 Dec;56(6):1179-84.
Functional roles of the glossopharyngeal (GL) nerve on food and fluid intake were studied by examining effects of the GL denervation on two biologically different activities induced by specific diets using mice and rats. First, we examined whether GL section alters the acceptability of a bitter tast
ing essential amino acid, L-lysine (Lys), by Lys-deficiency in mice. The aversion threshold for Lys, normally about 3 uM in mice, increased to about 300 uM when mice were fed the Lys-deficient diet for 10 days. This increase of the Lys aversion threshold (increase of acceptability for Lys) by Lys-deficiency was also evident in mice with the chorda tympani denervation but was not observed in mice with the GL denervation. Next, we examined whether GL section alters the induction of a salivary protein, cystatin S (a cysteine proteinase inhibitor), by a diet containing papain (a cysteine proteinase) in rats. GL denervation largely inhibited the induction of cystatin S in the rat submandibular glands by papain. These results collectively suggest that chemosensory information conveyed by the GL nerve plays important roles on recognition of both nutrient and toxic compounds in the diet and induction of biological responses that protect the animal from both nutritional deficiency and exogenous toxic compounds.
We have examined the effects of four different polyphenols in attenuating heroin addiction using a conditioned place preference (CPP) paradigm. Adult male Sprague Dawley rats received heroin (alternating with saline) in escalating doses starting from 10 mg/kg, i.p. up to 80 mg/kg/d for 14 consecutiv
e days. The rats were treated with distilled water (1 mL), quercetin (50 mg/kg/d), β-catechin (100 mg/kg/d), resveratrol (30 mg/kg/d), or magnolol (50 mg/kg/d) through oral gavage for 7 consecutive days, 30 min before heroin administration, starting on day 8. Heroin withdrawal manifestations were assessed 24 h post last heroin administration following the administration of naloxone (1 mg/kg i.p). Heroin CPP reinstatement was tested following a single dose of heroin (10 mg/kg i.p.) administration. Striatal interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) were quantified (ELISA) after naloxone-precipitated heroin withdrawal. Compared to the vehicle, the heroin-administered rats spent significantly more time in the heroin-paired chamber (p < 0.0001). Concomitant administration of resveratrol and quercetin prevented the acquisition of heroin CPP, while resveratrol, quercetin, and magnolol blocked heroin-triggered reinstatement. Magnolol, quercetin, and β-catechin blocked naloxone-precipitated heroin withdrawal and increased striatal IL-6 concentration (p < 0.01). Resveratrol administration was associated with significantly higher withdrawal scores compared to those of the control animals (p < 0.0001). The results of this study show that different polyphenols target specific behavioral domains of heroin addiction in a CPP model and modulate the increase in striatal inflammatory cytokines TNF-α and IL-6 observed during naloxone-precipitated heroin withdrawal. Further research is needed to study the clinical utility of polyphenols and to investigate the intriguing finding that resveratrol enhances, rather than attenuates naloxone-precipitated heroin withdrawal.
Osteen JD, etal., Nature. 2016 Jun 6;534(7608):494-9. doi: 10.1038/nature17976.
Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of indi
vidual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.
de Zwart L, etal., Reprod Toxicol. 2008 Nov-Dec;26(3-4):220-30. Epub 2008 Oct 7.
Knowledge of the ontogeny of the various systems involved in distribution and elimination of drugs is important for adequate interpretation of the findings during safety studies in juvenile animals. The present study was designed to collect information on plasma concentrations of total protein and a
lbumin, enzyme activity and mRNA expression of cytochrome P450 isoenzymes (CYP1A1/2, CYP2B1/2, CYP2E1, CYP3A1/2, and CYP4A1), carboxylesterase and thyroxin glucuronidation (T4-GT) activity in liver microsomes, and mRNA expression of transporters (Mdr1a/b, Mrp1-3 and 6, Bsep and Bcrp, Oct1-2, Oat1-3 and Oatp1a4) in liver, kidney and brain tissue during development in Sprague-Dawley rats. Enzyme activities were determined by measuring the metabolism of marker substrates; expression of mRNAs was assessed using RTq-PCR. There were considerable differences in the ontogeny of the individual cytochrome P450 isoenzymes. In addition, ontogeny patterns of enzyme activity did not always parallel ontogeny patterns of mRNA expression. Ontogeny of the transporters depended on the transporter and the organ studied. Changes in mRNA expression of the various transporters during development are likely to result in altered elimination and/or tissue distribution of substrates, with concomitant changes in hepatic metabolism, renal excretion and passage through the blood-brain barrier. Consideration of the ontogeny of metabolizing enzymes and transporters may improve the design and interpretation of results of toxicity studies in juvenile animals.
Lu F, etal., Vaccine. 2009 Jan 22;27(4):573-80. doi: 10.1016/j.vaccine.2008.10.090. Epub 2008 Nov 19.
The risk of blindness caused by ocular toxoplasmosis supports efforts to improve our understanding for control of this disease. In this study, the involvement of CD8(+), CD4(+), B cell, and IL-10 gene in the immune response of primary ocular infection with the
temperature-sensitive mutant (ts-4) of the RH Toxoplasma gondii strain, and in the protective immunity of ocular ts-4 vaccination and challenge with RH strain was investigated in murine models utilizing inbred C57BL/6 mice-deficient in CD4(+), CD8(+), B cells (microMT), or IL-10 gene. Compared to naive mice, all WT and mutant mice had different degree of ocular pathological changes after ts-4 ocular infection, in which both CD8 KO and IL-10 KO mice showed the most severe ocular lesions. Immunized by ts-4 intracameral (i.c.) inoculation, all mutant mice had partially decreased vaccine-induced resistance associated with increased ocular parasite burdens after RH strain challenge. A significant increase of the percentages of B cells and CD8(+) T cells in the draining lymph nodes were observed in WT and IL-10 KO mice after either infection or challenge. The levels of specific anti-toxoplasma IgG in both eye fluid and serum from all the mice were significantly increased after ts-4 i.c. immunization, except microMT mice. These results suggest that the avirulent ts-4 of T. gondii inoculated intracamerally can induce both ocular pathology and ocular protective immunity; CD4(+), CD8(+), B cell, and IL-10 gene are all necessary to the vaccine-induced resistance to ocular challenge by virulent RH strain, in which CD8(+) T cells are the most important component.
Faria TO, etal., Cardiovasc Toxicol. 2017 Oct 4. doi: 10.1007/s12012-017-9427-x.
Heavy metal exposure is associated with cardiovascular diseases such as myocardial infarction (MI). Vascular dysfunction is related to both the causes and the consequences of MI. We investigated whether chronic exposure to low doses of mercury chloride (HgCl2) worsens MI-induced endothelial dysfunct
ion 7 days after MI. Male Wistar rats were divided into four groups: Control (vehicle), HgCl2 (4 weeks of exposure), surgically induced MI and combined HgCl2-MI. Morphological and hemodynamic measurements were used to characterize the MI model 7 days after the insult. Vascular reactivity was evaluated in aortic rings. Chronic HgCl2 exposure did not cause more heart injury than MI alone in terms of the morphological or hemodynamic parameters. Vascular reactivity increased in all groups, but the combination of HgCl2-MI increased the vasorelaxation induced by ACh compared with the HgCl2 and MI groups. Results showed reduced endothelial nitric oxide synthase (eNOS) protein expression in the MI group; increased iNOS activity in the HgCl2-MI group, although without enough magnitude to reverse the reduction in NO bioavailability; and increased phenylephrine response in the HgCl2-MI group due to an increase in ROS production, notably via xanthine oxidase (XO). Results suggest that the combination of 1 month pre-exposure of HgCl2 before MI changed the endothelial generation of oxidative stress induced by mercury exposure from NADPH oxidase pathway to XO (xanthine oxidase)-dependent ROS production.
Endocrine-disrupting chemicals (EDC) are linked to human health and diseases as they mimic or block the normal functioning of endogenous hormones. The present work dealt with a comparative study of the androgenic potential of wastewater treatment plant (WWTP) influents and effluents in Northern regi
on of India, well known for its polluted water. Water samples were screened for their androgenic potential using the Hershberger assay and when they were found positive for androgenicity, we studied their mode of action in intact rats. The data showed a significant change in the weight and structure of sex accessory tissues (SATs) of castrated and intact rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change in the expression patterns of the major steroidogenic enzymes in adrenal and testis: cytochrome P450(SCC), cytochrome P450(C17), 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile showed a decreased level of gonadotrophic hormones and increased testosterone level. Further, increase in the serum level of alkaline phosphatase, SGPT and SGOT and histopathological changes in kidney and liver of treated animals, confirmed the toxic effects of contaminating chemicals. Analysis of water samples using HPLC and GC-MS showed the presence of various compounds and from them, four prominent aromatic compounds viz. nonylphenol, hexachlorobenzene and two testosterone equivalents, were identified. Our data suggest that despite rigorous treatment, the final treated effluent from WWTP still has enough androgenic and toxic compounds to affect general health.
Waissbluth S and Daniel SJ, Hear Res. 2013 May;299:37-45. doi: 10.1016/j.heares.2013.02.002. Epub 2013 Mar 1.
Cisplatin is a potent antineoplastic agent widely used for a variety of cancer types. Unfortunately, its use leads to dose limiting side effects such as ototoxicity. Up to 93% of patients receiving cisplatin chemotherapy will develop progressive and irreversibl
e sensorineural hearing loss which leads to a decreased quality of life in cancer survivors. No treatment is currently available for cisplatin-induced ototoxicity. It appears that cisplatin causes apoptosis by binding DNA, activating the inflammatory cascade as well as generating oxidative stress in the cell. Various studies have aimed to assess the potential protective effects of compounds such as antioxidants, anti-inflammatories, caspase inhibitors, anti-apoptotic agents and calcium channel blockers against the toxicity caused by cisplatin in the inner ear with variable degrees of protection. Nevertheless, the pathophysiology of cisplatin-induced ototoxicity remains unclear. This review summarizes all of the known transporters that could play a role in cisplatin influx, leading to cisplatin-induced ototoxicity. The following were evaluated: copper transporters, organic cation transporters, the transient receptor potential channel family, calcium channels, multidrug resistance associated proteins, mechanotransduction channels and chloride channels.
Ohnishi M and Razzaque MS, FASEB J. 2010 Sep;24(9):3562-71. doi: 10.1096/fj.09-152488. Epub 2010 Apr 23.
Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate tox
span>icity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho(-/-)) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho(-/-) mice. Genetically reducing serum phosphate levels in klotho(-/-) mice by generating a NaPi2a and klotho double-knockout (NaPi2a(-/-)/klotho(-/-)) strain resulted in amelioration of premature aging-like features. The NaPi2a(-/-)/klotho(-/-) double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a(-/-)/klotho(-/-) mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho(-/-) mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the aging process and suggest a novel role for phosphate in mammalian aging.
Ito Y, etal., Toxicol Sci. 2019 May 1;169(1):122-136. doi: 10.1093/toxsci/kfz027.
This study examined hypermethylated and downregulated genes specific to carbon tetrachloride (CCl4) by Methyl-Seq analysis combined with expression microarray analysis in the liver of rats treated with CCl4 or N-nitrosodiethylamine (DEN) for 28 days, by excluding those with DEN. Among 52 genes, Ldlr
ad4, Proc, Cdh17, and Nfia were confirmed to show promoter-region hypermethylation by methylation-specific quantitative PCR analysis on day 28. The transcript levels of these 4 genes decreased by real-time reverse transcription-PCR analysis in the livers of rats treated with nongenotoxic hepatocarcinogens for up to 90 days compared with untreated controls and genotoxic hepatocarcinogens. Immunohistochemically, LDLRAD4 and PROC showed decreased immunoreactivity, forming negative foci, in glutathione S-transferase placental form (GST-P)+ foci, and incidences of LDLRAD4- and PROC- foci in GST-P+ foci induced by treatment with nongenotoxic hepatocarcinogens for 84 or 90 days were increased compared with those with genotoxic hepatocarcinogens. In contrast, CDH17 and NFIA responded to hepatocarcinogens without any relation to the genotoxic potential of carcinogens. All 4 genes did not respond to renal carcinogens after treatment for 28 days. Considering that Ldlrad4 is a negative regulator of transforming growth factor-β signaling, Proc participating in p21WAF1/CIP1 upregulation by activation, Cdh17 inducing cell cycle arrest by gene knockdown, and Nfia playing a role in a tumor-suppressor, all these genes may be potential in vivo epigenetic markers of nongenotoxic hepatocarcinogens from the early stages of treatment in terms of gene expression changes. LDLRAD4 and PROC may have a role in the development of preneoplastic lesions produced by nongenotoxic hepatocarcinogens.
Liu J, etal., Toxicol Appl Pharmacol. 2006 Nov 1;216(3):407-15. Epub 2006 Jun 20.
Chronic arsenic exposure of rat liver epithelial TRL1215 cells induced malignant transformation in a concentration-dependent manner. To further define the molecular events of these arsenic-transformed cells (termed CAsE cells), gene expressions associated with arsenic carcinogenesis or influenced by
methylation were examined. Real-time RT-PCR showed that at carcinogenic concentrations (500 nM, and to a less extent 250 nM of arsenite), the expressions of alpha-fetoprotein (AFP), Wilm's tumor protein-1 (WT-1), c-jun, c-myc, H-ras, c-met and hepatocyte growth factor, heme oxygenase-1, superoxide dismutase-1, glutathione-S-transferase-pi and metallothionein-1 (MT) were increased between 3 to 12-fold, while expressions of insulin-like growth factor II (IGF-II) and fibroblast growth factor receptor (FGFR1) were essentially abolished. These changes were not significant at the non-carcinogenic concentration (125 nM), except for IGF-II. The positive cell-cycle regulators cyclin D1 and PCNA were overexpressed in CAsE cells, while the negative regulators p21 and p16 were suppressed. Western-blot confirmed increases in AFP, WT-1, cyclin D1 and decreases in p16 and p21 protein in CAsE cells. The CAsE cells over-expressed MT but the demethylating agent 5-aza-deoxycytidine (5-aza-dC, 2.5 microM, 72 h) stimulated further MT expression. 5-Aza-deoxycytidine restored the loss of expression of p21 in CAsE cells to control levels, but did not restore the expression of p16, IGF-II, or FGFR1, indicating the loss of expression of these genes is due to factors other than DNA methylation changes. Overall, an intricate variety of gene expression changes occur in arsenic-induced malignant transformation of liver cells including oncogene activation and alterations in expression of genes critical to growth regulation.
Bannon DI, etal., Chem Res Toxicol. 2009 Apr;22(4):620-5. doi: 10.1021/tx800444k.
RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is a synthetic, high-impact, relatively stable explosive that has been in use since WWII. Exposure to RDX can occur in occupational settings (e.g., during manufacture) or through the inadvertent ingestion of contaminated environmental media such as groun
dwater. The toxicology of RDX is dominated by acute clonic-tonic seizures at high doses, which remit when exposure is removed and internal RDX levels decrease. Subchronic studies have revealed few other measurable toxic effects. The objective of this study was to examine the acute effects of RDX on the mammalian brain and liver using global gene expression analysis based on a predetermined maximum internal dose. Male Sprague-Dawley rats were given a single, oral, nonseizure-inducing dose of either 3 or 18 mg/kg RDX in a gel capsule. Effects on gene expression in the cerebral cortex and liver were assessed using Affymetrix Rat Genome 230 2.0 whole genome arrays at 0, 3.5, 24, and 48 h postexposure. RDX blood and brain tissue concentrations rapidly increased between 0 and 3.5 h, followed by decreases at 24 h to below the detection limit at 48 h. Pairwise comparison of high and low doses at each time point showed dramatic differential changes in gene expression at 3.5 h, the time of peak RDX in brain and blood. Using Gene Ontology, biological processes that affected neurotransmission were shown to be primarily down-regulated in the brain, the target organ of toxicity, while those that affected metabolism were up-regulated in the liver, the site of metabolism. Overall, these results demonstrate that a single oral dose of RDX is quickly absorbed and transported into the brain where processes related to neurotransmission are negatively affected, consistent with a potential excitotoxic response, whereas in the liver there was a positive effect on biological processes potentially associated with RDX metabolism.
Pari L and Amudha K, Eur J Pharmacol. 2011 Jan 10;650(1):364-70. doi: 10.1016/j.ejphar.2010.09.068. Epub 2010 Oct 13.
Aim of the present study was planned to determine the protective role of naringin in attenuating the toxicity induced by nickel sulfate in rat liver. In this investigation nickel sulfate (20mg/kg body weight) was administered intraperitoneally for 20days to indu
ce toxicity. Naringin was administered orally (20, 40 and 80mg/kg body weight) for 20days with intraperitoneal administration of nickel sulfate. Liver injury was measured by the increased activities of serum hepatic enzymes namely aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma glutamyl transferase, lactate dehydrogenase and total bilirubin along with increased elevation of lipid peroxidation markers, thiobarbituric reactive acid substances, lipid hydroperoxides, protein carbonyl content and conjugated dienes. The toxic effect of nickel was also indicated by significantly decreased activities of enzymatic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase and non-enzymatic antioxidants like reduced glutathione, total sulfhydryl groups, vitamin C and vitamin E levels were significantly decreased. Naringin administered at a dose of 80mg/kg body weight significantly reversed the activities of hepatic marker enzymes, decreasing lipid peroxidative markers, increasing the antioxidant cascade and decreasing the nickel concentration in the liver. The effect at a dose of 80mg/kg body weight was more pronounced than that of other two doses (20 and 40mg/kg body weight). All these changes were supported by histopathological observations. These results clearly demonstrate that naringin has the potential in alleviating the toxic effects of nickel in rat liver.
Hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli (STEC HUS) is a worldwide endemic problem, and its pathophysiology is not fully elucidated. Here we tested whether the mannose-binding lectin (MBL2), an initiating factor of lectin compl
ement pathway activation, plays a crucial role in STEC HUS. Using novel human MBL2-expressing mice (MBL2 KI) that lack murine Mbls (MBL2+/+Mbl1-/-Mbl2-/-), a novel STEC HUS model consisted of an intraperitoneal injection with Shiga toxin-2 (Stx-2) with or without anti-MBL2 antibody (3F8, intraperitoneal). Stx-2 induced weight loss, anemia, and thrombocytopenia and increased serum creatinine, free serum hemoglobin, and cystatin C levels, but a significantly decreased glomerular filtration rate compared with control/sham mice. Immunohistochemical staining revealed renal C3d deposition and fibrin deposition in glomeruli in Stx-2-injected mice. Treatment with 3F8 completely inhibited serum MBL2 levels and significantly attenuated Stx-2 induced-renal injury, free serum hemoglobin levels, renal C3d, and fibrin deposition and preserved the glomerular filtration rate. Thus, MBL2 inhibition significantly protected against complement activation and renal injury induced by Stx-2. This novel mouse model can be used to study the role of complement, particularly lectin pathway-mediated complement activation, in Stx-2-induced renal injury.
PURPOSE: Chemokines have been implicated in the control of leucocyte infiltration in uveitis and in modulating angiogenesis in several ocular conditions. Toxoplasmic retinochoroiditis is a common cause of posterior uveitis. This study aimed to evaluat
e the serum concentrations of CC and CXC chemokines in patients with acute toxoplasmic retinochoroiditis. METHODS: The levels of five chemokines (CCL2, CCL11, CXCL9, CXCL8 and CXCL10) were evaluated in the serum of patients with active toxoplasmic retinochoroiditis (n = 55) and control subjects (n = 40). In a subset of patients (n = 18), a second measure of serum levels of chemokines was performed after the completion of oral treatment with pyrimethamine (25 mg/day), sulphadiazine (1 g, four times per day), folinic acid (7.5 mg/day) and prednisone (initial dose: 1 mg/kg/day) for approximately 30 days. RESULTS: Patients with toxoplasmic retinochoroiditis, notably those presenting with vasculitis, had increased serum levels of CXCL8 (mean +/- standard error of the mean [SEM] 35.1 +/- 6.5 pg/ml) compared with control subjects (mean +/- SEM 16.0 +/- 2.3 pg/ml; p = 0.01). There were no differences between patients and controls in serum levels of the other chemokines measured. The size of ocular lesions correlated significantly with serum levels of CXCL8 and CXCL9. After treatment, there was a significant reduction in serum levels of CXCL8. Severity of vitreous opacities did not correlate with serum levels of these chemokines. CONCLUSIONS: These data suggest a role for CXCL8 in the inflammatory process of acute toxoplasmic retinochoroiditis. Furthermore, CXCL8 may be a useful marker for patient follow-up.
Sun H and Chen QM, Cardiovasc Toxicol. 2008 Summer;8(2):93-100. Epub 2008 Jun 27.
Our recent study has demonstrated that glucocorticoids (GCs) induce cyclooxygenase-1 (COX-1) gene expression in rat cardiomyocytes. While investigating the mechanism underlying corticosterone (CT) induced COX-1, we found that three structurally and mechanistically distinct GSK-3 inhibitors, LiCl, SB
216763, and (2'Z,3'E)-6-Bromoindirubin-3'-oxime (BIO), inhibited COX-1 transcription and protein induction. A genetic approach of expressing wild type GSK-3beta increased COX-1 promoter activity, which was abolished by LiCl. LiCl increased inhibitory GSK-3alpha/beta phosphorylation at Ser21/Ser9, while BIO or SB216763 prevented stimulatory phosphorylation at Tyr279/Tyr216 of GSK-3alpha/beta. GSK inhibitors failed to block nuclear translocation of glucocorticoid receptor (GR) or activation of glucocorticoid response element (GRE) by CT treatment. While Sp3 transcription factor mediates CT induced COX-1 expression, GSK inhibitors did not change the level of Sp3 protein or binding of Sp3 transcription factor to COX-1 promoter. The observed effect of GSK-3 inhibitors appears to be unique to COX-1 since LiCl or BIO does not prevent CT from inducing COX-2 gene. We conclude that GSK-3 inhibitors block CT from inducing COX-1 gene expression via a mechanism beyond GR and Sp3 transcription factor.
Interferons have been used to treat chronic hepatitis owing to their antiviral properties. However, now interferons are recognized to inhibit collagen production. Because fibrosis has been associated with liver damage and dysfunction, the effects of interferon-alpha 2b on biliary obstruction-induced
cirrhosis were investigated. Obstructive jaundice was induced in male Wistar rats (ca. 200 g) by double ligation and division of the common bile duct. Control rats were sham operated. Interferon-alpha 2b (IFN-alpha; 1000 000 IU per rat) was administered subcutaneously daily after surgery. The animals were sacrificed after 4 weeks of bile duct ligation (BDL) or sham operation. Bilirubins and serum enzyme activities of alkaline phosphatase and gamma-glutamyl transpeptidase (determined as markers of liver damage) increased several-fold after BDL. Erythrocyte and hepatocyte plasma membrane Na+/K+- and Ca2+-ATPase activities decreased significantly in the BDL group. Administration of IFN-alpha to BDL rats resulted in a partial normalization of serum markers of liver damage. The normal activity of both ATPases on erythrocyte and hepatocyte plasma membranes was completely preserved by IFN-alpha. It is concluded that interferons possess interesting hepatoprotective effects not related to their antiviral properties but probably associated with their antifibrogenic effect.
Li C, etal., Toxicol Appl Pharmacol. 2008 Jun 15;229(3):351-61. Epub 2008 Feb 16.
Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb(2+) causes neuronal death is not well understood. The present st
udy sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb(2+). Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb(2+)-induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb(2+) treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 muM) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb(2+). And that Pb(2+)-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb(2+) and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.
Carbendazim (methyl-2-benzimidazole carbamate, MBC) a metabolite of benomyl is one of the most widespread environmental contaminant of major concern to human and animal reproductive health. The present investigation was undertaken to study the impact of carbendazim exposure on Leydig cell functions.
Adult albino male rats of the Wistar strain were administered with carbendazim (25 mg/(kg (body weight)/day)) orally for 48 days. The control animals received vehicle (corn oil) alone. Another group of rats were treated with carbendazim and the same was withdrawn for a further period of 48 days. After the treatment period, rats were euthanized and blood was collected for the assay of serum hormones such as luteinizing hormone (LH), prolactin (PRL), testosterone and estradiol. Testes were immediately removed and Leydig cells were isolated in aseptic condition. Purified Leydig cells were used for quantification of steroidogenic enzymes such as 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). Leydig cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), gamma-glutamyl transpeptidase (gamma-GT), glucose-6-phosphate dehydrogenase (G6PDH) and non-enzymatic antioxidants such as reduced glutathione (GSH), alpha-tocopherol (vitamin E), ascorbic acid (vitamin C) and beta-carotene (vitamin A) were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also quantified. Carbendazim exposure had no effect on body weight, serum LH and prolactin. However, testis weight, serum testosterone and estradiol were significantly decreased. In addition to this, Leydig cellular activities of steroidogenic enzymes such as 3beta-HSD, 17beta-HSD, antioxidant enzymes SOD, CAT, GPx, GR, GST, gamma-GT, G-6-PDH and non-enzymatic antioxidants such as GSH, vitamins E, C and A were significantly diminished, whereas LPO and ROS were markedly elevated. All these above-mentioned parameters from the animals after withdrawal of MBC treatment were similar to those of the control group. Thus, the present study suggests that chronic low dose treatment of MBC is capable of inducing reproductive toxicity through increased oxidative stress, but is transient and reversible upon withdrawal of treatment.
Lee CT, etal., Toxicol Appl Pharmacol. 2007 Oct 1;224(1):19-28. Epub 2007 Jun 27.
1,6-Hexamethylene diisocyanate biuret trimer (HDI-BT) is a nonvolatile isocyanate that is a component of polyurethane spray paints. HDI-BT is a potent irritant that when inhaled stimulates sensory nerves of the respiratory tract. The role of sensory nerves in modulating lung injury following inhalat
ion of HDI-BT was assessed in genetically manipulated mice with altered innervation of the lung. Knockout mice with a mutation in the low-affinity nerve growth factor receptor (NGFR), which have decreased innervation by nociceptive nerve fibers, and transgenic mice expressing nerve growth factor (NGF) from the lung-specific Clara cell secretory protein (CCSP) promoter, which have increased innervation of the airways, were exposed to HDI-BT aerosol and evaluated at various times after exposure. NGFR knockout mice exhibited significantly more, and CCSP-NGF transgenic mice exhibited significantly less injury and inflammation compared with wild-type mice, indicative of a protective effect of nociceptive nerves on the lung following HDI-BT inhalation. Transgenic mice overexpressing the tachykinin 1 receptor (Tacr1) in lung epithelial cells also showed less severe injury and inflammation compared with wild-type mice after HDI-BT exposure, establishing a role for released tachykinins acting through Tacr1 in mediating at least part of the protective effect. Treatment of lung fragments from Tacr1 transgenic mice with the Tacr1 ligand substance P resulted in increased cAMP accumulation, suggesting this compound as a possible signaling mediator of protective effects on the lung following nociceptive nerve stimulation. The results indicate that sensory nerves acting through Tacr1 can exert protective or anti-inflammatory effects in the lung following isocyanate exposure.
Snow SJ, etal., Toxicol Sci. 2018 May 1;163(1):57-69. doi: 10.1093/toxsci/kfy003.
Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wist
ar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.
Gil C, etal., Neurochem Int. 2003 Jun;42(7):535-42. doi: 10.1016/s0197-0186(02)00187-0.
It has been previously shown that 5-HT uptake inhibition produced by tetanus toxin (TeTx) corresponds to a non-competitive inhibition, and it is preceded by phosphorylation of the tyrosine-kinase receptor trkA, phospholipase C activation and translocation of pro
tein kinase C isoforms [FEBS Lett. 481 (2000) 177; FEBS Lett. 486 (2000) 136]. In the present work, it is shown that agonists of tyrosine-kinase receptors (NGF, EGF, basic FGF) enhance Na(+)-dependent, 5-hydroxytryptamine (serotonin, 5-HT) uptake in the synaptosomal-enriched P(2) fraction from rat-brain, suggesting a divergence in the intracellular signal pathways triggered by TeTx and by agonists of TyrK receptors. Co-applications of TeTx and agonists of TyrK receptors result in a mutual and partial reversion of their effects on 5-HT transport. In spite of their differences on transport, TeTx, TPA and NGF produce an increase in serotonin transporter phosphorylation in Ser separately, which is abolished by the PKC-inhibitor bisindolylmaleimide-1. Co-application of sodium vanadate, a tyrosine-phosphatase inhibitor, partially abolishes the effect produced by TeTx, whereas genistein, a tyrosine-kinase inhibitor, does not exert any variation of TeTx inhibition. Analyses by immunoblotting of the activation of specific PKC isoforms activation, determined as translocation to the membrane compartment, reveals differences in the pattern produced by NGF and TeTx. PKC gamma, delta, and epsilon isoforms are equally activated by both compounds, whereas the beta isoform is activated in a sustained manner only by TeTx, and the alpha isoform is only down-regulated by NGF. The aim of the present work was to explore whether NGF have the same effect on 5-HT transport than TeTx, since both compounds share the ability of activate part of the same transduction pathways. In spite of this, growth factors and TeTx show an opposite effect on 5-HT transport, even though SERT phosphorylation is enhanced in both cases. The differential effect on alpha- and beta-PKC isoenzymes found between NGF and TeTx action could explain this apparent discrepancy.
BACKGROUND: The wide range of antibody specificity and affinity results from the differing shapes and chemical compositions of their binding sites. These shapes range from discrete grooves in antibodies elicited by linear oligomers of nucleotides and carbohydrates to shallow depressions or flat sur
faces for accommodation of proteins, peptides and large organic compounds. OBJECTIVES: To determine the Fab structure of a high-affinity human antitoxin antibody. To explore structural features which enable the antibody to bind to intact tetanus toxoid, peptides derived from the sequence of the natural immunogen and antigenic mimics identified by combinatorial chemistry. To explain why this Fab shows a remarkable tendency to produce crystals consistently diffracting to d spacings of 1.7-1.8 A. To use this information to engineer a strong tendency to crystallize into the design of other Fabs. STUDY DESIGN: The protein was crystallized in hanging or sitting drops by a microseeding technique in polyethylene glycol (PEG) 8000. Crystals were subjected to X-ray analysis and the three-dimensional structure of the Fab was determined by the molecular replacement method. Interactive computer graphics were employed to fit models to electron density maps, survey the structure in multiple views and discover the crystal packing motif of the protein. RESULTS: Exceptionally large single crystals of this protein have been obtained, one measuring 5 x 3 x 2 mm (l x w x d). The latter was cut into six irregular pieces, each retaining the features of the original in diffracting to high resolution (1.8 A) with little decay in the X-ray beam. In an individual Fab, the active site is relatively flat and it seems likely that the protein antigen and derivative peptides are tightly held on the outer surface without significant penetration into the interior. There is no free space to accommodate even a dipeptide between VH and VL. One of the unique features of the B7-15A2 Fab is a large aliphatic ridge dominating the center of the active site. The CDR3 of the H chain contributes significantly to this ridge, as well as to adjoining regions projected to be important for the docking of the antigen. Both the ease of crystallization and the favorable diffraction properties are mainly attributable to the tight packing of the protein molecules in the crystal lattice. DISCUSSION: The B7-15A2 active site provides a stable and well defined platform for high affinity docking of proteins, peptides and their mimotopes. The advantages for future developments are suggested by the analysis of the crystal properties. It should be possible to incorporate the features promoting crystallization, close packing and resistance to radiation damage into engineered human antibodies without altering the desired specificities and affinities of their active sites.
Arlt VM, etal., Chem Res Toxicol. 2004 Aug;17(8):1092-101. doi: 10.1021/tx049912v.
3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen found in diesel exhaust and ambient air pollution. The main metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), was recently detected in the urine of salt mining workers occupationally exposed to diesel emissions. Determining the capability o
f humans to metabolize 3-ABA and understanding which human enzymes are involved in its activation are important in the assessment of individual susceptibility. We compared the ability of eight human hepatic microsomal samples to catalyze DNA adduct formation by 3-ABA. Using the (32)P-postlabeling method, we found that all hepatic microsomes were competent to activate 3-ABA. DNA adduct patterns with multiple adducts, qualitatively similar to those formed in vivo in rats treated with 3-ABA, were observed. These patterns were also similar to those formed by the nitroaromatic counterpart 3-NBA and which derive from reductive metabolites of 3-NBA bound to purine bases in DNA. The role of specific cytochrome P450s (P450s) in the human hepatic microsomal samples in 3-ABA activation was investigated by correlating the P450-linked catalytic activities in each microsomal sample with the level of DNA adducts formed by the same microsomes. On the basis of this analysis, most of the hepatic microsomal activation of 3-ABA was attributable to P450 1A1 and 1A2 enzyme activity. Inhibition of DNA adduct formation in human liver microsomes by alpha-naphthoflavone and furafylline, inhibitors of P450 1A1 and 1A2, and P450 1A2 alone, respectively, supported this finding. Using recombinant human P450 1A1 and 1A2 expressed in Chinese hamster V79 cells and microsomes of baculovirus-transfected insect cells (Supersomes), we confirmed the participation of these enzymes in the formation of 3-ABA-derived DNA adducts. Moreover, essentially the same DNA adduct pattern found in microsomes was detected in metabolically competent human lymphoblastoid MCL-5 cells expressing P450 1A1 and 1A2. Using rat hepatic microsomes, we showed that both human and rat microsomes lead to the same 3-ABA-derived DNA adducts. Pretreatment of rats with beta-naphthoflavone or Sudan I, inducers of P450 1A1 and 1A2, and P450 1A1 alone, respectively, significantly stimulated the levels of 3-ABA-derived DNA adducts formed by rat liver microsomes. Utilizing purified rat recombinant P450 1A1, the participation of this enzyme in DNA adduct formation by 3-ABA was corroborated. In summary, our results strongly suggest a genotoxic potential of 3-ABA for humans. Moreover, 3-ABA is not only a suitable biomarker of exposure to 3-NBA but may also directly contribute to the high genotoxic potential of 3-NBA.
Briseid K and Johansen HT, Acta Pharmacol Toxicol (Copenh). 1983 Oct;53(4):344-52.
By incubation of human citrated plasma with acetone 25% v/v kallikrein inhibitors were destroyed and prekallikrein activated to kallikrein. When the incubation was carried out in the presence of benzamidine 7 mM, the cofactor capacity of high molecular weight kininogen (HMrK) was protected against d
estruction by a serine protease which was not plasma kallikrein. By analogy with studies in rat plasma this protease might be a plasminogen activator (Berstad & Briseid 1982; Johansen & Briseid 1983). Factor XII in the plasma preparation was activated to unfragmented factor XIIa by adsorption to kaolin, and assayed as prekallikrein activator (PKA). The extent of activation of factor XII was only insignificantly influenced by the 1 + 1 (v/v) dilution of the plasma preparation with a suspension of kaolin. When, however, the preparation was diluted greater than 1 + 5 (v/v) before incubation with the suspension, a stoichiometric HMrK concentration-effect curve could be established, allowing the assay of cofactor-active HMrK. Assays of HMrK in plasma preparations from healthy men and women demonstrated an average lower level of cofactor-active HMrK in the preparations from women. It is suggested that benzamidine is not capable of providing a complete protection of HMrK during the procedure in all plasma samples.
Trutic N, etal., Comp Biochem Physiol C Toxicol Pharmacol. 2002 Nov;133(3):461-70.
We studied the effect of total body X-irradiation and partial hepatectomy on the acute phase protein gene expression in rat liver. Male rats of AO strain were irradiated with high X-ray doses, without any visible tissue damage. In contrast, partial hepatectomy consisted of surgical removal of 40% li
ver tissue. The changes in liver mRNA concentrations for positive acute-phase reactants including cysteine protease inhibitor, alpha(1)-acid glycoprotein, fibrinogen and haptoglobin, and albumin as a negative reactant were monitored by Northern blot and slot-blot hybridizations using corresponding [32P]dCTP labeled cDNA probes. While in the first 24 h after the partial hepatectomy, liver mRNA levels for the positive acute-phase reactants increased, briefly followed by an immediate decrease, the duration and timing of the acute-phase responses to the whole body X-irradiation were slightly different and lasted for as long as 72 h. Although both treatments induced the mRNA expression of acute-phase reactants in rat liver, the observed variations in the duration and intensity of the changes in mRNA levels for the acute-phase proteins in these two types of tissue damage suggest the involvement of specific mechanisms in a fine tuning of the non-specific acute-phase responses to meet the unique requirements of the particular injury.
Ezekwe EA, etal., Toxins (Basel). 2016 Mar 30;8(4):95. doi: 10.3390/toxins8040095.
The Staphylococcus aureus toxin, a-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host
cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin's activity against these cells. In host monocytic cells, a-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for a-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-a-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires a-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by a-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types.
Tilson HA, etal., Environ Health Perspect 1978 Apr;23:257-63.
Male, albino rats of the F-344/N strain and mice of the B6C3F1 strain were dosed by gavage, 5 days per week for a toal of 22 doses with 0.03--30 mg/kg of FireMaster FF-1, 0.168-16.8 Mg/kg of 2,4,5,2',4',5'-hexabromobiphenyl (HBB), or corn oil vehicle. A battery of tests was administered at the end o
f repeated dosing (30 day examination) and 30 days after dosing ceased (60 day test). FF-1 and, to a much lesser extent, HBB decreased body weight and performance on a variety of tests designed to detect neuromuscular dysfunction. Included in these tests were activity in the open field, forelimb grip strength, and muscular reflexes. Visual placement responses were also decreased in some animals, while hypothermia was observed in others. Emotionally, as measured by the number of defecations and urinations in the open field, was not affected by exposure to either compound. At the end of 30 day test, mice were less affected by exposure to these polybrominated biphenyls (PBBs) than rats; rats tended to worsen during the 30 days of no dosing, while mice tended to improve. These experiments indicate that oral dosing with levels of PBBs below those required to produce signs of acute toxicity produced behavioral or neurological toxicity when given repeatedly.
Weaver CV and Liu SP, Exp Toxicol Pathol. 2008 Mar;59(5):265-72. Epub 2008 Feb 21.
Benzene, a well-known human carcinogen, is a commonly used industrial chemical that evokes further toxicological concern because of its potential genotoxic risks as a constituent of petrol and the byproduct of combustion and
cigarette smoke. The present study investigated the effects of benzene inhalation on the expression of pro- and antiapoptogenic genes in lung epithelia. Immunohistochemical expression was assessed for antiapoptotic Bcl-2 family proteins, including Bcl-2, Bcl-w, and Bag-1 as well as proapoptotic subfamily members with Bcl-2 homology (BH)(1) 1-3, namely Bax, those that consist of only the BH3 region, represented by Bad, and proapoptotic gene expression for p53. Rats exposed to benzene via inhalation (300ppm) for 7 days showed a significant upregulation of proapoptotic gene expression for p53, Bax, and Bad as assessed by a semiquantitative segmental analysis of the lung epithelia, including bronchioles, terminal bronchioles, respiratory bronchioles, and alveoli. Bag-1, an antiapoptogenic gene, was also found to have significant upregulated expression in lung epithelia. Since the underlying mechanisms by which Bag-1 exerts its antiapoptogenic effects are not known, benzene may target the protein chaperones hsc70/hsp70, or RING finger protein associated with Bag-1 activity. Alternatively, the significant downregulation of Bcl-2 may have diminished the antiapoptotic synergism necessary for the effectiveness of Bag-1. Both Bcl-2 and Bcl-w were found to be significantly downregulated compared to the proapoptotic counterparts. These data support the role of benzene in activating proapoptogenic events that lead to the upregulation of gene expression that may provide a crucial defense mechanism within lung parenchyma to reduce mutation hazard and potential carcinogenic effects of benzene-initiated pathogenesis.
Therapeutic efficacy of oral administration of Ocimum sanctum (200mg/kg, once daily) post arsenic exposure (100 ppm in drinking water for 4 months) was investigated in rats. Animals exposed to arsenic (III) showed a significant inhibition of delta-aminolevulinic acid dehydratase (ALAD) activity, dec
rease in reduced glutathione (GSH) level and an increase in reactive oxygen species (ROS) in blood. On the other hand, a significant decrease in hepatic ALAD, and increase in delta-aminolevulinic acid synthetase activity were noted after arsenic exposure. These changes were accompanied by an increase TBARS level in liver and kidney. Activities of liver, kidney and brain superoxide dismutase and catalase also showed a decrease on arsenic exposure. Administration of O. sanctum post arsenic exposure, exhibited significant recovery in blood ALAD activity while, it restored blood GSH and ROS levels. Other blood biochemical variables remained unchanged on O. sanctum supplementation. Interestingly, there was a marginal, but significant depletion of arsenic from blood, liver and kidneys. The results conclude that post arsenic administration of O. sanctum has significant role in protecting animals from arsenic-induced oxidative stress and in the depletion of arsenic concentration. Further studies thus can be recommended for determining the effect of co-administrating of O. sanctum during chelating therapy with a thiol chelator.
Bai J and Meng Z, Regul Toxicol Pharmacol. 2005 Dec;43(3):272-9. Epub 2005 Oct 26.
Sulfur dioxide (SO2) is an air pollutant in densely populated areas as well as in areas polluted by coal-fired power plants, smelters, and sulfuric acid factories. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00+/-1.01, 28.00+/-1.77, and 56.00+/-3.44 mg
/m3 SO2 for 6 h/day for 7 days, while control rats were exposed to filtered air in the same condition. The mRNA and protein levels of three apoptosis-related genes (p53 and bax are promoters of apoptosis, whereas bcl-2 is apoptotic suppressor) were analyzed in lungs using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and immunohistochemistry method, and caspase-3 activities were detected. The results showed that mRNA levels of p53 and bax were increased in a dose-dependent manner and at the concentrations of 28.00 and 56.00 mg/m3 SO2 the increases were significant (for p53: 1.23-fold at 28 mg/m3 and 1.39-fold at 56 mg/m3; for bax: 1.77-fold at 28 mg/m3 and 2.26-fold at 56 mg/m3, respectively), while mRNA levels of bcl-2 were decreased significantly (0.78-fold at 28 mg/m3 and 0.73-fold at 56 mg/m3) in lungs of rats exposed to SO2. Dose-dependent increase of p53 and bax proteins in the lungs was observed after SO2 inhalation, while decrease of bcl-2 protein levels was obtained using immunohistochemistry method. Caspase-3 activities were increased in lungs of rats after SO2 inhalation. These results lead to a conclusion that SO2 exposure can change the expression of apoptosis-related genes, and it suggests that SO2 can induce apoptosis in lung of rat and may have relations with some apoptosis-related diseases. Elucidating the expression patterns of those factors after SO2 inhalation may be critical to our understanding mechanisms of SO2 toxicity and helpful for the therapeutic intervention.
Dillman JF, etal., Chem Res Toxicol. 2009 Apr;22(4):633-8. doi: 10.1021/tx800466v.
Soman (O-pinacolyl methylphosphonofluoridate) is a potent neurotoxicant. Acute exposure to soman causes acetylcholinesterase inhibition, resulting in excessive levels of acetylcholine. Excessive acetylcholine levels cause convulsions, seizures, and respiratory d
istress. The initial cholinergic crisis can be overcome by rapid anticholinergic therapeutic intervention, resulting in increased survival. However, conventional treatments do not protect the brain from seizure-related damage, and thus, neurodegeneration of soman-sensitive brain areas is a potential postexposure outcome. We performed gene expression profiling of the rat hippocampus following soman exposure to gain greater insight into the molecular pathogenesis of soman-induced neurodegeneration. Male Sprague-Dawley rats were pretreated with the oxime HI-6 (l-(((4-aminocarbonyl)pyridinio)methoxyl)methyl)-2-((hydroxyimino)methyl)-pyridinium dichloride; 125 mg/kg, ip) 30 min prior to challenge with soman (180 microg/kg, sc). One minute after soman challenge, animals were treated with atropine methyl nitrate (2.0 mg/kg, im). Hippocampi were harvested 1, 3, 6, 12, 24, 48, 72, 96, and 168 h after soman exposure and RNA extracted to generate microarray probes for gene expression profiling. Principal component analysis of the microarray data revealed a progressive alteration in gene expression profiles beginning 1 h postexposure and continuing through 24 h postexposure. At 48 h to 168 h postexposure, the gene expression profiles clustered nearer to controls but did not completely return to control profiles. On the basis of the principal component analysis, analysis of variance was used to identify the genes most significantly changed as a result of soman at each postexposure time point. To gain insight into the biological relevance of these gene expression changes, genes were rank ordered by p-value and categorized using gene ontology-based algorithms into biological functions, canonical pathways, and gene networks significantly affected by soman. Numerous signaling and inflammatory pathways were identified as perturbed by soman. These data provide important insights into the molecular pathways involved in soman-induced neuropathology and a basis for generating hypotheses about the mechanism of soman-induced neurodegeneration.
Ding S, etal., Toxicol Sci. 2017 Oct 1;159(2):290-306. doi: 10.1093/toxsci/kfx093.
Hepatic cirrhosis-induced Minimal hepatic encephalopathy (MHE) has been characterized for cognitive dysfunction and central nervous system (CNS) insulin resistance (IR) has been acknowledged to be closely correlated with cognitive impairment while hepatic cirrhosis has been recognized to induce IR.
Thus, this study aimed to investigate whether CNS IR occurred in MHE and induced MHE, as well as the underlying mechanism. We found IR in the MHE rats, an especially decreased level of the insulin receptor (InsR), and an increased serine phosphorylation of IRS1 in CNS. PI3K/AKT pathway signaling to the phosphorylation of N-Methyl-d-Aspartate receptors (NMDA receptors, NRs, NR1/NR2B) and downstream activation of the CaMKIV/CREB pathway and final production of neurotrophic factors were triggered by insulin, but impaired in the MHE rats. Additionally, CNS IR, memory impairment, the desensitization of the PI3K/AKT/NMDA receptor (NR)/CaMKIV/CREB pathway and decreased production of BDNF/NT3 in MHE rats were improved by rosiglitazone (RSG). These results suggested that IR, which induces the deficits in the insulin-mediated PI3K/AKT/NR/CaMKIV/CREB/neurotrophin pathway and subsequent memory decline, contributes to the pathogenesis of MHE.
Wang X, etal., Toxicol Appl Pharmacol. 2008 Jul 15;230(2):167-74. Epub 2008 Mar 6.
Confocal microscopy was used to investigate the effects of manganese (Mn) and iron (Fe) exposure on the subcellular distribution of metal transporting proteins, i.e., divalent metal transporter 1 (DMT1), metal transporter protein 1 (MTP1), and transferrin receptor (TfR), in the rat intact choroid pl
exus which comprises the blood-cerebrospinal fluid barrier. In control tissue, DMT1 was concentrated below the apical epithelial membrane, MTP1 was diffuse within the cytosol, and TfR was distributed in vesicles around nuclei. Following Mn or Fe treatment (1 and 10 microM), the distribution of DMT1 was not affected. However, MTP1 and TfR moved markedly toward the apical pole of the cells. These shifts were abolished when microtubules were disrupted. Quantitative RT-PCR and Western blot analyses revealed a significant increase in mRNA and protein levels of TfR but not DMT1 and MTP1 after Mn exposure. These results suggest that early events in the tissue response to Mn or Fe exposure involve microtubule-dependent, intracellular trafficking of MTP1 and TfR. The intracellular trafficking of metal transporters in the choroid plexus following Mn exposure may partially contribute to Mn-induced disruption in Fe homeostasis in the cerebrospinal fluid (CSF) following Mn exposure.
In this study, the role of NF-kappaB1 was examined during toxoplasmosis. While wildtype BALB/c mice generated protective responses, NF-kappaB1(-/-) mice developed Toxoplasmic encephalitis, characterized by increased parasite
burden and necrosis in the brain. Susceptibility was primarily associated with a local decrease in the number of CD8(+) T cells and IFN-gamma production, while accessory cell function appeared intact in NF-kappaB1(-/-) mice. Consistent with these findings, T cell transfer studies revealed that NF-kappaB1(-/-) T cells provided SCID mice less protection than wildtype T cells. These results demonstrate an intrinsic role for NF-kappaB1 in T cell-mediated immunity to Toxoplasmagondii.
Lee KK, etal., Toxicol Appl Pharmacol. 2008 Oct 1;232(1):109-18. Epub 2008 Jun 25.
Microsomal glutathione transferase (MGST1) is activated by oxidative stress. Although MGST1 is found in mitochondrial membranes (mtMGST1), there is no information about the oxidative activation of mtMGST1. In the present study, we aimed to determine whether mtMGST1 also undergoes activation and abou
t its function. When rats were treated with galactosamine/lipopolysaccharide (GalN/LPS), mtMGST1 activity was significantly increased, and the increased activity was reduced by the disulfide reducing agent dithiothreitol. In mitochondria from GalN/LPS-treated rats, disulfide-linked mtMGST1 dimer and mixed protein glutathione disulfides (glutathionylation) were detected. In addition, cytochrome c release from mitochondria isolated from GalN/LPS-treated rats was observed, and the release was inhibited by anti-MGST1 antibodies. Incubation of mitochondria from control rats with diamide and diamide plus GSH in vitro resulted in dimer- and mixed disulfide bond-mediated activation of mtMGST1, respectively. The activation of mtMGST1 by diamide plus GSH caused cytochrome c release from the mitochondria, and the release was prevented by treatment with anti-MGST1 antibodies. In addition, diamide plus GSH treatment caused mitochondrial swelling accompanied by cytochrome c release, which was inhibited by cyclosporin A (CsA) and bongkrekic acid (BKA), inhibitors of the mitochondrial permeability transition (MPT) pore. Furthermore, mtMGST1 activity was also inhibited by CsA and BKA. These results indicate that mtMGST1 is activated through mixed disulfide bond formation that contributes to cytochrome c release from mitochondria through the MPT pore.
With the gradual emergence of xylazine as a street drug, incidents of xylazine poisoning are now occurring worldwide. However, it remains unknown whether long-term exposure to xylazine causes nonalcoholic fatty liver disease (NAFLD). In the present study, the rats were injected with xylazine intrape
ritoneally for 28 consecutive days, and then serum and liver tissues were collected for analysis. Weight loss was observed in the 40 mg/kg group and elevated levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were observed. Histopathologic examination showed hepatic steatosis, necrosis, and fibrosis. By mRNA sequencing, 192 upregulated genes and 277 downregulated genes were found in the 40 mg/kg group, and the PPAR signaling pathway was ranked first in the KEGG pathway analysis. Four genes in the PPAR signaling pathway, Fabp5, Acox2, and Cpt2, were also verified in the 40 mg/kg group by RT-qPCR analysis and western blot. Our results demonstrated that long-term injection of xylazine causes NAFLD and the PPAR signaling pathway plays a core role in the process of xylazine-associated liver injury.
Fang X, etal., Toxicol Sci. 2024 Feb 28;198(1):76-85. doi: 10.1093/toxsci/kfad128.
Exposure of rodents to mono-(2-ethylhexyl) phthalate (MEHP) is known to disrupt the blood-testis barrier and cause testicular germ cell apoptosis. Peritubular macrophages (PTMφ) are a newly identified type of testicular macrophage that aggregates near the spermatogonial stem cell niche. We have prev
iously reported that MEHP exposure increased the numbers of PTMφs by 6-fold within the testis of peripubertal rats. The underlying mechanism(s) accounting for this change in PTMφs and its biological significance is unknown. This study investigates if MEHP-induced alterations in PTMφs occur in rodents (PND 75 adult rats and PND 26 peripubertal mice) that are known to be less sensitive to MEHP-induced testicular toxicity. Results show that adult rats have a 2-fold higher basal level of PTMφ numbers than species-matched peripubertal animals, but there was no significant increase in PTMφ numbers after MEHP exposure. Peripubertal mice have a 5-fold higher basal level of PTMφ compared with peripubertal rats but did not exhibit increases in number after MEHP exposure. Further, the interrogation of the testis transcriptome was profiled from both the MEHP-responsive peripubertal rats and the less sensitive rodents via 3' Tag sequencing. Significant changes in gene expression were observed in peripubertal rats after MEHP exposure. However, adult rats showed lesser changes in gene expression, and peripubertal mice showed only minor changes. Collectively, the data show that PTMφ numbers are associated with the sensitivity of rodents to MEHP in an age- and species-dependent manner.
Tiwari KK, etal., Toxicol In Vitro. 2015 Oct;29(7):1369-76. doi: 10.1016/j.tiv.2015.05.008. Epub 2015 May 21.
GDF15 (growth and differentiation factor 15) is a secreted cytokine, a direct target of p53 and plays a role in cell proliferation and apoptosis. It is induced by oxidative stress and has anti-apoptotic effects. The role of GDF15 in hyperoxic lung injury is unknown. We tested the hypothesis that GDF
15 will be induced in vitro, in a model of pulmonary oxygen toxicity, and will play a critical role in decreasing cell death and oxidative stress. BEAS-2B (human bronchial epithelial cells) and human pulmonary vascular endothelial cells (HPMEC) were exposed to hyperoxia, and expression of GDF15 and effect of GDF15 disruption on cell viability and oxidative stress was determined. Furthermore, we studied the effect of p53 knockdown on GDF15 expression. In vitro, both BEAS-2B and HPMEC cells showed a significant increase in GDF15 expression upon exposure to hyperoxia. After GDF15 knockdown, there was a significant decrease in cell viability and increase in oxidative stress compared to control cells transfected with siRNA with a scrambled sequence. Knockdown of p53 significantly decreased the induction of GDF15 by hyperoxia. In conclusion, we show that GDF15 has a pro-survival and anti-oxidant role in hyperoxia and that p53 plays a key role in its induction.
Ahmad T, etal., J Anal Toxicol. 2017 May 1;41(4):325-333. doi: 10.1093/jat/bkw135.
Cytochrome P450 (CYP) enzyme 2B6 plays a significant role in the stereo-selective metabolism of (S)-methadone to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine, an inactive methadone metabolite. Elevated (S)-methadone can cause cardiotoxicity by prolonging the QT
interval of the heart's electrical cycle. Large inter-individual variability of methadone pharmacokinetics causes discordance in the relationship between dose, plasma concentrations and side effects. The purpose of this study was to determine if one or more single nucleotide polymorphisms (SNPs) located within the CYP2B6 gene contributes to a poor metabolizer phenotype for methadone in these fatal cases. The genetic analysis was conducted on 125 Caucasian methadone-only fatalities obtained from the West Virginia and Kentucky Offices of the Chief Medical Examiner. The frequency of eight exonic and intronic SNPs (rs2279344, rs3211371, rs3745274, rs4803419, rs8192709, rs8192719, rs12721655 and rs35979566) was determined. The frequencies of SNPs rs3745274 (*9, c516G > T, Q172H), and rs8192719 (21563 C > T) were enhanced in the methadone-only group. Higher blood methadone concentrations were observed in individuals who were genotyped homozygous for SNP rs3211371 (*5, c1459C > T, R487C). These results indicate that these three CYP2B6 SNPs are associated with methadone fatalities.
Mimura KK, etal., Mol Vis. 2012;18:1583-93. Epub 2012 Jun 15.
PURPOSE: The aim of this study was to evaluate the expression of the protein annexin A1 (ANXA1), a potent endogenous regulator of the inflammatory process, in ocular toxoplasmosis. METHODS: C57BL/6 female mice were infected using intravitreal injections of eithe
r 10(6) tachyzoites of Toxoplasma gondii (RH strain; T. gondii) or PBS only (control groups). After 24, 48, and 72 h, animals were sacrificed and their eyes were harvested for histopathological, immunohistochemical, and ultrastructural immunocytochemical analysis of ANXA1. Human retinal pigment epithelial (RPE) cells (ARPE-19) were infected in vitro with T. gondii and collected after 60, 120, 240 min, and 24 h. RESULTS: Compared with non-infected eyes, an intense inflammatory response was observed in the anterior (24 h after infection) and posterior segments (72 h after infection) of the infected eye, characterized by neutrophil infiltration and by the presence of tachyzoites and their consequent destruction along with disorganization of normal retina architecture and RPE vacuolization. T. gondii infection was associated with a significant increase of ANXA1 expression in the neutrophils at 24, 48, and 72 h, and in the RPE at 48 and 72 h. In vitro studies confirmed an upregulation of ANXA1 levels in RPE cells, after 60 and 120 min of infection with T. gondii. CONCLUSIONS: The positive modulation of endogenous ANXA1 in the inflammatory and RPE cells during T. gondii infection suggests that this protein may serve as a therapeutic target in ocular toxoplasmosis.
Walters MW and Wallace KB, Toxicol Lett. 2010 Aug 1;197(1):46-50. Epub 2010 May 7.
Perfluorooctanoic acid (PFOA), with an array of industrial uses, is one of the most common perfluoroalkyl acids. Resistance to biological degradation and a global distribution are characteristics that have caused PFOA to become a frequent subject of toxicologica
l studies. PFOA treatment in rodents causes peroxisome proliferation, mitochondrial biogenesis, and transactivation of PPARs. Prior work has shown urea cycle gene expression to be reduced in mice by another PPARalpha ligand, WY14643. In light of these findings, the aim of our investigation was to determine if PFOA treatment in rats alters expression of genes responsible for ureogenesis. 30 mg/kg of PFOA was administered to adult male Sprague-Dawley rats via oral gavage for 28 days and their livers were harvested. Gene transcription was measured using real time PCR and protein expression was determined through western blotting. We observed a decrease in mRNA for the coordinately expressed urea cycle genes Cps1, Ass1, and Asl; mRNA of the ammonia generating Gls2 was also reduced. Protein amounts for CPS1, ASS1, and OTC were all decreased in the PFOA treated rats, and interestingly there was an increase in the amount of S133 phosphorylated CREB, which is a regulator of urea cycle gene transcription. We conclude that the transactivation of PPARalpha by PFOA leads to a metabolic shift that favors the catabolism of lipids over proteins, thereby suppressing urea cycle gene expression. Our findings provide further evidence of the effect of PFOA on intermediary metabolism in rodents and add valuable information in assessing the potential risks of PFOA exposure.
Rendon-Ramirez A, etal., Toxicol In Vitro. 2007 Sep;21(6):1121-6. Epub 2007 May 8.
Lead intoxication induces oxidative damage on lipids and proteins. In the present paper we study in vivo and in vitro the antioxidant effect of vitamin-E and trolox, on the oxidative effects of lead intoxication in rat eryth
rocytes. Vitamin-E simultaneously administered to erythrocytes treated with lead was capable to prevent the inhibition of delta-aminolevulinic dehydratase activity and lipid oxidation. Partial but important protective effects were found when vitamin-E was administered either after or before lead exposure in rats. In vitro, the antioxidant trolox protected delta-ALA-D activity against damage induced by lead or menadione. These results indicate that vitamin-E could be useful in order to protect membrane-lipids and, notably, to prevent protein oxidation produced by lead intoxication.
Nault R, etal., Toxicol Appl Pharmacol. 2020 Feb 1;388:114872. doi: 10.1016/j.taap.2019.114872. Epub 2019 Dec 24.
Acetamide (CAS 60-35-5) is detected in common foods. Chronic rodent bioassays led to its classification as a group 2B possible human carcinogen due to the induction of liver tumors in rats. We used a toxicogenomics approach in Wistar rats gavaged daily for 7 or
28 days at doses of 300 to 1500 mg/kg/day (mkd) to determine a point of departure (POD) and investigate its mode of action (MoA). Ki67 labeling was increased at doses >=750 mkd up to 3.3-fold representing the most sensitive apical endpoint. Differential gene expression analysis by RNA-Seq identified 1110 and 1814 differentially expressed genes in male and female rats, respectively, following 28 days of treatment. Down-regulated genes were associated with lipid metabolism while up-regulated genes included cell signaling, immune response, and cell cycle functions. Benchmark dose (BMD) modeling of the Ki67 labeling index determined the BMD10 lower confidence limit (BMDL10) as 190 mkd. Transcriptional BMD modeling revealed excellent concordance between transcriptional POD and apical endpoints. Collectively, these results indicate that acetamide is most likely acting through a mitogenic MoA, though specific key initiating molecular events could not be elucidated. A POD value of 190 mkd determined for cell proliferation is suggested for risk assessment purposes.
Under basal conditions, the interaction of the cytosolic protein Kelch-like ECH-associated protein 1 (Keap1) with the transcription factor nuclear factor-E2-related factor 2 (Nrf2) results in a low level of expression of cytoprotective genes whose promoter region contains the antioxidant response el
ement (ARE). In response to oxidants and electrophiles, Nrf2 is stabilized and accumulates in the nucleus. The mechanism for this effect has been proposed to involve thiol-dependent modulation of Keap1, leading to loss of its ability to negatively regulate Nrf2. We previously reported that falcarindiol (heptadeca-1,9(Z)-diene-4,6-diyne-3,8-diol), which occurs in Apiaceae and the closely related Araliaceae plants, causes nuclear accumulation of Nrf2 and induces ARE-regulated enzymes. Here, we report the mechanism of Nrf2 induction by falcarindiol. NMR analysis revealed that the conjugated diacetylene carbons of falcarindiol acted as electrophilic moieties to form adducts with a cysteine (Cys) thiol. In addition, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and circular dichroism spectroscopy, it was demonstrated that falcarindiol alkylated Cys residues in Keap1 and altered the Keap1 secondary structure. Transfection studies using the purified Keap1 protein, a luciferase reporter construct, and an Nrf2-expressing plasmid indicated that the intact Keap1 protein suppressed Nrf2-mediated ARE-luciferase activity. On the other hand, the falcarindiol-alkylated Keap1 protein did not suppress such activity. Treatment of HEK293 cells overexpressing Keap1 with falcarindiol generated a high molecular weight (HMW) form of Keap1. Furthermore, the Cys151 residue in Keap1 was found to be uniquely required for not only the formation of HMW Keap1 but also an increase in ARE-luciferase activity by falcarindiol. Our results demonstrate that falcarindiol having conjugated diacetylene carbons covalently modifies the Cys151 residue in Keap1 and that the inactivation of Keap1 by falcarindiol leads to activation of the Nrf2/ARE pathway.
Manse JS and Baldwin MR, FEBS Lett. 2015 Dec 21;589(24 Pt B):3945-51. doi: 10.1016/j.febslet.2015.11.017. Epub 2015 Nov 19.
Clostridium difficile is responsible for a number of serious gastrointestinal diseases caused primarily by two exotoxins, TcdA and TcdB. These toxins enter host cells by binding unique receptors, at least partially via their
combined repetitive oligopeptides (CROPs) domains. Our study investigated structural determinants necessary for binding and entry of TcdB. Deletion analyses identified TcdB residues 1372-1493 as essential for cytotoxicity in three cell lines. Consistent with this observation, overlapping TcdB fragments (residues 1372-1848, 1372-1493 and 1493-1848) were able to independently bind cells. Our data provide new evidence supporting a more complex model of clostridial glucosylating toxin uptake than previously suggested.
Khan MS, etal., Toxicol Appl Pharmacol. 2011 Feb 15;251(1):85-94. Epub 2010 Dec 15.
Flavonoids possess strong anti-oxidant and cancer chemopreventive activities. Chrysin (5,7-dihydroxyflavone) occurs naturally in many plants, honey, and propolis. In vitro, chrysin acts as a general anti-oxidant, causes cell cycle arrest and promotes cell death. However, the mechanism by which chrys
in inhibits cancer cell growth and the subcellular pathways activated remains poorly understood. Effect of dietary supplementation with chrysin on proliferation and apoptosis during diethylnitrosamine (DEN)-induced early hepatocarcinogenesis was investigated in male Wistar rats. To induce hepatocarcinogenesis, rats were given DEN injections (i.p., 200 mg/kg) three times at a 15 day interval. An oral dose of chrysin (250 mg/kg bodyweight) was given three times weekly for 3 weeks, commencing 1 week after the last dose of DEN. Changes in the mRNA expression of COX-2, NFkB p65, p53, Bcl-xL and beta-arrestin-2 were assessed by quantitative real-time PCR. Changes in the protein levels were measured by western blotting. Chrysin administration significantly (P<0.001) reduced the number and size of nodules formed. Also, a significant (P<0.01) reduction in serum activities of AST, ALT, ALP, LDH and gammaGT was noticed. Expression of COX-2 and NFkB p65 was significantly reduced whereas that of p53, Bax and caspase 3 increased at the mRNA and protein levels. Likewise, a decrease in levels of beta-arrestin and the anti-apoptotic marker Bcl-xL was also noted. These findings suggest that chrysin exerts global hepato-protective effect and its chemopreventive activity is associated with p53-mediated apoptosis during early hepatocarcinogenesis.
Kang W, etal., Toxicol Sci. 2020 Sep 1;177(1):121-139. doi: 10.1093/toxsci/kfaa094.
Early risk assessment of drug-induced liver injury (DILI) potential for drug candidates remains a major challenge for pharmaceutical development. We have previously developed a set of rat liver transcriptional biomarkers in short-term toxicity studies to inform
the potential of drug candidates to generate a high burden of chemically reactive metabolites that presents higher risk for human DILI. Here, we describe translation of those NRF1-/NRF2-mediated liver tissue biomarkers to an in vitro assay using an advanced micropatterned coculture system (HEPATOPAC) with primary hepatocytes from male Wistar Han rats. A 9-day, resource-sparing and higher throughput approach designed to identify new chemical entities with lower reactive metabolite-forming potential was qualified for internal decision making using 93 DILI-positive and -negative drugs. This assay provides 81% sensitivity and 90% specificity in detecting hepatotoxicants when a positive test outcome is defined as the bioactivation signature score of a test drug exceeding the threshold value at an in vitro test concentration that falls within 3-fold of the estimated maximum drug concentration at the human liver inlet following highest recommended clinical dose administrations. Using paired examples of compounds from distinct chemical series and close structural analogs, we demonstrate that this assay can differentiate drugs with lower DILI risk. The utility of this in vitro transcriptomic approach was also examined using human HEPATOPAC from a single donor, yielding 68% sensitivity and 86% specificity when the aforementioned criteria are applied to the same 93-drug test set. Routine use of the rat model has been adopted with deployment of the human model as warranted on a case-by-case basis. This in vitro transcriptomic signature-based strategy can be used early in drug discovery to derisk DILI potential from chemically reactive metabolites by guiding structure-activity relationship hypotheses and candidate selection.
Okuda Y, etal., Toxicol Sci. 2017 Aug 1;158(2):412-430. doi: 10.1093/toxsci/kfx102.
High dietary levels of momfluorothrin, a nongenotoxic synthetic pyrethroid, induced hepatocellular tumors in male and female Wistar rats in a 2-year bioassay. The mode of action (MOA) for rat hepatocellular tumors was postulated to occur via activation of the co
nstitutive androstane receptor (CAR), as momfluorothrin is a close structural analogue of the pyrethroid metofluthrin, which is known to produce rat liver tumors through a CAR-mediated MOA. To elucidate the MOA for rat hepatocellular tumor formation by momfluorothrin, this study was conducted to examine effects on key and associative events of the CAR-mediated MOA for phenobarbital based on the International Programme on Chemical Safety framework. A 2-week in vivo study in Wistar rats revealed that momfluorothrin induced CYP2B activities, increased liver weights, produced hepatocyte hypertrophy and increased hepatocyte replicative DNA synthesis. These effects correlated with the dose-response relationship for liver tumor formation and also showed reversibility upon cessation of treatment. Moreover, momfluorothrin did not increase CYP2B1/2 mRNA expression and hepatocyte replicative DNA synthesis in CAR knockout rats. Using cultured Wistar rat hepatocytes and the RNA interference technique, knockdown of CAR resulted in a suppression of induction of CYP2B1/2 mRNA levels by momfluorothrin. Alternative MOAs for liver tumor formation were excluded. A global gene expression profile analysis of the liver of male Wistar rats treated with momfluorothrin for 2 weeks also showed similarity to the prototypic CAR activator phenobarbital. Overall, these data strongly support that the postulated MOA for momfluorothrin-induced rat hepatocellular tumors as being mediated by CAR activation.
Swathy SS, etal., Indian J Physiol Pharmacol. 2006 Jul-Sep;50(3):215-24.
The effects of supplementation of selenium at a dose of 10 microg/ kg body weight were investigated on ethanol induced testicular toxicity in rats. In the present study, four groups of male albino rats were maintained for 60 days, as follows: (1) Control group (
normal diet) (2) Ethanol group (4g/kg body weight) (3) Selenium (10 microg/kg body weight) (4) Ethanol + Selenium (4g/kg body weight + 10 microg/kg body weight). Results revealed that ethanol intake caused drastic changes in the sperm count, sperm motility and sperm morphology. It also reduced the levels of testosterone and fructose. The activities of 3betaHSD, 17betaHSD in the testis and SDH in the seminal plasma were also reduced. Lipid peroxidation was also enhanced as the lipid peroxidation products were increased and the activities of the scavenging enzymes were reduced. But on coadministration of selenium along with alcohol all the biochemical parameters were altered to near normal levels indicating a protective effect of selenium. These results were reinforced by the histopathological studies.
Endothelin-1 (ET-1) pathophysiologic actions are mediated via binding with two receptor subtypes, ET(A) and ET(B). Release of ET-1 from endocardial endothelial cells and cardiac myocytes can modulate heart tissue necrosis and alterations. This study investigates the remodeling processes in Sprague-D
awley rats of myocardial infarction (MI) induced by ligating the left anterior descending coronary artery. Histological studies were done on cell type distribution using cell specific markers and Western blot analysis to localize ET-1 receptor subtypes and assess their expression post-MI. In addition, the binding kinetics of ET-1 with its receptors in heart perfusion, inlet via the aortic lumen and effluent outlet via the right atrium, between two animal model-subgroups were done: (1) sham-operated, and sham-operated-CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate)-treated; and (2) MI-operated, and MI-operated-CHAPS-treated. Effluent ET-1 concentration was plotted vs. time using a physical model for 1:1 ligand-receptor binding at coronary endothelium and myocytes. First order impulse function was used to calculate the affinity constants. In MI hearts, fluorescence activity increased for ET(A) vs. ET(B) across areas of the muscle compared to normal hearts. Western blotting showed upregulation of ET(A) and ET(B) receptors in MI compared with normal hearts. Results of ET-1 binding affinity post-MI indicated drastic reduction in spite the upregulation of ET(B) on coronary endothelium. Furthermore, substantial affinity increase was observed between ET-1 binding with ET(A) at the myocyte site. These findings stipulate that during 1 month post-MI some biochemical and hormonal effects could alter ET-1 receptor subtype(s) regulation and pharmacodynamics thus predisposing to cardiac hypertrophy and mitogenesis.
Séguin B, etal., Chem Res Toxicol. 2005 Aug;18(8):1193-202. doi: 10.1021/tx050040m.
Idiosyncratic drug reactions (IDRs) cause significant morbidity and mortality. In an animal model of IDRs, 50-80% of Brown Norway rats exposed to D-penicillamine develop an autoimmune syndrome after several weeks of treatment. The symptoms of the IDR are similar to that observed in humans who take D
-penicillamine. The mechanism of this reaction is unknown, and no effective biomarkers have been identified to predict susceptibility. We postulate that cell stress caused by drugs is required to initiate the response. We used a high-throughput approach to identify factors that might represent danger signals by profiling hepatic gene expression 6 h after dosing with D-penicillamine (150 mg/kg). Our results show that the drug-treated animals cluster into two distinct groups. One group exhibits substantial expression changes relative to control animals. The most significantly altered transcripts have a role in stress, energy metabolism, acute phase response, and inflammation. We used quantitative reverse transcriptase polymerase chain reaction to measure transcript levels in liver biopsies of 33 rats and found that resistant animals cluster together. This "resistant" cluster of animals contains 87.5% (7/8) resistant animals but only 48% (12/25) "sensitive" animals. This separation is statistically significant at the p = 0.01 level.
Shimokawa PT, etal., Virulence. 2016 May 18;7(4):456-64. doi: 10.1080/21505594.2016.1150401. Epub 2016 Feb 8.
Host and parasite genotypes are among the factors associated with congenital toxoplasmosis pathogenesis. As HLA class II molecules play a key role in the immune system regulation, the aim of this study was to investigate whether HLA-DQA1/B1 alleles are associate
d with susceptibility or protection to congenital toxoplasmosis. One hundred and twenty-two fetuses with and 103 without toxoplasmosis were studied. The two study groups were comparable according to a number of socio-demographic and genetic variables. HLA alleles were typed by PCR-SSP. In the HLA-DQA1 region, the allele frequencies showed that *01:03 and *03:02 alleles could confer susceptibility (OR= 3.06, p = 0.0002 and OR= 9.60, p= 0.0001, respectively) as they were more frequent among infected fetuses. Regarding the HLA-DQB1 region, the *05:04 allele could confer susceptibility (OR = 6.95, p < 0.0001). Of the 122 infected fetuses, 10 presented susceptibility haplotypes contrasting with only one in the non-infected group. This difference was not statistically significant after correction for multiple comparison (OR = 9.37, p=0.011). In the casuistic, there were two severely damaged fetuses with high parasite loads determined in amniotic fluid samples and HLA-DQA1 susceptibility alleles. In the present study, a discriminatory potential of HLA-DQA1/B1 alleles to identify susceptibility to congenital toxoplasmosis and the most severe cases has been shown.
Banu SK, etal., Toxicol Appl Pharmacol. 2008 Oct 15;232(2):180-9. Epub 2008 Jun 17.
Hexavalent chromium (Cr-VI) is used in a wide range of industries. Cr-VI from chromate industries and atmospheric emissions contribute to the Cr contamination in the environment. Cr is a reproductive metal toxicant that can traverse the placental barrier and cau
se a wide range of fetal effects including ovotoxicity. Therefore, the goal of this study was to investigate the basic mechanisms involved in Cr(VI)-induced ovotoxicity, and the protective role of vitamin C on ovarian follicular development and function in Cr(VI)-induced reproductive toxicity using both in vivo and in vitro approaches. Lactating rats received potassium dichromate (200 mg/L) with or without vitamin C (500 mg/L), through drinking water from postpartum days 1-21. During postnatal days (PND) 1-21 the pups received Cr(VI) via the mother's milk. Pups from both control and treatment groups were continued on regular diet and water from PND-21 onwards, and euthanized on PND-21, -45 and -65. Cr(VI) decreased steroidogenesis, GH and PRL, increased FSH and did not alter LH. Cr(VI) delayed puberty, decreased follicle number, and extended estrous cycle. Spontaneously immortalized rat granulosa cells were treated with 12.5 microM (IC(50)) potassium dichromate for 12 and 24 h, with or without vitamin C pre-treatment. Cr(VI) decreased the mRNA expressions of StAR, SF-1, 17beta-HSD-1, 17beta-HSD-2, FSHR, LHR, ER alpha and ER beta. Vitamin C pre-treatment protected ovary and granulosa cells from the deleterious effects of Cr(VI) toxicity, both in vivo and in vitro. Therefore, Cr(VI) toxicity could be a potential risk to the reproductive system in developing females, and vitamin C plays a protective role against Cr(VI)-induced ovotoxicity.
Rabik CA and Dolan ME, Cancer Treat Rev. 2007 Feb;33(1):9-23. Epub 2006 Nov 3.
Platinating agents, including cisplatin, carboplatin, and oxaliplatin, have been used clinically for nearly 30years as part of the treatment of many types of cancers, including head and neck, testicular, ovarian, cervical, lung, colorectal and relapsed lymphoma. The cytotox
;'>toxic lesion of platinating agents is thought to be the platinum intrastrand crosslink that forms on DNA, although treatment activates a number of signal transduction pathways. Treatment with these agents is characterized by resistance, both acquired and intrinsic. This resistance can be caused by a number of cellular adaptations, including reduced uptake, inactivation by glutathione and other anti-oxidants, and increased levels of DNA repair or DNA tolerance. Here we investigate the pathways that treatment with platinating agents activate, the mechanisms of resistance, potential candidate genes involved in the development of resistance, and associated clinical toxicities. Although the purpose of this review is to provide an overview of cisplatin, carboplatin, and oxaliplatin, we have focused primarily on preclinical data that has clinical relevance generated over the past five years.
AIM: Sorafenib-treated patients display a substantial variation in the incidence of toxicity. We aimed to investigate the association of genetic polymorphisms with observed toxicity on sorafenib. PATIENTS &
METHODS: We genotyped 114 patients that were treated with sorafenib at the Erasmus MC Cancer Institute, the Netherlands, for SLCO1B1, SLCO1B3, ABCC2, ABCG2, UGT1A1 and UGT1A9. RESULTS: The UGT1A1 (rs8175347) polymorphism was associated with hyperbilirubinemia and treatment interruption. Polymorphisms in SLCO1B1 (rs2306283, rs4149056) were associated with diarrhea and thrombocytopenia, respectively. None of the investigated polymorphisms was associated with overall or progression-free survival in hepatocellular cancer patients. CONCLUSION: Polymorphisms in SLCO1B1 and UGT1A1 are associated with several different sorafenib side effects.
Borodin JI, etal., Bull Exp Biol Med. 2008 Nov;146(5):566-8.
Using rat model of chronic toxic hepatitis we showed the involvement of the lymph system in the formation of the response to toxic liver damage consisting in deposition of LPO products in the central lymph and active involve
ment of antioxidants in their neutralization with redistribution of ceruloplasmin into lymph vessels against the background of reduced a-tocopherol content in the central lymph.
Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocy
tosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membrane (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 microM for 24 h) toxicity was significantly attenuated from 27.3+/-3.9% in ARF6-WT to 11.1+/-4.0% in ARF6-DN cells (n=6, P<0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0+/-4.6% versus 3.9+/-3.9% of ARF6-WT cells, n=3, P<0.01) and/or remained near the PM (89.3+/-5. 6% versus 45.2+/-14.3% of ARF6-WT cells, n=3, P<0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells.
Sunil VR, etal., Toxicol Appl Pharmacol. 2011 Feb 1;250(3):245-55. Epub 2010 Nov 9.
Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratra
cheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNFalpha (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNFalpha mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNFalpha signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.
A hospital-based case-control study was conducted near a former black-foot disease (BFD)-endemic area in southwestern Taiwan to examine the possible risk factors and genetic susceptibility for urinary transitional cell carcinoma (TCC). A total of 221 patients with pathologically confirmed TCC and 22
3 age-sex-matched control subjects from urology outpatient clinics were recruited between 1998 and 2002. The results showed that residency in the BFD area and consumption of well water for more than 10 years was a strong factor on urinary cancer risk (odds ratio [OR],8.16, 95% confidence interval [CI],3.34-19.90, p<0.0001). Dose response relationship between average arsenic concentration in well water and TCC risk was also observed. Cigarette smoking played a relatively minor role in urinary carcinogenesis in this study. The GSTP1 Ile105Val A-->G polymorphism was significantly associated with cancer risk (A/G+G/G: OR=0.60, 95%CI=0.39-0.94, p=0.02), and the effect of Val105 allele was largely confined to the subjects diagnosed earlier than 55 years old (A/G+G/G: OR,0.29; 95% CI, 0.09-0.87, p=0.03). The results suggest that GSTP1 is a candidate for susceptibility locus and Ile105 allele may predispose individuals to early-onset urinary TCC. The GSTM1 null genotype was associated with tumors of high-invasiveness (OR,2.21; 95% CI, 1.34-4.73) as well as with early-onset TCC risk (OR,2.53; 95% CI, 0.97-6.59). Our preliminary results showed the XRCC1 Arg194Trp were associated with arsenic-related urinary TCC and the interaction between the genotype and the exposure was statistically significant. The modulating effect of the GSTM1, GSTT1, GSTP1 Ile105Val, EPHX Tyr113His and XRCC1 Arg280His on arsenic-related TCC risk was also suggestive. These observations implied that impaired metabolism of carcinogenic exposure as well as impaired DNA repair function play an important role in arsenic-related urinary transitional cell carcinogenesis.
Guida N, etal., Toxicol Sci. 2018 Jun 1;163(2):569-578. doi: 10.1093/toxsci/kfy051.
Methylmercury (MeHg) causes neuronal death through different pathways. Particularly, we found that in cortical neurons it increased the expression of Repressor Element-1 Silencing Transcription Factor (REST), histone deacetylase (HDAC)4, Specificity Protein (Sp)1, Sp4, and reduced the levels of brai
n-derived neurotrophic factor (BDNF). Herein, in rat cortical neurons we investigated whether microRNA (miR)206 can modulate MeHg-induced cell death by regulating REST/HDAC4/Sp1/Sp4/BDNF axis. MeHg (1 µM) reduced miR206 expression after both 12 and 24 h and miR206 transfection prevented MeHg-induced neuronal death. Furthermore, miR206 reverted MeHg-induced REST and Sp4 increase and BDNF reduction at gene and protein level, and reverted HDAC4 protein increase, but not HDAC4 mRNA upregulation. Moreover, since no miR206 seed sequences were identified in the 3'-untranslated regions (3'-UTRs) of REST and SP4, we investigated the role of JunD, that presents a consensus motif on REST, Sp4, and BDNF promoters. Indeed, MeHg increased JunD mRNA and protein levels, and JunD knockdown counteracted MeHg-induced REST, Sp4 increase, but not BDNF reduction. Furthermore, we identified a miR206 binding site in the 3'-UTR of JunD mRNA (miR206/JunD) and mutagenesis of miR206/JunD site reverted JunD luciferase activity reduction induced by miR206. Finally, miR206 prevented MeHg-increased JunD binding to REST and Sp4 promoters, and MeHg-reduced BDNF expression was determined by the increase of HDAC4 binding on BDNF promoter IV. Collectively, these results suggest that miR206 downregulation induced by MeHg exposure determines an upregulation of HDAC4, that in turn downregulated BDNF, and the activation of JunD that, by binding REST and Sp4 gene promoters, increased their expression.
Gorria M, etal., Toxicol Appl Pharmacol. 2008 Apr 15;228(2):212-24. Epub 2008 Jan 3.
While lysosomal disruption seems to be a late step of necrosis, a moderate lysosomal destabilization has been suggested to participate early in the apoptotic cascade. The origin of lysosomal dysfunction and its precise role in apoptosis or apoptosis-like process still needs to be clarified, especial
ly upon carcinogen exposure. In this study, we focused on the implication of lysosomes in cell death induced by the prototype carcinogen benzo[a]pyrene (B[a]P; 50 nM) in rat hepatic epithelial F258 cells. We first demonstrated that B[a]P affected lysosomal morphology (increase in size) and pH (alkalinization), and that these changes were involved in caspase-3 activation and cell death. Subsequently, we showed that lysosomal modifications were partly dependent on mitochondrial dysfunction, and that lysosomes together with mitochondria participate in B[a]P-induced oxidative stress. Using two iron chelators (desferrioxamine and deferiprone) and siRNA targeting the lysosomal iron-binding protease lactoferrin, we further demonstrated that both lysosomal iron content and lactoferrin were required for caspase-3 activation and apoptosis-like cell death.
Spade DJ, etal., Toxicol Sci. 2019 Feb 1;167(2):546-558. doi: 10.1093/toxsci/kfy260.
Exposure to excess retinoic acid (RA) disrupts the development of the mammalian testicular seminiferous cord. However, the molecular events surrounding RA-driven loss of cord structure have not previously been examined. To investigate the mechanisms associated with this adverse developmental effect,
fetal rat testes were isolated on gestational day 15, after testis determination and the initiation of cord development, and cultured in media containing all-trans RA (ATRA; 10-8 to 10-6 M) or vehicle for 3 days. ATRA exposure resulted in a concentration-dependent decrease in the number of seminiferous cords per testis section and number of germ cells, assessed by histopathology and immunohistochemistry. Following 1 day of culture, genome-wide expression profiling by microarray demonstrated that ATRA exposure altered biological processes related to retinoid metabolism and gonadal sex determination. Real-time RT-PCR analysis confirmed that ATRA enhanced the expression of the key ovarian development gene Wnt4 and the antitestis gene Nr0b1 in a concentration-dependent manner. After 3 days of culture, ATRA-treated testes contained both immunohistochemically DMRT1-positive and FOXL2-positive somatic cells, providing evidence of disrupted testicular cell fate maintenance following ATRA exposure. We conclude that exogenous RA disrupts seminiferous cord development in ex vivo cultured fetal rat testes, resulting in a reduction in seminiferous cord number, and interferes with maintenance of somatic cell fate by enhancing expression of factors that promote ovarian development.
Spade DJ, etal., Toxicol Sci. 2019 Mar 1;168(1):149-159. doi: 10.1093/toxsci/kfy283.
Humans are universally exposed to low levels of phthalate esters (phthalates), which are used to plasticize polyvinyl chloride. Phthalates exert adverse effects on the development of seminiferous cords in the fetal testis through unknown toxicity pathways. To in
vestigate the hypothesis that phthalates alter seminiferous cord development by disrupting retinoic acid (RA) signaling in the fetal testis, gestational day 15 fetal rat testes were exposed for 1-3 days to 10-6 M all-trans retinoic acid (ATRA) alone or in combination with 10-6-10-4 M mono-(2-ethylhexyl) phthalate (MEHP) in ex vivo culture. As previously reported, exogenous ATRA reduced seminiferous cord number. This effect was attenuated in a concentration-dependent fashion by MEHP co-exposure. ATRA and MEHP-exposed testes were depleted of DDX4-positive germ cells but not Sertoli cells. MEHP alone enhanced the expression of the RA receptor target Rbp1 and the ovary development-associated genes Wnt4 and Nr0b1, and suppressed expression of the Leydig cell marker, Star, and the germ cell markers, Ddx4 and Pou5f1. In co-exposures, MEHP predominantly enhanced the gene expression effects of ATRA, but the Wnt4 and Nr0b1 concentration-responses were nonlinear. Similarly, ATRA increased the number of cells expressing the granulosa cell marker FOXL2 in testis cultures, but this induction was attenuated by addition of MEHP. These results indicate that MEHP can both enhance and inhibit actions of ATRA during fetal testis development and provide evidence that RA signaling is a target for phthalate toxicity in the fetal testis.
The toxicity of polybrominated diphenyl ethers (PBDEs), flame-retardant components, was characterized in offspring from Wistar Han dams exposed by gavage to a PBDE mixture (DE71) starting at gestation day 6 and continuing to weaning on postnatal day (PND) 21. Of
fspring from the dams underwent PBDE direct dosing by gavage at the same dose as their dams from PND 12 to PND 21, and then after weaning for another thirteen weeks. Liver samples were collected at PND 22 and week 13 for liver gene expression analysis (Affymetrix Rat Genome 230 2.0 Array). Treatment with PBDE induced 1,066 liver gene transcript changes in females and 1,200 transcriptional changes in males at PND 22 (false discovery rate < 0.01), but only 263 liver transcriptional changes at thirteen weeks in male rats (false discovery rate < 0.05). No significant differences in dose response were found between male and female pups. Transcript changes at PND 22 coded for proteins in xenobiotic, sterol, and lipid metabolism, and cell cycle regulation, and overlapped rodent liver transcript patterns after a high-fat diet or phenobarbital exposure. These findings, along with the observed PBDE-induced liver hypertrophy and vacuolization, suggest that long-term PBDE exposure has the potential to modify cell functions that contribute to metabolic disease and/or cancer susceptibilities.
Gene transcript changes after exposure to the heart toxin, bis(2-chloroethoxy)methane (CEM), were analyzed to elucidate mechanisms in cardiotoxicity and recovery. CEM was administered to 5-week-old male F344/N rats at 0, 200
, 400, or 600 mg/kg by dermal exposure, 5 days per week, for a total of 12 doses by study day 16. Heart toxicity occurred after 2 days of dosing in all 3 regions of the heart (atrium, ventricle, interventricular septum) and was characterized by myofiber vacuolation, necrosis, mononuclear-cell infiltration, and atrial thrombosis. Ultrastructural analysis revealed that the primary site of damage was the mitochondrion. By day 5, even though dosing was continued, the toxic lesions in the heart began to resolve, and by study day 16, the heart appeared histologically normal. RNA was extracted from whole hearts after 2 or 5 days of CEM dosing. After a screen for transcript change by microarray analysis, dose-response trends for selected transcripts were analyzed by qRT-PCR. The selected transcripts code for proteins involved in energy production, control of calcium levels, and maintenance of heart function. The down-regulation of ATP subunit transcripts (Atp5j, ATP5k), which reside in the mitochondrial membranes, indicated a decrease in energy supply at day 2 and day 5. This was accompanied by down-regulation of transcripts involved in high-energy consumption processes such as membrane transport and ion channel transcripts (e.g., abc1a, kcnj12). The up-regulation of transcripts encoding for temperature regulation and calcium binding proteins (ucp1 and calb3) only at the 2 low exposure levels, suggest that these adaptive processes cannot occur in association with severe cardiotoxicity as seen in hearts at the high exposure level. Transcript expression changes occurred within 2 days of CEM exposure, and were dose-and time-dependent. The heart transcript changes suggest that CEM cardiotoxicity activates protective processes associated energy conservation and maintenance of heart function.
ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation
on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.
Rodriguez-Fuentes G, etal., Toxicol Lett. 2009 Jun 1;187(2):115-8. Epub 2009 Feb 20.
Flavin-containing monooxigenases (FMOs) are a polymorphic family of drug and pesticide metabolizing enzymes, found in the smooth endoplasmatic reticulum that catalyze the oxidation of soft nucleophilic heteroatom substances to their respective oxides. Previous studies in euryhaline fishes have indic
ated induction of FMO expression and activity in vivo under hyperosmotic conditions. In this study we evaluated the effect of hypersaline conditions in rat kidney. Male Sprague-Dawley rats were injected intraperitoneal with 3.5M NaCl at a doses ranging from 0.3cm(3)/100g to 0.6cm(3)/100g in two separate treatments. Three hours after injection, FMO activities and FMO1 protein was examined in the first experiment, and the expression of FMO1 mRNA was measured in the second experiment from kidneys after treatment with NaCl. A positive significant correlation was found between FMO1 protein expression and plasma osmolarity (p<0.05, r=0.6193). Methyl-p-tolyl sulfide oxidase showed a statistically significant increase in FMO activity, and a positive correlation was observed between plasma osmolarity and production of FMO1-derived (R)-methyl-p-tolyl sulfoxide (p<0.05, r=0.6736). Expression of FMO1 mRNA was also positively correlated with plasma osmolality (p<0.05, r=0.8428). Similar to studies in fish, these results suggest that expression and activities of FMOs may be influenced by hyperosmotic conditions in the kidney of rats.
Singhal R, etal., Toxicol Appl Pharmacol. 2009 Jan 1;234(1):89-97. Epub 2008 Oct 15.
We examined the influence of estradiol (E2) status and soy protein isolate (SPI) intake on the hepatic responses altered by 7,12-dimethylbenz(a)anthracene (DMBA, a polycyclic aromatic hydrocarbon [PAH]). Sprague-Dawley rats were ovariectomized (OVX) at PND50 and infused with E2 or vehicle for 14 d a
nd gavaged with 50 mg/kg DMBA or vehicle 24 h before sacrifice at PND64. Rats were fed an AIN-93G diet made with SPI or casein as sole protein source throughout the study. Basal AhR protein levels were reduced (P<0.05) by SPI feeding irrespective of the E2 status. However, DMBA increased (P<0.05) AhR-induced CYP1A1 gene expression in OVX, SPI-fed rats, but reduced (P<0.05) CYP1A1 in OVX+E2, SPI-fed rats. Chromatin-immunoprecipitation demonstrated lower (P<0.05) DMBA-mediated recruitment of estrogen receptor alpha to the CYP1A1 promoter by SPI feeding in the presence of E2, suggesting an estrogen-like action of SPI on DMBA-mediated signaling in the absence of E2. Further, microarray analysis (Rat 230-2.0 Affymetrix-GeneChip) revealed 231 genes common to SPI+DMBA and SPI+E2+DMBA (normalized to E2) treatments. AhR-activated genes (CYP1A1, CYP1A2, and NQO1) were down-regulated by SPI+E2+DMBA compared to SPI+DMBA. Unique interactions among SPI, DMBA and E2 altered the expression profile of 316 genes, not observed by either treatment alone. Our data suggest that although E2 status does not effect soy-mediated AhR degradation, it modulates the effects of soy on many genes, including CYP1A1.
The application of gene expression profiling technology to examine multiple genes and signaling pathways simultaneously promises a significant advance in understanding toxic mechanisms to ultimately aid in protection of public health. Public and private efforts
in the new field of toxicogenomics are focused on populating databases with gene expression profiles of compounds where toxicological and pathological endpoints are well characterized. The validity and utility of a toxicogenomics is dependent on whether gene expression profiles that correspond to different chemicals can be distinguished. The principal hypothesis underlying a toxicogenomic or pharmacogenomic strategy is that chemical-specific patterns of altered gene expression will be revealed using high-density microarray analysis of tissues from exposed organisms. Analyses of these patterns should allow classification of toxicants and provide important mechanistic insights. This report provides a verification of this hypothesis. Patterns of gene expression corresponding to liver tissue derived from chemically exposed rats revealed similarity in gene expression profiles between animals treated with different agents from a common class of compounds, peroxisome proliferators [clofibrate (ethyl-p-chlorophenoxyisobutyrate), Wyeth 14,643 ([4-chloro-6(2,3-xylidino)-2-pyrimidinylthio]acetic acid), and gemfibrozil (5-2[2,5-dimethylphenoxy]2-2-dimethylpentanoic acid)], but a very distinct gene expression profile was produced using a compound from another class, enzyme inducers (phenobarbital).
Rawls KD, etal., Toxicol Sci. 2019 Dec 1;172(2):279-291. doi: 10.1093/toxsci/kfz197.
Context-specific GEnome-scale metabolic Network REconstructions (GENREs) provide a means to understand cellular metabolism at a deeper level of physiological detail. Here, we use transcriptomics data from chemically-exposed rat hepatocytes to constrain a GENRE of rat hepatocyte metabolism and predic
t biomarkers of liver toxicity using the Transcriptionally Inferred Metabolic Biomarker Response algorithm. We profiled alterations in cellular hepatocyte metabolism following in vitro exposure to four toxicants (acetaminophen, carbon tetrachloride, 2,3,7,8-tetrachlorodibenzodioxin, and trichloroethylene) for six hour. TIMBR predictions were compared with paired fresh and spent media metabolomics data from the same exposure conditions. Agreement between computational model predictions and experimental data led to the identification of specific metabolites and thus metabolic pathways associated with toxicant exposure. Here, we identified changes in the TCA metabolites citrate and alpha-ketoglutarate along with changes in carbohydrate metabolism and interruptions in ATP production and the TCA Cycle. Where predictions and experimental data disagreed, we identified testable hypotheses to reconcile differences between the model predictions and experimental data. The presented pipeline for using paired transcriptomics and metabolomics data provides a framework for interrogating multiple omics datasets to generate mechanistic insight of metabolic changes associated with toxicological responses.
Banu SK, etal., Toxicol Appl Pharmacol. 2011 Mar 15;251(3):253-66. Epub 2011 Jan 22.
Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that
lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10muM potassium dichromate (CrVI) for 12 and 24h, with or without vitamin C pre-treatment for 24h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.
Kagawa T, etal., Toxicol Sci. 2018 Nov 1;166(1):228-239. doi: 10.1093/toxsci/kfy200.
Recently, studies on circulating microRNAs (miRNAs) as potential biomarkers of drug-induced liver injury (DILI) have received increasing attention. It has been demonstrated that miR-122 and miR-192, which are liver enriched, could be potential biomarkers of DILI; however, these miRNAs cannot discern
types of injuries. In the present study, we comprehensively analyzed time-dependent plasma miRNA profiles in rats with drug- or chemical-induced hepatocellular injury, cholestasis, and steatosis with high-throughput miRNA sequencing. To enable the comparison of miRNA expression levels between DILI models with different severity and peak time of injuries, the stages of injury were defined as early, middle, and late, according to cluster patterns of miRNA expression profiles. Through differential analysis, we characterized miRNAs that were specifically up- or down-regulated in each DILI model. Several miRNAs were dramatically changed earlier than traditional biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). For example, in an acetaminophen (APAP)-induced hepatocellular injury model, plasma let-7b-5p was up-regulated as early as 3 h after dosing, whereas a significant change in ALT level was observed at 12 h. We then focused on the DILI type-specific miRNAs in plasma that were up-regulated at the early stage of injury. RT-qPCR analysis validated that let-7b-5p and miR-1-3p for hepatocellular injury, miR-143-3p and miR-218a-5p for cholestasis, and miR-320-3p for steatosis models showed significant increases in the early stage of the injuries. The present study suggests the utility of miRNAs as specific biomarkers for the early detection of DILI.
Huk A, etal., Part Fibre Toxicol. 2015 Jul 24;12:25. doi: 10.1186/s12989-015-0100-x.
BACKGROUND: The main goal of this research was to study the interactions of a fully characterized set of silver nanomaterials (Ag ENMs) with cells in vitro, according to the standards of Good Laboratory Practices (GLP), to assure the quality of nanotoxicology re
search. We were interested in whether Ag ENMs synthesized by the same method, with the same size distribution, shape and specific surface area, but with different charges and surface compositions could give different biological responses. METHODS: A range of methods and toxicity endpoints were applied to study the impacts of interaction of the Ag ENMs with TK6 cells. As tests of viability, relative growth activity and trypan blue exclusion were applied. Genotoxicity was evaluated by the alkaline comet assay for detection of strand breaks and oxidized purines. The mutagenic potential of Ag ENMs was investigated with the in vitro HPRT gene mutation test on V79-4 cells according to the OECD protocol. Ag ENM agglomeration, dissolution as well as uptake and distribution within the cells were investigated as crucial aspects of Ag ENM toxicity. Ag ENM stabilizers were included in addition to positive and negative controls. RESULTS: Different cytotoxic effects were observed including membrane damage, cell cycle arrest and cell death. Ag ENMs also induced various kinds of DNA damage including strand breaks and DNA oxidation, and caused gene mutation. We found that positive Ag ENMs had greater impact on cyto- and genotoxicity than did Ag ENMs with neutral or negative charge, assumed to be related to their greater uptake into cells and to their presence in the nucleus and mitochondria, implying that Ag ENMs might induce toxicity by both direct and indirect mechanisms. CONCLUSION: We showed that Ag ENMs could be cytotoxic, genotoxic and mutagenic. Our experiments with the HPRT gene mutation assay demonstrated that surface chemical composition plays a significant role in Ag ENM toxicity.
Our previous study [Bhave, V. S., Donthamsetty, S., Latendresse, J. R., Muskhelishvili, L., and Mehendale, H. M. 2008-this issue. Secretory phospholipase A(2) mediates progression of acute liver injury in the absence of sufficient COX-2. Toxicol Appl Pharmacol]
showed that in the absence of sufficient induction and co-presence of cyclooxygenase-2 (COX-2), secretory phospholipase A(2) (sPLA(2)) appearing in the intercellular spaces for cleanup of post-necrotic debris seems to contribute to the progression of toxicant-initiated liver injury, possibly by hydrolysis of membrane phospholipids of hepatocytes in the perinecrotic areas. To further test our hypothesis on the protective role of COX-2, male Fisher-344 rats were administered a selective COX-2 inhibitor, NS-398, and then challenged with a moderately toxic dose of CCl(4). This led to a 5-fold increase in the susceptibility of the COX-2 inhibited rats to CCl(4) hepatotoxicity and mortality. The CCl(4) bioactivating enzyme CYP2E1 protein, CYP2E1 enzyme activity, and the (14)CCl(4)-derived radiolabel covalently bound to the liver proteins were unaffected by the COX-2 inhibitor suggesting that the increased hepatotoxic sensitivity of the COX-2 inhibited rats was not due to higher bioactivation of CCl(4). Further investigation showed that this increased mortality was due to higher plasma and hepatic sPLA(2) activities, inhibited PGE(2) production, and progression of liver injury as compared to the non-intervened rats(.) In conclusion, inhibition of COX-2 mitigates the tissue protective mechanisms associated with COX-2 induction, which promotes sPLA(2)-mediated progression of liver injury in an acute liver toxicity model. Because increased sPLA(2) activity in the intercellular space is associated with increased progression of injury, and induced COX-2 is associated with hepatoprotection, ratios of hepatic COX-2 and sPLA(2) activities may turn out to be a useful tool in predicting the extent of hepatotoxicities.
Nakatsu Y, etal., Toxicol Appl Pharmacol. 2009 Oct 15;240(2):292-8. Epub 2009 Jul 7.
Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat
cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca2+ permeability, we investigated whether Ca2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.
Early diagnosis of liver injuries caused by drugs or occupational exposures is necessary to enable effective treatments and prevent liver failure. Whereas histopathology remains the gold standard for assessing hepatotoxicity in animals, plasma aminotransferase l
evels are the primary measures for monitoring liver dysfunction in humans. In this study, using Sprague Dawley rats, we investigated whether integrated analyses of transcriptomic and metabolomic data with genome-scale metabolic models (GSMs) could identify early indicators of injury and provide new insights into the mechanisms of hepatotoxicity. We obtained concurrent measurements of gene-expression changes in the liver and kidneys, and expression changes along with metabolic profiles in the plasma and urine, from rats 5 or 10 h after exposing them to one of two classical hepatotoxicants, acetaminophen (2 g/kg) or bromobenzene (0.4 g/kg). Global multivariate analyses revealed that gene-expression changes in the liver and metabolic profiles in the plasma and urine of toxicant-treated animals differed from those of controls, even at time points much earlier than changes detected by conventional markers of liver injury. Furthermore, clustering analysis revealed that both the gene-expression changes in the liver and the metabolic profiles in the plasma induced by the two hepatotoxicants were highly correlated, indicating commonalities in the liver toxicity response. Systematic GSM-based analyses yielded metabolites associated with the mechanisms of toxicity and identified several lipid and amino acid metabolism pathways that were activated by both toxicants and those uniquely activated by each. Our findings suggest that several metabolite alterations, which are strongly associated with the mechanisms of toxicity and occur within injury-specific pathways (e.g., of bile acid and fatty acid metabolism), could be targeted and clinically assessed for their potential as early indicators of liver damage.
Siemieniuk E, etal., Toxicol Mech Methods. 2008 Jul;18(6):519-524. Epub 2008 Jun 23.
The aim of this paper was to assess the influence of Fasciola hepatica infection on oxidative modifications of rat liver cell components such as proteins and lipids. Wistar rats were infected per os with 30 metacercariae of F. hepatica. Activities and concentrations of liver damage markers were dete
rmined in the 4th, 7th, and 10th week postinfection (wpi). A decrease in antioxidant capacity of the host liver, manifested by a decrease in total antioxidant status (TAS), was observed. Diminution of antioxidant abilities resulted in enhanced oxidative modifications of lipids and proteins. F. hepatica infection enhanced lipid peroxidation, which was visible in the statistically significant increase in the level of different lipid peroxidation products such as conjugated dienes (CDs), lipid hydroperoxides (LOOHs), malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). The level of protein modification markers in the rat liver was also significantly changed and the most intensified changes were observed at seventh week postinfection. Concentration of carbonyl groups and dityrosine was significantly increased, whereas the level of tryptophan and sulfhydryl and amino groups was decreased. Changes in the antioxidant abilities of the liver and in the lipid and protein structure of the cell components resulted in destruction of the function of the liver. F. hepatica infection was accompanied by raising serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as markers of liver damage. A significant decrease in lysosomal as well as in the total activity of cathepsin B during fasciolosis was also observed.
Jawan B, etal., Toxicol Appl Pharmacol. 2008 Jun 15;229(3):362-73. Epub 2008 Feb 21.
Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cyto
kine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 microM after 48 h incubation. Pretreatment with 100 microM PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-alpha, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and IkappaBalpha, as well as the nuclear translocation of NF-kappaB primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-kappaB nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.
Morita K, etal., Toxicol Sci. 2023 Nov 6;197(2):121-31. doi: 10.1093/toxsci/kfad117.
Toxicogenomics databases are useful for understanding biological responses in individuals because they include a diverse spectrum of biological responses. Although these databases contain no information regarding immune cells in the liver, which are important in
the progression of liver injury, deconvolution that estimates cell-type proportions from bulk transcriptome could extend immune information. However, deconvolution has been mainly applied to humans and mice and less often to rats, which are the main target of toxicogenomics databases. Here, we developed a deconvolution method for rats to retrieve information regarding immune cells from toxicogenomics databases. The rat-specific deconvolution showed high correlations for several types of immune cells between spleen and blood, and between liver treated with toxicants compared with those based on human and mouse data. Additionally, we found 4 clusters of compounds in Open TG-GATEs database based on estimated immune cell trafficking, which are different from those based on transcriptome data itself. The contributions of this work are three-fold. First, we obtained the gene expression profiles of 6 rat immune cells necessary for deconvolution. Second, we clarified the importance of species differences on deconvolution. Third, we retrieved immune cell trafficking from toxicogenomics databases. Accumulated and comparable immune cell profiles of massive data of immune cell trafficking in rats could deepen our understanding of enable us to clarify the relationship between the order and the contribution rate of immune cells, chemokines and cytokines, and pathologies. Ultimately, these findings will lead to the evaluation of organ responses in Adverse Outcome Pathway.
Rahman M, etal., Toxicol Appl Pharmacol. 2006 Nov 1;216(3):469-78. Epub 2006 Jun 15.
Previous work demonstrated that human cytochrome P4501B1 (CYP1B1) forms predominantly 4-hydroxyestradiol (4-OHE2), a metabolite which is carcinogenic in animal models. Here, we present results from kinetic studies characterizing the formation of 4-OHE2 and 2-hydroxyestradiol (2-OHE2) by rat CYP1B1 u
sing 17beta-estradiol (E2) as a substrate. Km and Kcat values were estimated using the Michaelis-Menten equation. For rat CYP1B1, the apparent Km values for the formation of 4-OHE2 and 2-OHE2 were 0.61+/-0.23 and 1.84+/-0.73 microM; the turnover numbers (Kcat) were 0.23+/-0.02 and 0.46+/-0.05 pmol/min/pmol P450; and the catalytic efficiencies (Kcat/Km) were 0.37 and 0.25, respectively. For human CYP1B1, the apparent Km values for the formation of 4-OHE2 and 2-OHE2 were 1.22+/-0.25 and 1.10+/-0.26; the turnover numbers were 1.23+/-0.06 and 0.33+/-0.02; and the catalytic efficiencies were 1.0 and 0.30, respectively. The turnover number ratio of 4- to 2-hydroxylation was 3.7 for human CYP1B1 and 0.5 for rat CYP1B1. These results indicate that, although rat CYP1B1 is a low Km E2 hydroxylase, its product ratio, unlike the human enzyme, favors 2-hydroxylation. The Ki values of the inhibitor 2,4,3',5'-tetramethoxystilbene (TMS) for E2 4- and 2-hydroxylation by rat CYP1B1 were 0.69 and 0.78 microM, respectively. The Ki values of 7,8-benzoflavone (alpha-NF) for E2 4- and 2-hydroxylation by rat CYP1B1 were 0.01 and 0.02 microM, respectively. The knowledge gained from this study will support the rational design of CYP1B1 inhibitors and clarify results of CYP1B1 related carcinogenesis studies performed in rats.
β-Secretase 1 (BACE1) represents an attractive target for the treatment of Alzheimer's disease. In the course of development of a novel small molecule BACE1 inhibitor (AMG-8718), retinal thinning was observed in a 1-month toxicity study in the rat. To further un
derstand the lesion, an investigational study was conducted whereby rats were treated daily with AMG-8718 for 1 month followed by a 2-month treatment-free phase. The earliest detectable change in the retina was an increase in autofluorescent granules in the retinal pigment epithelium (RPE) on day 5; however, there were no treatment-related light microscopic changes observed in the neuroretina and no changes observed by fundus autofluorescence or routine ophthalmoscopic examination after 28 days of dosing. Following 2 months of recovery, there was significant retinal thinning attributed to loss of photoreceptor nuclei from the outer nuclear layer. Electroretinographic changes were observed as early as day 14, before any microscopic evidence of photoreceptor loss. BACE1 knockout rats were generated and found to have normal retinal morphology indicating that the retinal toxicity induced by AMG-8718 was likely off-target. These results suggest that AMG-8718 impairs phagolysosomal function in the rat RPE, which leads to photoreceptor dysfunction and ultimately loss of photoreceptors.
The G-protein-coupled receptor kinase 2 (GRK2) plays a major role in cardiovascular diseases, and its expression is increased in heart failure. However, only little is known about factors being involved in up-regulation of GRK2 expression through transcriptional regulation of its promoter. Since the
transcription factor early-growth response 1 (EGR-1) is also up-regulated in patients with heart failure, we tested the hypothesis that EGR-1 regulates GRK2 transcription. Stimulation of immortalized rat cardiomyocytes (H9c2) with phorbol 12-myristate 13-acetate (PMA) resulted in up-regulation of Egr-1 and subsequently of Grk2 mRNA expression, with maximum Grk2 expression (p = 0.008) 5 hr after PMA stimulation and being abolished by actinomycin D, indicating a transcriptional mechanism. To identify naturally occurring variants affecting promoter transcriptional activity, we identified a novel G(-43)A polymorphism (rs182084609), which surrounded a putative EGR-1-binding site. While the minor A allele frequency was rare (0.02), this variant was used to explore regulation by EGR-1 and promoter construct with altered alleles at nt-43 were subjected of reporter assays in human embryonic kidney cells (Hek293). Here, EGR-1 over-expression resulted in a more than twofold increase in GRK2 promoter activity but only in the presence of the G-allele (p = 0.04). In electrophoretic mobility shift assays, EGR-1 over-expression resulted in a specific binding of transcription factors only to the G oligonucleotide. Finally, EGR-1 over-expression resulted in increased GRK2 mRNA expression (p = 0.03). We identified EGR-1 as a regulator of GRK2 transcription. Suppression of GRK2 expression by inhibition of EGR-1 binding to GRK2 might be a promising approach to mitigate adrenergic desensitization.
Sager TM, etal., Toxicol Sci. 2020 Dec 1;178(2):375-390. doi: 10.1093/toxsci/kfaa146.
Smoking may modify the lung response to silica exposure including cancer and silicosis. Nevertheless, the precise role of exposure to tobacco smoke (TS) on the lung response to crystalline silica (CS) exposure and the underlying mechanisms need further clarification. The objectives of the present st
udy were to determine the role of TS on lung response to CS exposure and the underlying mechanism(s). Male Fischer 344 rats were exposed by inhalation to air, CS (15 mg/m3, 6 h/day, 5 days), TS (80 mg/m3, 3 h/day, twice weekly, 6 months), or CS (15 mg/m3, 6 h/day, 5 days) followed by TS (80 mg/m3, 3 h/day, twice weekly, 6 months). The rats were euthanized 6 months and 3 weeks following initiation of the first exposure and the lung response was assessed. Silica exposure resulted in significant lung toxicity as evidenced by lung histological changes, enhanced neutrophil infiltration, increased lactate dehydrogenase levels, enhanced oxidant production, and increased cytokine levels. The TS exposure alone had only a minimal effect on these toxicity parameters. However, the combined exposure to TS and CS exacerbated the lung response, compared with TS or CS exposure alone. Global gene expression changes in the lungs correlated with the lung toxicity severity. Bioinformatic analysis of the gene expression data demonstrated significant enrichment in functions, pathways, and networks relevant to the response to CS exposure which correlated with the lung toxicity detected. Collectively our data demonstrated an exacerbation of CS-induced lung toxicity by TS exposure and the molecular mechanisms underlying the exacerbated toxicity.
One application of genomics in drug safety assessment is the identification of biomarkers to predict compound toxicity before it is detected using traditional approaches, such as histopathology. However, many genomic approaches have failed to demonstrate superio
rity to traditional methods, have not been appropriately validated on external samples, or have been derived using small data sets, thus raising concerns of their general applicability. Using kidney gene expression profiles from male SD rats treated with 64 nephrotoxic or non-nephrotoxic compound treatments, a gene signature consisting of only 35 genes was derived to predict the future development of renal tubular degeneration weeks before it appears histologically following short-term test compound administration. By comparison, histopathology or clinical chemistry fails to predict the future development of tubular degeneration, thus demonstrating the enhanced sensitivity of gene expression relative to traditional approaches. In addition, the performance of the signature was validated on 21 independent compound treatments structurally distinct from the training set. The signature correctly predicted the ability of test compounds to induce tubular degeneration 76% of the time, far better than traditional approaches. This study demonstrates that genomic data can be more sensitive than traditional methods for the early prediction of compound-induced pathology in the kidney.
The aryl hydrocarbon receptor (AhR) is a member of the basic helix loop helix PAS (Per-ARNT-SIM) transcription family, which also includes hypoxiainducible factor-1alpha (HIF-1alpha) and its common dimerization partner AhR nuclear translocator (ARNT). Following ligand activation or hypoxia, AhR or H
IF-1alpha, respectively, translocate into the nucleus, dimerize with ARNT, and regulate gene expression. Mice lacking the AhR have been shown previously to develop cardiac enlargement. In cardiac hypertrophy, it has been suggested that the myocardium becomes hypoxic, increasing HIF-1alpha stabilization and inducing coronary neovascularization, however, this mechanism has not been demonstrated in vivo. The purpose of this study was to investigate the cardiac enlargement reported in AhR(-/-) mice and to determine if it was associated with myocardial hypoxia and subsequent activation of the HIF-1alpha pathway. We found that AhR(-/-) mice develop significant cardiac hypertrophy at 5 mo. However, this cardiac hypertrophy was not associated with myocardial hypoxia. Despite this finding, cardiac hypertrophy in AhR(-/-) mice was associated with increased cardiac HIF-1alpha protein expression and increased mRNA expression of the neovascularization factor vascular endothelial growth factor (VEGF). These data demonstrate that the development of cardiac hypertrophy in AhR(-/-) mice not associated with myocardial hypoxia, but is correlated with increased cardiac HIF-1alpha protein and VEGF mRNA expression.
Deltamethrin, a widely used type II pyrethroid insecticide, is a relatively potent neurotoxicant. While the toxicity has been extensively examined, toxicokinetic studies of deltamethrin
and most other pyrethroids are very limited. The aims of this study were to identify, characterize, and assess the relative contributions of esterases and cytochrome P450s (CYP450s) responsible for deltamethrin metabolism by measuring deltamethrin disappearance following incubation of various concentrations (2 to 400 microM) in plasma (esterases) and liver microsomes (esterases and CYP450s) prepared from adult male rats. While the carboxylesterase metabolism in plasma and liver was characterized using an inhibitor, tetra isopropyl pyrophosphoramide (isoOMPA), CYP450 metabolism was characterized using the cofactor, NADPH. Michaelis-Menten rate constants were calculated using linear and nonlinear regression as applicable. The metabolic efficiency of these pathways was estimated by calculating intrinsic clearance (Vmax/Km). In plasma, isoOMPA completely inhibited deltamethrin biotransformation at concentrations (2 and 20 microM of deltamethrin) that are 2- to 10-fold higher than previously reported peak blood levels in deltamethrin-poisoned rats. For carboxylesterase-mediated deltamethrin metabolism in plasma, Vmax=325.3+/-53.4 nmol/h/ml and Km=165.4+/-41.9 microM. Calcium chelation by EGTA did not inhibit deltamethrin metabolism in plasma or liver microsomes, indicating that A-esterases do not metabolize deltamethrin. In liver microsomes, esterase-mediated deltamethrin metabolism was completely inhibited by isoOMPA, confirming the role of carboxylesterases. The rate constants for liver carboxylesterases were Vmax=1981.8+/-132.3 nmol/h/g liver and Km=172.5+/-22.5 microM. Liver microsomal CYP450-mediated biotransformation of deltamethrin was a higher capacity (Vmax=2611.3+/-134.1 nmol/h/g liver) and higher affinity (Km=74.9+/-5.9 microM) process than carboxylesterase (plasma or liver) detoxification. Genetically engineered individual rat CYP450s (Supersomes) were used to identify specific CYP450 isozyme(s) involved in the deltamethrin metabolism. CYP1A2, CYP1A1, and CYP2C11 in decreasing order of importance quantitatively, metabolized deltamethrin. Intrinsic clearance by liver CYP450s (35.5) was more efficient than that by liver (12.0) or plasma carboxylesterases (2.4).
Yamada T, etal., Toxicol Sci. 2020 Oct 1;177(2):362-376. doi: 10.1093/toxsci/kfaa125.
Using a chimeric mouse humanized liver model, we provided evidence that human hepatocytes are refractory to the mitogenic effects of rodent constitutive androstane receptor (CAR) activators. To evaluate the functional reliability of this model, the present study examined mitogenic responses to pheno
barbital (PB) in chimeric mice transplanted with rat hepatocytes, because rats are responsive to CAR activators. Treatment with 1000 ppm PB for 7 days significantly increased replicative DNA synthesis (RDS) in rat hepatocytes of the chimeric mice, demonstrating that the transplanted hepatocyte model is functionally reliable for cell proliferation analysis. Treatment of humanized CAR and pregnane X receptor (PXR) mice (hCAR/hPXR mice) with 1000 ppm PB for 7 days significantly increased hepatocyte RDS together with increases in several mitogenic genes. Global gene expression analysis was performed with liver samples from this and from previous studies focusing on PB-induced Wnt/β-catenin signaling and showed that altered genes in hCAR/hPXR mice clustered most closely with liver tumor samples from a diethylnitrosamine/PB initiation/promotion study than with wild-type mice. However, different gene clusters were observed for chimeric mice with human hepatocytes for Wnt/β-catenin signaling when compared with those of hCAR/hPXR mice, wild-type mice, and liver tumor samples. The results of this study demonstrate clear differences in the effects of PB on hepatocyte RDS and global gene expression between human hepatocytes of chimeric mice and hCAR/hPXR mice, suggesting that the chimeric mouse model is relevant to humans for studies on the hepatic effects of rodent CAR activators whereas the hCAR/hPXR mouse is not.
Gwinn WM, etal., Toxicol Sci. 2020 Aug 1;176(2):343-354. doi: 10.1093/toxsci/kfaa081.
A 5-day in vivo rat model was evaluated as an approach to estimate chemical exposures that may pose minimal risk by comparing benchmark dose (BMD) values for transcriptional changes in the liver and kidney to BMD values for toxicological endpoints from tradition
al toxicity studies. Eighteen chemicals, most having been tested by the National Toxicology Program in 2-year bioassays, were evaluated. Some of these chemicals are potent hepatotoxicants (eg, DE71, PFOA, and furan) in rodents, some exhibit toxicity but have minimal hepatic effects (eg, acrylamide and α,β-thujone), and some exhibit little overt toxicity (eg, ginseng and milk thistle extract) based on traditional toxicological evaluations. Male Sprague Dawley rats were exposed once daily for 5 consecutive days by oral gavage to 8-10 dose levels for each chemical. Liver and kidney were collected 24 h after the final exposure and total RNA was assayed using high-throughput transcriptomics (HTT) with the rat S1500+ platform. HTT data were analyzed using BMD Express 2 to determine transcriptional gene set BMD values. BMDS was used to determine BMD values for histopathological effects from chronic or subchronic toxicity studies. For many of the chemicals, the lowest transcriptional BMDs from the 5-day assays were within a factor of 5 of the lowest histopathological BMDs from the toxicity studies. These data suggest that using HTT in a 5-day in vivo rat model provides reasonable estimates of BMD values for traditional apical endpoints. This approach may be useful to prioritize chemicals for further testing while providing actionable data in a timely and cost-effective manner.
Cadmium, a ubiquitous environmental contaminant, damages several major organs in humans and other mammals. The molecular mechanisms for damage are not known. At high doses (5 mg/kg cadmium chloride or higher), testicular damage in mice, rats, and other rodents includes interstitial edema, hemorrhage
, and changes in the seminiferous tubules affecting spermatogenesis. Necrosis is evident by 48 h. The goal of this study was to fine map and identify the cdm gene, a gene that when mutated prevents cadmium-induced testicular toxicity in mouse strains with a mutation in this gene. A serine-threonine phosphatase, calcineurin (CN), subunit A, alpha isoform (Ppp3ca), was one of the seven candidates in the cdm region that was narrowed from 5.6 to 2.0 Mb on mouse chromosome 3. An inhibitor of CN, the immunosuppressant, FK506, prevented cadmium-induced testicular damage in five pathological categories, including vascular endothelial and seminiferous epithelial endpoints. Inductively coupled plasma-mass spectrometry revealed that FK506 protected without lowering the amount of cadmium in the testes. Ppp3ca(-/-) mice were investigated but were found to exhibit endogenous testicular abnormalities, making them an inappropriate model for determining whether the inactivation of the Ppp3ca gene would afford protection from cadmium-induced testicular toxicity. The protection afforded by FK506, found by the current study, indicated that CN is likely to be important in the mechanism of cadmium toxicity in the testis and possibly other organs.
Kooter I, etal., Inhal Toxicol. 2005 Jan;17(1):53-65. doi: 10.1080/08958370590885717.
Epidemiological studies show associations of short-term exposure to particulate matter with morbidity and mortality. Although many studies investigate the health effects of ambient particulate matter, the associated mechanisms, and the causality, they often focus on classical parameters. The objecti
ve of the present study was to gain insight into the roles of a wide range of genes in this process. Particular attention has been paid to immediate oxidative stress in the lung. We isolated total lung RNA from spontaneously hypertensive male rats 2-40 h after exposure to reference EHC-93 (10 mg/kg). Our results show that exposure to particulate matter generates a time-dependent pattern of gene expression. From the 8799 genes or expressed sequence tags tested, we see that 132 genes were up- or downregulated shortly after exposure (i.e., 2-6 h), whereas after 15-21 h and 24-40 h, 46 and 56 genes showed altered expression, respectively. Focusing on the earliest point, 99 of the 132 genes were identified as unique. They include genes involved in an oxidative stress response (hemeoxygenase-1, metallothioneins, and thioredoxin reductase), an inflammatory response macrophage inflammatory protein-2, and tumor necrosis factor alpha), transcription factors belonging to the activating protein-1 family, and genes involved in cardiovascular functions. The present study, although not representing an ambient situation, is used to identify the biological pathways implicated in the initial injury response to PM exposure. Using Affymetrix chips, this study shows time-dependent gene expression, it identifies many genes that can be affected by exposure to particulate matter, and it confirms the involvement of oxidative stress in particulate-matter-related effects.
Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, se
rum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides.
Kuptsova N, etal., Int J Cancer. 2008 Mar 15;122(6):1333-9.
Telangiectasia and subcutaneous fibrosis are the most common late dermatologic side effects observed in response to radiation treatment. Radiotherapy acts on cancer cells largely due to the generation of reactive oxygen species (ROS). ROS also induce normal tissue tox
/span>icities. Therefore, we investigated if genetic variation in oxidative stress-related enzymes confers increased susceptibility to late skin complications. Women who received radiotherapy following lumpectomy for breast cancer were followed prospectively for late tissue side effects after initial treatment. Final analysis included 390 patients. Polymorphisms in genes involved in oxidative stress-related mechanisms (GSTA1, GSTM1, GSTT1, GSTP1, MPO, MnSOD, eNOS, CAT) were determined from blood samples by MALDI-TOF. The associations between telangiectasia and genotypes were evaluated by multivariate unconditional logistic regression models. Patients with variant GSTA1 genotypes were at significantly increased risk of telangiectasia (OR 1.86, 95% CI 1.11-3.11). Reduced odds ratios of telangiectasia were noted for women with lower-activity eNOS genotype (OR 0.58, 95% CI 0.36-0.93). Genotype effects were modified by follow-up time, with the highest risk observed after 4 years of radiotherapy for gene polymorphisms in ROS-neutralizing enzymes. Decreased risk with eNOS polymorphisms was significant only among women with less than 4 years of follow-up. All other risk estimates were nonsignificant. Late effects of radiation therapy on skin appear to be modified by variants in genes related to protection from oxidative stress. The application of genomics to outcomes following radiation therapy holds the promise of radiation dose adjustment to improve both cosmetic outcomes and quality of life for breast cancer patients.
Mori K, etal., Toxicol Pathol. 2007 Feb;35(2):242-51. doi: 10.1080/01926230601156286.
Metabolism studies are crucial for data interpretation from rodent toxicity and carcinogenicity studies. Metabolism studies are usually conducted in 6 to 8 week old rodents. Long-term studies often continue beyond 100 weeks of age. The potential for age-related
changes in transcript levels of genes encoding for enzymes associated with metabolism was evaluated in the liver of male F344/N rats at 32, 58, and 84 weeks of age. Differential expression was found between the young and old rats for genes whose products are involved in both phase I and phase II metabolic pathways. Thirteen cytochrome P450 genes from CYP families 1-3 showed alterations in expression in the older rats. A marked age-related decrease in expression was found for 4 members of the Cyp3a family that are critical for drug metabolism in the rat. Immunohistochemical results confirmed a significant decrease in Cyp3a2 and Cyp2c11 protein levels with age. This indicates that the metabolic capacity of male rats changes throughout a long-term study. Conducting multiple hepatic microarray analyses during the conduct of a long-term study can provide a global view of potential metabolic changes that might occur. Alterations that are considered crucial to the interpretation of long-term study results could then be confirmed by subsequent metabolic studies.
Yang X, etal., Toxicol Sci. 2012 Feb;125(2):335-44. doi: 10.1093/toxsci/kfr321. Epub 2011 Nov 22.
Circulating microRNAs (miRNAs) have emerged as novel noninvasive biomarkers for several diseases and other types of tissue injury. This study tested the hypothesis that changes in the levels of urinary miRNAs correlate with liver injury induced by hepatotoxicant
s. Sprague-Dawley rats were administered acetaminophen (APAP) or carbon tetrachloride (CCl(4)) and one nonhepatotoxicant (penicillin/PCN). Urine samples were collected over a 24 h period after a single oral dose of APAP (1250 mg/kg), CCl(4) (2000 mg/kg), or PCN (2400 mg/kg). APAP and CCl(4) induced liver injury based upon increased serum alanine and aspartate aminotransferase levels and histopathological findings, including liver necrosis. APAP and CCl(4) both significantly increased the urinary levels of 44 and 28 miRNAs, respectively. In addition, 10 of the increased miRNAs were in common between APAP and CCl(4). In contrast, PCN caused a slight decrease of a different nonoverlapping set of urinary miRNAs. Cluster analysis revealed a distinct urinary miRNA pattern from the hepatotoxicant-treated groups when compared with vehicle controls and PCN. Analysis of hepatic miRNA levels suggested that the liver was the source of the increased urinary miRNAs after APAP exposure; however, the results from CCl(4) were equivocal. Computational analysis was used to predict target genes of the 10 shared hepatotoxicant-induced miRNAs. Liver gene expression profiling using whole genome microarrays identified eight putative miRNA target genes that were significantly altered in the liver of APAP- and CCl(4)-treated animals. In conclusion, the patterns of urinary miRNA may hold promise as biomarkers of hepatotoxicant-induced liver injury.
Haidara K, etal., Toxicol Appl Pharmacol. 2008 May 15;229(1):65-76. Epub 2008 Jan 29.
Oxidative stress has been implicated in many physiopathologies including neurodegenerative diseases, cancer, cardiovascular and respiratory diseases, and in mechanisms of action of environmental toxicants. tert-butylhydroperoxide (t-BHP) is an organic lipid hydr
operoxide analogue, which is commonly used as a pro-oxidant for evaluating mechanisms involving oxidative stress in cells and tissues. This study investigates mechanisms of apoptosis induced by oxidative stress in hepatocytes, in particular, the involvement of caspases and subcellular compartments. Freshly isolated hepatocytes were exposed to 0.4 mM t-BHP during 1 h. A general caspase inhibitor, Boc-D-FMK, reduced t-BHP-induced apoptosis (chromatin condensation), confirming the involvement of caspases in apoptosis. A caspase-9 inhibitor, Z-LEHD-FMK, also reduced t-BHP-induced apoptosis, suggesting that caspase-9 plays a critical role in this process. Procaspase-9 underwent cleavage in mitochondria and translocation to the nucleus, where increased caspase-9 activity was detected. The caspase-9 substrates, caspase-3 and caspase-7, were not activated. Caspase-7 was translocated from the cytosol to the endoplasmic reticulum (ER), where it underwent processing; however, enzymatic activity of caspase-7 was inhibited by t-BHP. t-BHP caused cleavage of procaspase-12 at the ER and its subsequent translocation to the nucleus, where increased caspase-12 activity was found. t-BHP caused translocation of calpain from the cytosol to the ER. Calpain inhibition reduced chromatin condensation and caspase-12 activity in the nucleus, suggesting that calpain is involved in caspase-12 activation and apoptosis. This study demonstrates that caspase-9 and caspase-12 are activated in t-BHP-induced apoptosis in hepatocytes. We highlight the importance of subcellular compartments such as mitochondria, ER and nuclei in the apoptotic process.
Allais A, etal., Toxicol Sci. 2020 Jun 1;175(2):197-209. doi: 10.1093/toxsci/kfaa044.
Brominated flame retardants (BFRs), including polybrominated diphenyl ethers and hexabromocyclododecane, leach out from consumer products into the environment. Exposure to BFRs has been associated with effects on endocrine homeostasis. To test the hypothesis that in utero and lactational exposure to
BFRs may affect the reproductive system of female offspring, adult female Sprague Dawley rats were fed diets formulated to deliver nominal doses (0, 0.06, 20, or 60 mg/kg/day) of a BFR dietary mixture mimicking the relative congener levels in house dust from prior to mating until weaning. Vaginal opening and the day of first estrus occurred at a significantly earlier age among offspring from the 20 mg/kg/day BFR group, indicating that the onset of puberty was advanced. Histological analysis of ovaries from postnatal day 46 offspring revealed an increase in the incidence of abnormal follicles. A toxicogenomic analysis of ovarian gene expression identified upstream regulators, including HIF1A, CREB1, EGF, the β-estradiol, and PPARA pathways, predicted to be downregulated in the 20 or 60 mg/kg/day group and to contribute to the gene expression patterns observed. Thus, perinatal exposure to BFRs dysregulated ovarian folliculogenesis and signaling pathways that are fundamental for ovarian function in the adult.
Bourgault S, etal., Biochem Biophys Res Commun. 2011 Jul 15;410(4):707-13. doi: 10.1016/j.bbrc.2011.04.133. Epub 2011 May 4.
The transthyretin amyloidoses are a subset of protein misfolding diseases characterized by the extracellular deposition of aggregates derived from the plasma homotetrameric protein transthyretin (TTR) in peripheral nerves and the heart. We have established a robust disease-relevant human cardiac tis
sue culture system to explore the cytotoxic effects of amyloidogenic TTR variants. We have employed this cardiac amyloidosis tissue culture model to screen 23 resveratrol analogs as inhibitors of amyloidogenic TTR-induced cytotoxicity and to investigate their mechanisms of protection. Resveratrol and its analogs kinetically stabilize the native tetramer preventing the formation of cytotoxic species. In addition, we demonstrate that resveratrol can accelerate the formation of soluble non-toxic aggregates and that the resveratrol analogs tested can bring together monomeric TTR subunits to form non-toxic native tetrameric TTR.
Nakano Y, etal., J Med Invest. 2001 Feb;48(1-2):73-80.
The intraperitoneal infection with Toxoplasma gondii (T. gondii) caused accumulation of gamma delta T, NK, NK1.1+T-like (NKT) cells at inflamed sites. To clarify the roles of these cells in protection against T. gondii at the inflamed sites, BALB/c mice were dep
leted of gamma delta T, NK, NK and NKT cells by treatment with antibody against TCR-gamma delta, asialoGM1 or Interleukin-2 receptor beta-chain (IL-2 R beta), respectively, prior to infection. Mice treated with anti-TCR-gamma delta monoclonal antibody (mAb) became more susceptible to infection, whereas mice treated with anti-IL-2R beta mAb acquired resistance. Treatment with anti-asialoGM1 Ab showed no effect. We previously reported that heat shock protein 65 (HSP65) in macrophages induced by gamma delta T cells plays an essential role in protective immunity against T. gondii infection, by preventing apoptotic death of infected macrophages. In the present study, we showed that treatment with anti-IL-2R beta mAb, but not with anti-asialoGM1 Ab, enhanced the HSP65 induction in macrophages, and inhibited Interleukin-4 (IL-4) expression in nonadherent peritoneal exudate cells. Furthermore, neutralization of endogenous IL-4 by anti-IL-4 mAb enhanced the HSP65 induction in macrophages. These findings suggest that NKT cells, but not NK cells, negatively regulate the protective immunity against T. gondii infection possibly by producing IL-4 and suppressing HSP65 induction.
Although uranium is a well-characterized nephrotoxic agent, very little is known at the cellular and molecular level about the mechanisms underlying the uptake and toxicity of this element in proximal tubule cells. The aim
of this study was thus to characterize the species of uranium that are responsible for its cytotoxicity and define the mechanism which is involved in the uptake of the cytotoxic fraction of uranium using two cell lines derived from kidney proximal (LLC-PK(1)) and distal (MDCK) tubule as in vitro models. Treatment of LLC-PK(1) cells with colchicine, cytochalasin D, concanavalin A and PMA increased the sodium-dependent phosphate co-transport and the cytotoxicity of uranium. On the contrary, replacement of the extra-cellular sodium with N-methyl-D-glucamine highly reduced the transport of phosphate and the cytotoxic effect of uranium. Uranium cytotoxicity was also dependent upon the extra-cellular concentration of phosphate and decreased in a concentration-dependent manner by 0.1-10 mM phosphonoformic acid, a competitive inhibitor of phosphate uptake. Consistent with these observations, over-expression of the rat proximal tubule sodium-dependent phosphate co-transporter NaPi-IIa in stably transfected MDCK cells significantly increased the cytotoxicity of uranium, and computer modeling of uranium speciation showed that uranium cytotoxicity was directly dependent on the presence of the phosphate complexes of uranyl UO(2)(PO(4))(-) and UO(2)(HPO(4))(aq). Taken together, these data suggest that the cytotoxic fraction of uranium is a phosphate complex of uranyl whose uptake is mediated by a sodium-dependent phosphate co-transporter system.
The evidence for the potential involvement of gadolinium-based contrast agents (GBCAs) in the pathomechanism of nephrogenic systemic fibrosis (NSF), a rare but serious disease occurring in patients with severe or end-stage renal failure, has grown due to recent epidemiological and preclinical resear
ch. Nevertheless there is still uncertainty with regard to the prevailing patho-physiological processes that may lead to NSF. To examine the potential mechanism of the fibrotic skin changes we applied a recently published rat model of NSF for investigations into serum markers for inflammation. For this purpose male Wistar rats were treated either once, three, or eight times with a daily intravenous injection of 2.5 mmol/kg gadodiamide, the drug substance of the magnetic resonance imaging (MRI) agent Omniscan. Clinical observations, hematology, clinical pathology, histopathology including electron microscopy and gadolinium (Gd) determination in serum, skin, femur and liver tissue, and a multiplexed analysis of 70 protein serum markers were performed. Gd was detectable in the skin, femur, and liver of the gadodiamide-treated rats 6h after the first administration. Macroscopic skin changes, appearing as reddening and early scab formation, were observed in one animal after the third daily administration and affected all animals after 8 daily administrations. Microscopy revealed dermal infiltrations after three administrations, progressing towards inflammatory lesions, ulcerations and crusts. Among the investigated serum marker panel 13 cytokines were significantly (p<0.01) elevated 6 h after the first injection, and eight stayed elevated over all time points: the monocyte chemotactic proteins MCP-1 and MCP-3, the macrophage inflammatory proteins MIP-1beta and MIP-2, the tumor necrosis factor TNF-alpha, the extracellular matrix regulator tissue inhibitor of metalloproteinase type 1 (TIMP-1), the vascular epithelial growth factor (VEGF) and osteopontin. The latter cytokine is of particular interest, since this matrix cellular glycoprotein is involved in the regulation of dystrophic calcification but also plays a role as a chemoattractant for dendritic cells, macrophages and T-lymphocytes, which in turn activate inflammatory pathways. Reflecting the physiological role of osteopontin, we hypothesize that Gd release from the GBCA-complex leads to the formation of insoluble Gd-deposits subsequently eliciting a physiological response similar to that seen during dystrophic calcification, i.e. an up-regulation of osteopontin and chemoattractant cytokines. Concomitant increase in vascular permeability caused by MIP-1, TNF-alpha and VEGF may lead to extravasation of chelated Gd or Gd-deposits. The inherent persistence of the Gd-deposits may subsequently result in an overactivation of pro-inflammatory pathways progressing towards overt skin effects.
Lashuel HA, etal., Nat Rev Neurosci. 2013 Jan;14(1):38-48. doi: 10.1038/nrn3406.
Disorders characterized by alpha-synuclein (alpha-syn) accumulation, Lewy body formation and parkinsonism (and in some cases dementia) are collectively known as Lewy body diseases. The molecular mechanism (or mechanisms) through which alpha-syn abnormally accumulates and contributes to neurodegenera
tion in these disorders remains unknown. Here, we provide an overview of current knowledge and prevailing hypotheses regarding the conformational, oligomerization and aggregation states of alpha-syn and their role in regulating alpha-syn function in health and disease. Understanding the nature of the various alpha-syn structures, how they are formed and their relative contributions to alpha-syn-mediated toxicity may inform future studies aiming to develop therapeutic prevention and intervention.
Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as a
n inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the alpha type of cytosolic phospholipase A(2) (cPLA(2)alpha) in PC12 cells. Treatment with 80-120 microM DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA(2)alpha mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N(G) nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA(2)alpha expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA(2). Furthermore, DDC treatment of the cells enhanced Ca(2+)-ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA(2)alpha expression by DDC treatment in neuronal cells.
Chorley BN, etal., Toxicol Sci. 2021 Feb 26;180(1):1-16. doi: 10.1093/toxsci/kfaa181.
Drug-induced kidney injury (DIKI) is a major concern in both drug development and clinical practice. There is an unmet need for biomarkers of glomerular damage and more distal renal injury in the loop of Henle and the collecting duct (CD). A cross-laboratory program to identify and characterize urin
ary microRNA (miRNA) patterns reflecting tissue- or pathology-specific DIKI was conducted. The overall goal was to propose miRNA biomarker candidates for DIKI that could supplement information provided by protein kidney biomarkers in urine. Rats were treated with nephrotoxicants causing injury to distinct nephron segments: the glomerulus, proximal tubule, thick ascending limb (TAL) of the loop of Henle and CD. Meta-analysis identified miR-192-5p as a potential proximal tubule-specific urinary miRNA candidate. This result was supported by data obtained in laser capture microdissection nephron segments showing that miR-192-5p expression was enriched in the proximal tubule. Discriminative miRNAs including miR-221-3p and -222-3p were increased in urine from rats treated with TAL versus proximal tubule toxicants in accordance with their expression localization in the kidney. Urinary miR-210-3p increased up to 40-fold upon treatment with TAL toxicants and was also enriched in laser capture microdissection samples containing TAL and/or CD versus proximal tubule. miR-23a-3p was enriched in the glomerulus and was increased in urine from rats treated with doxorubicin, a glomerular toxicant, but not with toxicants affecting other nephron segments. Taken together these results suggest that urinary miRNA panels sourced from specific nephron regions may be useful to discriminate the pathology of toxicant-induced lesions in the kidney, thereby contributing to DIKI biomarker development needs for industry, clinical, and regulatory use.
Rafael AI, etal., Toxicol Appl Pharmacol. 2007 Oct 15;224(2):163-73. Epub 2007 Jul 18.
Hexavalent chromium [Cr(VI)] exposure is commonly associated with lung cancer. Although other adverse health effects have been reported, some authors, on assuming that orally ingested Cr(VI) is efficiently detoxified upon reduction by body fluids, believe that
Cr(VI) do not target cells other than respiratory tract cells. In rodents, ingested Cr(VI)-contaminated water was reported to induce, in the liver, increases in TGF-beta transcripts. As TGF-beta dependent signaling pathways are closely associated with hepatic injury, the present study was undertaken addressing two specific issues: the effects of ingestion of water contaminated with high levels of Cr(VI) in rat liver structure and function; and the role of the TGF-beta pathway in Cr(VI)-induced liver injury. Examination of Wistar rats exposed to 20 ppm Cr(VI)-contaminated water for 10 weeks showed increased serum glucose and alanine aminotransferase (ALT) levels. Liver histological examination revealed hepatocellular apoptosis, further confirmed by immunohystochemical study of Caspase 3 expression. Liver gene expression analysis revealed increased expression of Smad2/Smad4 and Dapk, suggesting the involvement of the TGF-beta pathway in the apoptotic process. Since no changes in Smad3 expression were observed it appears apoptosis is using a Smad3-independent pathway. Increased expression of both Caspase 8 and Daxx genes suggests also the involvement of the Fas pathway. Gene expression analysis also revealed that a p160(ROCK)-Rho-independent pathway operates, leading to cell contraction and membrane blebbing, characteristic apoptotic features. These findings suggest that either the amount of Cr(VI) ingested overwhelmed the body fluids reductive capacity or some Cr(VI) escapes the reductive protection barrier, thus targeting the liver and inducing apoptosis.
Kidney injury caused by disease, trauma, environmental exposures, or drugs may result in decreased renal function, chronic kidney disease, or acute kidney failure. Diagnosis of kidney injury using serum creatinine levels, a common clinical test, only identifies renal dysfunction after the kidneys ha
ve undergone severe damage. Other indicators sensitive to kidney injury, such as the level of urine kidney injury molecule-1 (KIM-1), lack the ability to differentiate between injury phenotypes. To address early detection as well as detailed categorization of kidney-injury phenotypes in preclinical animal or cellular studies, we previously identified eight sets (modules) of co-expressed genes uniquely associated with kidney histopathology. Here, we used mercuric chloride (HgCl2)-a model nephrotoxicant-to chemically induce kidney injuries as monitored by KIM-1 levels in Sprague Dawley rats at two doses (0.25 or 0.50 mg/kg) and two exposure lengths (10 or 34 h). We collected whole transcriptome RNA-seq data derived from five animals at each dose and time point to perform a toxicogenomics analysis. Consistent with documented injury phenotypes for HgCl2 toxicity, our kidney-injury-module approach identified the onset of necrosis and dilation as early as 10 h after a dose of 0.50 mg/kg that produced only mild injury as judged by urinary KIM-1 excretion. The results of these animal studies highlight the potential of the kidney-injury-module approach to provide a sensitive and histopathology-specific readout of renal toxicity.
Jackson TW, etal., Toxicol Sci. 2022 Aug 25;189(1):73-90. doi: 10.1093/toxsci/kfac065.
Ozone-induced lung injury, inflammation, and pulmonary/hypothalamus gene expression changes are diminished in adrenalectomized (AD) rats. Acute ozone exposure induces metabolic alterations concomitant with increases in epinephrine and corticosterone. We hypothesized that adrenal hormones are respons
ible for observed hepatic ozone effects, and in AD rats, these changes would be diminished. In total, 5-7 days after sham (SH) or AD surgeries, male Wistar-Kyoto rats were exposed to air or 0.8-ppm ozone for 4 h. Serum samples were analyzed for metabolites and liver for transcriptional changes immediately post-exposure. Ozone increased circulating triglycerides, cholesterol, free fatty-acids, and leptin in SH but not AD rats. Ozone-induced inhibition of glucose-mediated insulin release was absent in AD rats. Unlike diminution of ozone-induced hypothalamus and lung mRNA expression changes, AD in air-exposed rats (AD-air/SH-air) caused differential hepatic expression of ∼1000 genes. Likewise, ozone in AD rats caused differential expression of ∼1000 genes (AD-ozone/AD-air). Ozone-induced hepatic changes in SH rats reflected enrichment for pathways involving metabolic processes, including acetyl-CoA biosynthesis, TCA cycle, and sirtuins. Upstream predictor analysis identified similarity to responses produced by glucocorticoids and pathways involving forskolin. These changes were absent in AD rats exposed to ozone. However, ozone caused unique changes in AD liver mRNA reflecting activation of synaptogenesis, neurovascular coupling, neuroinflammation, and insulin signaling with inhibition of senescence pathways. In these rats, upstream predictor analysis identified numerous microRNAs likely involved in glucocorticoid insufficiency. These data demonstrate the critical role of adrenal stress hormones in ozone-induced hepatic homeostasis and necessitate further research elucidating their role in propagating environmentally driven diseases.
Wang G, etal., Toxins (Basel). 2015 Dec 30;8(1). pii: E12. doi: 10.3390/toxins8010012.
Several species of the genus Veratrum that produce steroid alkaloids are commonly used to treat pain and hypertension in China and Europe. However, Veratrum alkaloids (VAs) induce serious cardiovascular toxicity. In China, Veratrum treatment often leads to many
side effects and even causes the death of patients, but the pathophysiological mechanisms under these adverse effects are not clear. Here, two solanidine-type VAs (isorubijervine and rubijervine) isolated from Veratrum taliense exhibited strong cardiovascular toxicity. A pathophysiological study indicated that these VAs blocked sodium channels Na(V)1.3-1.5 and exhibited the strongest ability to inhibit Na(V)1.5, which is specifically expressed in cardiac tissue and plays an essential role in cardiac physiological function. This result reveals that VAs exert their cardiovascular toxicity via the Na(V)1.5 channel. The effects of VAs on Na(V)1.3 and Na(V)1.4 may be related to their analgesic effect and skeletal muscle toxicity, respectively.
Anthrax toxin causes anthrax pathogenesis and expression levels of ANTXR2 (anthrax toxin receptor 2) are strongly correlated with anthrax toxin susceptibility. Previous studies found tha
t ANTXR2 transcript abundance varies considerably in individuals of different ethnic/geographical groups, but no eQTLs (expression quantitative trait loci) have been identified. By using 3C (chromatin conformation capture), CRISPR-mediated genomic deletion and dual-luciferase reporter assay, gene loci containing cis-regulatory elements of ANTXR2 were localized. Two SNPs (single nucleotide polymorphism) at the conserved CREB-binding motif, rs13140055 and rs80314910 in the promoter region of the gene, modulating ANTXR2 promoter activity were identified. Combining these two regulatory SNPs with a previously reported SNP, rs12647691, for the first time, a statistically significant correlation between human genetic variations and anthrax toxin sensitivity was observed. These findings further our understanding of human variability in ANTXR2 expression and anthrax toxin susceptibility.
Monroe JJ, etal., Toxicol Sci. 2020 Sep 1;177(1):281-299. doi: 10.1093/toxsci/kfaa088.
Drug-induced liver injury is a major reason for drug candidate attrition from development, denied commercialization, market withdrawal, and restricted prescribing of pharmaceuticals. The metabolic bioactivation of drugs to chemically reactive metabolites (CRMs) contribute to liver-associated adverse
drug reactions in humans that often goes undetected in conventional animal toxicology studies. A challenge for pharmaceutical drug discovery has been reliably selecting drug candidates with a low liability of forming CRM and reduced drug-induced liver injury potential, at projected therapeutic doses, without falsely restricting the development of safe drugs. We have developed an in vivo rat liver transcriptional signature biomarker reflecting the cellular response to drug bioactivation. Measurement of transcriptional activation of integrated nuclear factor erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) electrophilic stress, and nuclear factor erythroid 2-related factor 1 (NRF1) proteasomal endoplasmic reticulum (ER) stress responses, is described for discerning estimated clinical doses of drugs with potential for bioactivation-mediated hepatotoxicity. The approach was established using well benchmarked CRM forming test agents from our company. This was subsequently tested using curated lists of commercial drugs and internal compounds, anchored in the clinical experience with human hepatotoxicity, while agnostic to mechanism. Based on results with 116 compounds in short-term rat studies, with consideration of the maximum recommended daily clinical dose, this CRM mechanism-based approach yielded 32% sensitivity and 92% specificity for discriminating safe from hepatotoxic drugs. The approach adds new information for guiding early candidate selection and informs structure activity relationships (SAR) thus enabling lead optimization and mechanistic problem solving. Additional refinement of the model is ongoing. Case examples are provided describing the strengths and limitations of the approach.
The aim of this study was to assess the toxic effects of chronic exposure to fluphenazine in liver and kidney of rats, as well as the possible protective effect of diphenyl diselenide on the fluphenazine-induced damage. Long-term treatment with fluphenazine caus
ed an increase in lipid peroxidation levels in liver and kidney homogenates. Diphenyl diselenide treatment did not affect delta-aminolevulinate dehydratase (delta-ALA-D) activity, but fluphenazine alone or in combination with diphenyl diselenide showed an inhibitory effect on delta-ALA-D activity in liver. Diphenyl diselenide plus fluphenazine treatment increased the reactivation index of hepatic delta-ALA-D by approximately 80%. Superoxide dismutase activity decreased in liver of rats treated with fluphenazine alone. The combined treatment with fluphenazine and diphenyl diselenide was able to ameliorate superoxide dismutase activity in liver of rats. Catalase activity was augmented in liver from rats treated with fluphenazine, and this increase was prevented when diphenyl diselenide was co-administered. Taken together, these results indicate that the association of diphenyl diselenide with fluphenazine could protect the liver from lipid peroxidation and ameliorate superoxide dismutase and catalase activities. Moreover, our data point to the relationship between the oxidative stress and fluphenazine treatment in liver and kidney of rats.
Colciago A, etal., Toxicol Appl Pharmacol. 2009 Aug 15;239(1):46-54. Epub 2009 May 21.
The gender-specific expression pattern of aromatase and 5alpha-reductases (5alpha-R) during brain development provides neurons the right amount of estradiol and DHT to induce a dimorphic organization of the structure. Polychlorinated biphenyls (PCBs) are endocrine disruptive pollutants; exposure to
PCBs through placental transfer and breast-feeding may adversely affect the organizational action of sex steroid, resulting in long-term alteration of reproductive neuroendocrinology. The study was aimed at: a) evaluating the hypothalamic expression of aromatase, 5alpha-R1 and 5alpha-R2 in fetuses (GD20), infant (PN12), weaning (PN21) and young adult (PN60) male and female rats exposed to PCBs during development; b) correlating these parameters with the time of testicular descent, puberty onset, estrous cyclicity and copulatory behavior; c) evaluating possible alterations of some non reproductive behaviors (locomotion, learning and memory, depression/anxiety behavior). A reconstituted mixture of four indicator congeners (PCB 126, 138, 153 and 180) was injected subcutaneously to dams at the dose of 10 mg/kg daily from GD15 to GD19 and then twice a week till weanling. The results indicated that developmental PCB exposure produced important changes in the dimorphic hypothalamic expression of both aromatase and the 5alpha-Rs, which were still evident in adult animals. We observed that female puberty onset occurs earlier than in control animals without cycle irregularity, while testicular descent in males was delayed. A slight but significant impairment of sexual behavior and an important alteration in memory retention were also noted specifically in males. We conclude that PCBs might affect the dimorphic neuroendocrine control of reproductive system and of other neurobiological processes.
Mesnage R, etal., Toxicol Sci. 2022 Feb 28;186(1):83-101. doi: 10.1093/toxsci/kfab143.
Whether glyphosate-based herbicides (GBHs) are more potent than glyphosate alone at activating cellular mechanisms, which drive carcinogenesis remain controversial. As GBHs are more cytotoxic than glyphosate, we reasoned they may also be more capable of activati
ng carcinogenic pathways. We tested this hypothesis by comparing the effects of glyphosate with Roundup GBHs both in vitro and in vivo. First, glyphosate was compared with representative GBHs, namely MON 52276 (European Union), MON 76473 (United Kingdom), and MON 76207 (United States) using the mammalian stem cell-based ToxTracker system. Here, MON 52276 and MON 76473, but not glyphosate and MON 76207, activated oxidative stress and unfolded protein responses. Second, molecular profiling of liver was performed in female Sprague-Dawley rats exposed to glyphosate or MON 52276 (at 0.5, 50, and 175 mg/kg bw/day glyphosate) for 90 days. MON 52276 but not glyphosate increased hepatic steatosis and necrosis. MON 52276 and glyphosate altered the expression of genes in liver reflecting TP53 activation by DNA damage and circadian rhythm regulation. Genes most affected in liver were similarly altered in kidneys. Small RNA profiling in liver showed decreased amounts of miR-22 and miR-17 from MON 52276 ingestion. Glyphosate decreased miR-30, whereas miR-10 levels were increased. DNA methylation profiling of liver revealed 5727 and 4496 differentially methylated CpG sites between the control and glyphosate and MON 52276 exposed animals, respectively. Apurinic/apyrimidinic DNA damage formation in liver was increased with glyphosate exposure. Altogether, our results show that Roundup formulations cause more biological changes linked with carcinogenesis than glyphosate.
Reactive oxygen species (ROS) have been associated with many human diseases, and glutathione (GSH)-dependent processes are pivotal in limiting tissue damage. To test the hypothesis that Gr1(a1Neu) (Neu) mice, which do not express glutathione reductase (GR), would be more susceptible than are wild-
type mice to ROS-mediated injury, we studied the effects of diquat, a redox cycling toxicant. Neu mice exhibited modest, dose- and time-dependent elevations in plasma alanine aminotransferase (ALT) activities, 126+/-36 U/l at 2 h after 5 micromol/kg of diquat, but no ALT elevations were observed in diquat-treated C3H/HeN mice for up to 6 h after 50 micromol/kg of diquat. Histology indicated little or no hepatic necrosis in diquat-treated mice of either strain, but substantial renal injury was observed in diquat-treated Neu mice, characterized by brush border sloughing in the proximal tubules by 1 h and tubular necrosis by 2 h after doses of 7.5 micromol/kg. Decreases in renal GSH levels were observed in the Neu mice by 2 h post dose (3.4+/-0.4 vs 0.2+/-0.0 micromol/g tissue at 0 and 50 micromol/kg, respectively), and increases in renal GSSG levels were observed in the Neu mice as early as 0.5 h after 7.5 micromol/kg (105.5+/-44.1 vs 27.9+/-4.8 nmol/g tissue). Blood urea nitrogen levels were elevated by 2 h in Neu mice after doses of 7.5 micromol/kg (Neu vs C3H, 32.8+/-4.1 vs 17.9+/-0.3 mg/dl). Diquat-induced renal injury in the GR-deficient Neu mice offers a useful model for studies of ROS-induced renal necrosis and of the contributions of GR in defense against oxidant-mediated injuries in vivo.
Plopper CG, etal., Toxicol Appl Pharmacol. 2006 May 15;213(1):74-85. Epub 2005 Oct 14.
Increases in Clara cell abundance or cellular expression of Clara cell secretory protein (CCSP) may cause increased tolerance of the lung to acute oxidant injury by repeated exposure to ozone (O3). This study defines how disruption of the gene for CCSP synthesis affects the susceptibility of tracheo
bronchial epithelium to acute oxidant injury. Mice homozygous for a null allele of the CCSP gene (CCSP-/-) and wild type (CCSP+/+) littermates were exposed to ozone (0.2 ppm, 8 h; 1 ppm, 8 h) or filtered air. Injury was evaluated by light and scanning electron microscopy, and the abundance of necrotic, ciliated, and nonciliated cells was estimated by morphometry. Proximal and midlevel intrapulmonary airways and terminal bronchioles were evaluated. There was no difference in airway epithelial composition between CCSP+/+ and CCSP-/- mice exposed to filtered air, and exposure to 0.2 ppm ozone caused little injury to the epithelium of both CCSP+/+ and CCSP-/- mice. After exposure to 1.0 ppm ozone, CCSP-/- mice suffered from a greater degree of epithelial injury throughout the airways compared to CCSP+/+ mice. CCSP-/- mice had both ciliated and nonciliated cell injury. Furthermore, lack of CCSP was associated with a shift in airway injury to include proximal airway generations. Therefore, we conclude that CCSP modulates the susceptibility of the epithelium to oxidant-induced injury. Whether this is due to the presence of CCSP on the acellular lining layer surface and/or its intracellular distribution in the secretory cell population needs to be defined.
Wagner VA, etal., Toxicol Sci. 2023 Jun 28;194(1):84-100. doi: 10.1093/toxsci/kfad046.
Environmental bisphenol compounds like bisphenol F (BPF) are endocrine-disrupting chemicals (EDCs) affecting adipose and classical endocrine systems. Genetic factors that influence EDC exposure outcomes are poorly understood and are unaccounted variables that may contribute to the large range of rep
orted outcomes in the human population. We previously demonstrated that BPF exposure increased body growth and adiposity in male N/NIH heterogeneous stock (HS) rats, a genetically heterogeneous outbred population. We hypothesize that the founder strains of the HS rat exhibit EDC effects that were strain- and sex-dependent. Weanling littermate pairs of male and female ACI, BN, BUF, F344, M520, and WKY rats randomly received either vehicle (0.1% EtOH) or 1.125 mg BPF/l in 0.1% EtOH for 10 weeks in drinking water. Body weight and fluid intake were measured weekly, metabolic parameters were assessed, and blood and tissues were collected. BPF increased thyroid weight in ACI males, thymus and kidney weight in BUF females, adrenal weight in WKY males, and possibly increased pituitary weight in BN males. BUF females also developed a disruption in activity and metabolic rate with BPF exposure. These sex- and strain-specific exposure outcomes illustrate that HS rat founders possess diverse bisphenol-exposure risk alleles and suggest that BPF exposure may intensify inherent organ system dysfunction existing in the HS rat founders. We propose that the HS rat will be an invaluable model for dissecting gene EDC interactions on health.
Cirelli KM, etal., PLoS Pathog. 2014 Mar 13;10(3):e1003927. doi: 10.1371/journal.ppat.1003927. eCollection 2014 Mar.
Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasm
a resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1β/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages.
Sublethal doses of LPS result in increased tolerance to high concentrations of oxygen and this is associated with decreased pulmonary inflammation in a rat model. To investigate the mechanism of decreased neutrophil influx into the lung in this model, we measured levels of mRNA in the lung for the e
ndothelial adhesion molecules, E-selectin and P-selectin. Immunostaining for E-selectin protein was also done in rat lungs, as well as measurement of soluble L-selectin in the blood. These levels were measured in the lungs of adult rats injected with 0.5 mg/kg LPS or placebo at 0 and 24 h and exposed to > 95% O2 for 60 h. Oxygen exposure resulted in significant increases in both E- and P-selectin mRNA and in E-selectin protein after 60 h. LPS resulted in an early rise in E-selectin protein followed by a decline to less than control (saline/O2) levels at 60 h. Messenger RNA for E-selectin followed a similar trend, although there were no differences at 60 h between LPS and control groups exposed to O2. P-selectin mRNA expression did not significantly differ between LPS and control O2 groups. Soluble L-selectin levels decreased by 6 h after LPS infusion and were significantly lower than saline/O2 controls through 24 h, suggesting binding to endothelium. In conclusion, the decrease in E-selectin expression on the surface of pulmonary endothelium after LPS could contribute to decreased inflammation in this model of oxygen toxicity. Soluble L-selectin may serve a further anti-inflammatory role after LPS infusion by binding to pulmonary endothelium.
including secretion of p-aminohippurate (PAH), possibly via affecting the renal organic anion (OA) transporters (Oat). However, an effect of OTA on the activity/expression of specific Oats in the mammalian kidney has not been reported. In this work, male rats were gavaged various doses of OTA every 2nd day for 10 days, and in their kidneys we studied: tubule integrity by microscopy, abundance of basolateral (rOat1, rOat3) and brush-border (rOat2, rOat5) rOat proteins by immunochemical methods, and expression of rOats mRNA by RT-PCR. The OTA treatment caused: a) dose-dependent damage of the cells in S3 segments of medullary rays, b) dual effect upon rOats in PT: low doses (50-250 microg OTA/kg b.m.) upregulated the abundance of all rOats, while a high dose (500 microg OTA/kg b.m.) downregulated the abundance of rOat1, and c) unchanged mRNA expression for all rOats at low OTA doses, and its downregulation at high OTA dose. Changes in the expression of renal Oats were associated with enhanced OTA accumulation in tissue and excretion in urine, whereas the indicators of oxidative stress either remained unchanged (malondialdehyde, glutathione, 8-hydroxydeoxyguanosine) or became deranged (microtubules). While OTA accumulation and downregulation of rOats in the kidney are consistent with the previously reported impaired renal PAH secretion in rodents intoxicated with high OTA doses, the post-transcriptional upregulation of Oats at low OTA doses may contribute to OTA accumulation and development of nephrotoxicity.
Kurzawski M, etal., Environ Toxicol Pharmacol. 2012 Jul;34(1):87-95. Epub 2012 Mar 11.
The transcription factor Nrf2, encoded by NFE2L2 gene is a key regulator of cellular defense against oxidative and electrophilic stress, also governing the expression of many phase II detoxification enzymes. Nrf2 is negatively regulated by KEAP1 protein. Recent
studies have shown that Nrf2 might also constitute an important mediator of inflammatory processes. In the current study the expression of Nrf2 in livers from patients with end-stage liver disease has been investigated. Surgical specimens were obtained from explanted livers of 24 patients with end-stage liver disease of different etiology. Control samples were obtained from nontumoral liver tissue from 6 patients with metastatic liver tumors. Nrf2 expression was evaluated by means of qRT-PCR, Western-blot and immunohistochemical staining. KEAP1 gene expression was investigated at mRNA level. The expression of the NFE2L2 gene was decreased in all groups of end-stage liver disease samples as compared with the controls (mean 0.470+/-1.20 of the value observed in the control samples, p=0.003). Decreased values of NFE2L2/KEAP1 mRNA ratio were also observed in end-stage liver disease groups (0.60+/-0.24 of the value observed in the control samples, p=0.019). The results were generally confirmed in Western-blot and immunohistochemical analysis of Nrf2 protein. Different expression pattern of Nrf2 regulated genes in end-stage liver disease samples were observed: glutamate-cysteine ligase (GCLC) and glutathione-S-transferase A1 (GSTA1) were significantly down-regulated in most liver disease groups, whereas heme oxidase 1 (HMOX1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) were not significantly suppressed. Treatment of HepG2 cells with pro-inflammatory cytokines resulted in significant decrease of GSTA1, NFE2L2 and GCLC expression, while the exposure had no significant influence on KEAP1, HMOX1, and NQO1 mRNA levels. Nrf2 deficiency may be one of the factors underlying impaired liver function in detoxification processes. It remains to be established in further studies if the observed decrease of Nrf2 expression is just a result of liver cirrhosis or is primary, playing a role in disease pathogenesis.
BACKGROUND: The gamma-aminobutyric acid (GABA) type A receptor (GABA(A)R) contains the recognition sites for a variety of agents used in the treatment of brain disorders, including anxiety and epilepsy. A better understanding of how receptor expression is regulated in individual neurons may provide
novel opportunities for therapeutic intervention. Towards this goal we have studied transcription of a GABA(A)R subunit gene (GABRB1) whose activity is autologously regulated by GABA via a 10 base pair initiator-like element (beta(1)-INR). METHODS: By screening a human cDNA brain library with a yeast one-hybrid assay, the Polycomblike (PCL) gene product PHD finger protein transcript b (PHF1b) was identified as a beta(1)-INR associated protein. Promoter/reporter assays in primary rat cortical cells demonstrate that PHF1b is an activator at GABRB1, and chromatin immunoprecipitation assays reveal that presence of PHF1 at endogenous Gabrb1 is regulated by GABA(A)R activation. RESULTS: PCL is a member of the Polycomb group required for correct spatial expression of homeotic genes in Drosophila. We now show that PHF1b recognition of beta(1)-INR is dependent on a plant homeodomain, an adjacent helix-loop-helix, and short glycine rich motif. In neurons, it co-immunoprecipitates with SUZ12, a key component of the Polycomb Repressive Complex 2 (PRC2) that regulates a number of important cellular processes, including gene silencing via histone H3 lysine 27 trimethylation (H3K27me3). CONCLUSIONS: The observation that chronic exposure to GABA reduces PHF1 binding and H3K27 monomethylation, which is associated with transcriptional activation, strongly suggests that PHF1b may be a molecular transducer of GABA(A)R function and thus GABA-mediated neurotransmission in the central nervous system.
Katayama S, etal., Toxicol Appl Pharmacol. 2006 Dec 15;217(3):375-83. Epub 2006 Oct 6.
The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumi
n upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17alpha-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ERalpha-selective agonist), diarylpropionitrile (DPN, an ERbeta-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE in the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ERalpha-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ERbeta-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.
Mardones J and Segovia-Riquelme N, Neurobehav Toxicol Teratol 1983 Mar-Apr;5(2):171-8.
An overview of the development of two strains of rats with low and high consumption of ethanol is reported. Voluntary consumption of water and various concentrations of ethanol solution were studied in these strains as a function of diet, supplementation with vitamin B complex components, housing co
nditions and coefficient of heredity. Both distribution factor of the consumption of ethanol in hybrids and the course of voluntary intake of ethanol have been described. In addition, a comparison was made between these rat strains developed for low and high preference to ethanol drinking in reference to their voluntary intake of ethanol, water and food. The metabolic concomitant to these two strains has been studied in relationship to ethanol metabolism and to other substrates, i.e., acetate, pyruvate, glucose, citrate and fructose. Behavioral studies were also performed. This included the measurements of duration of ethanol narcosis and evaluation of tolerance to ethanol drinking.
Grinberg M, etal., Arch Toxicol. 2018 Dec;92(12):3517-3533. doi: 10.1007/s00204-018-2352-3. Epub 2018 Dec 3.
Transcriptomics is developing into an invaluable tool in toxicology. The aim of this study was, using a transcriptomics approach, to identify genes that respond similar to many different chemicals (including drugs and industrial compounds) in both rat liver in v
ivo and in cultivated hepatocytes. For this purpose, we analyzed Affymetrix microarray expression data from 162 compounds that were previously tested in a concentration-dependent manner in rat livers in vivo and in rat hepatocytes cultivated in sandwich culture. These data were obtained from the Japanese Toxicogenomics Project (TGP) and North Rhine-Westphalian (NRW) data sets, which represent 138 and 29 compounds, respectively, and have only 5 compounds in common between them. The in vitro gene expression data from the NRW data set were generated in the present study, while TGP is publicly available. For each of the data sets, the overlap between up- or down-regulated genes in vitro and in vivo was identified, and named in vitro-in vivo consensus genes. Interestingly, the in vivo-in vitro consensus genes overlapped to a remarkable extent between both data sets, and were 21-times (upregulated genes) or 12-times (down-regulated genes) enriched compared to random expectation. Finally, the genes in the TGP and NRW overlap were used to identify the upregulated genes with the highest compound coverage, resulting in a seven-gene set of Cyp1a1, Ugt2b1, Cdkn1a, Mdm2, Aldh1a1, Cyp4a3, and Ehhadh. This seven-gene set was then successfully tested with structural analogues of valproic acid that are not present in the TGP and NRW data sets. In conclusion, the seven-gene set identified in the present study responds similarly in vitro and in vivo to a wide range of different chemicals. Despite these promising results with the seven-gene set, transcriptomics with cultivated rat hepatocytes remains a challenge, because in general many genes are up- or downregulated by in vitro culture per se, respond differently to test compounds in vitro and in vivo, and/or show higher variability in the in vitro system compared to the corresponding in vivo data.
Glaab WE, etal., Toxicol Sci. 2021 May 27;181(2):148-159. doi: 10.1093/toxsci/kfab038.
A new safety testing paradigm that relies on gene expression biomarker panels was developed to easily and quickly identify drug-induced injuries across tissues in rats prior to drug candidate selection. Here, we describe the development, qualification, and implementation of gene expression signature
s that diagnose tissue degeneration/necrosis for use in early rat safety studies. Approximately 400 differentially expressed genes were first identified that were consistently regulated across 4 prioritized tissues (liver, kidney, heart, and skeletal muscle), following injuries induced by known toxicants. Hundred of these "universal" genes were chosen for quantitative PCR, and the most consistent and robustly responding transcripts selected, resulting in a final 22-gene set from which unique sets of 12 genes were chosen as optimal for each tissue. The approach was extended across 4 additional tissues (pancreas, gastrointestinal tract, bladder, and testes) where toxicities are less common. Mathematical algorithms were generated to convert each tissue's 12-gene expression values to a single metric, scaled between 0 and 1, and a positive threshold set. For liver, kidney, heart, and skeletal muscle, this was established using a training set of 22 compounds and performance determined by testing a set of approximately 100 additional compounds, resulting in 74%-94% sensitivity and 94%-100% specificity for liver, kidney, and skeletal muscle, and 54%-62% sensitivity and 95%-98% specificity for heart. Similar performance was observed across a set of 15 studies for pancreas, gastrointestinal tract, bladder, and testes. Bundled together, we have incorporated these tissue signatures into a 4-day rat study, providing a rapid assessment of commonly seen compound liabilities to guide selection of lead candidates without the necessity to perform time-consuming histopathologic analyses.
Yang Y, etal., Toxicol In Vitro. 2016 Apr 8;34:128-137. doi: 10.1016/j.tiv.2016.03.020.
Triptolide (TP), an active component of the traditional Chinese herb Tripterygium wilfordii Hook f. (TWHF), has multiple pharmacological effects. However, the severe toxicity of TP greatly restricts its clinical applications. Although TP exposure causes serious
heart injury, the mechanism underlying TP-induced cardiotoxicity has rarely been investigated. In previous studies, we found that TP-induced oxidative stress was involved in the mitochondria-dependent apoptosis of cardiomyocytes. Opening of the mitochondrial permeability transition pore (mPTP) is the key to the mitochondrial dysfunction in cardiac toxicity. The aim of this study was to investigate the potential cardioprotective effects of sirtuin 3 (SIRT3) on the mPTP. In the present study, the cytotoxicity of TP was accompanied by the up-regulation of the SIRT3 protein level and its rapid aggregation in nuclei and mitochondria. The SIRT3-FOXO3 signaling pathway was activated simultaneously, resulting in increased transcription of manganese superoxide dismutase (MnSOD) and catalase (CAT) for the elimination of reactive oxygen species (ROS). In addition, augmentation of the SIRT3 level via the overexpression plasmid SIRT3-Flag provided resistance to TP-induced cellular damage, whereas knocking down the SIRT3 level via siRNA accelerated the damage. Because it is an activator of SIRT3, the protective effect of resveratrol was also evaluated in H9c2 cells. In conclusion, the current results suggest that activation of SIRT3 substantially ameliorates the detrimental effects of TP by closing the mPTP.
Hamadeh HK, etal., Chem Res Toxicol. 2010 Jun 21;23(6):1025-33. doi: 10.1021/tx1000333.
The key to the discovery of new pharmaceuticals is to develop molecules that interact with the intended target and minimize interaction with unintended molecular targets, therefore minimizing toxicity. This is aided by the use of various in vitro selectivity ass
ays that are used to select agents most potent for the desired target. Typically, molecules from similar chemical series, with similar in vitro potencies, are expected to yield comparable in vivo pharmacological and toxicological profiles, predictive of target effects. However, in this study, we investigated the in vivo effects of two analogue compounds that similarly inhibit several receptor tyrosine kinases such as vascular endothelial growth factor receptor 1 (VEGFR/Flt1), vascular endothelial growth factor 2 (VEGFR2/kinase domain receptor/Flk-1), vascular endothelial growth factor receptor 3 (VEGFR3/Flt4), platelet-derived growth factor receptor (PDGFR), and Kit receptors, which bear similar chemical structures, have comparable potencies, but differ markedly in their rodent toxicity profiles. Global gene expression data were used to generate hypotheses regarding the existence of toxicity triggers that would reflect the perturbation of signaling in multiple organs such as the liver, adrenal glands, and the pancreas in response to compound treatment. We concluded that differences in pharmacokinetic properties of the two analogues, such as volume of distribution, half-life, and organ concentrations, resulted in marked differences in the chemical burden on target organs and may have contributed to the vast differences in toxicity profiles observed with the two otherwise similar molecules. We propose including select toxicokinetic parameters such as V(ss), T(1/2), and T(max) as additional criteria that could be used to rank order compounds from the same pharmacological series to possibly minimize organ toxicity. Assessment of toxicokinetics is not an atypical activity on toxicology studies, even in early screening studies; however, these data may not always be used in decision making for selecting or eliminating one compound over another. Finally, we illustrate that in vivo gene expression profiles can serve as a complementary assessor of this activity and simultaneously help provide an assessment of on or off-target biological activity.
Huang Y, etal., Cell Mol Life Sci. 2016 Jan;73(1):1-21. doi: 10.1007/s00018-015-2042-8. Epub 2015 Sep 24.
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemp
oral dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
BACKGROUND: Harmful uremic toxins, such as indoxyl sulfate (IS), 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), indoleacetate (IA), and hippurate (HA), accumulate to a high degree in uremic plasma. IS has been shown to be a substrate of rat org
anic anion transporter 1 (rOat1) and rOat3. However, the contribution of rOat1 and rOat3 to the renal uptake transport process of IS and other uremic toxins in the kidney remains unknown. METHODS: The cellular uptake of uremic toxins was determined using stable transfectants of rOat1/hOAT1 and rOat3/hOAT3 cells. Also, the uptake of uremic toxins by rat kidney slices was characterized to evaluate the contribution of rOat1 and rOat3 to the total uptake by kidney slices using inhibitors of rOat1 (p-aminohippurate) and rOat3 (pravastatin and benzylpenicillin). RESULTS: Saturable uptake of IS, CMPF, IA, and HA by rOat1 was observed with Km values of 18, 154, 47, and 28 micromol/L, respectively, whereas significant uptake of IS and CMPF, but not of IA or HA, was observed in rOat3-expressing cells with Km values of 174 and 11 micromol/L, respectively. Similar parameters were obtained for human OAT1 and OAT3. Kinetic analysis of the IS uptake by kidney slices revealed involvement of two saturable components with Km1 (24 micromol/L) and Km2 (196 micromol/L) values that were comparable with those of rOat1 and rOat3. The Km value of CMPF uptake by kidney slices (22 micromol/L) was comparable with that of rOat3, while the corresponding values of IA and HA (42 and 33 micromol/L, respectively) were similar to those of rOat1. PAH preferentially inhibited the uptake of IA and HA by kidney slices, while pravastatin and benzylpenicillin preferentially inhibited the uptake of CMPF. The effect of these inhibitors on the uptake of IS by kidney slices was partial. CONCLUSIONS: rOat1/hOAT1 and rOat3/hOAT3 play major roles in the renal uptake of uremic toxins on the basolateral membrane of the proximal tubules. Both OAT1 and OAT3 contribute almost equally to the renal uptake of IS. OAT3 mainly accounts for CMPF uptake by the kidney, while OAT1 mainly accounts for IA and HA uptake.
BACKGROUND & AIMS: c-Jun N-terminal kinase (JNK) 1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated via phosphorylation in response to acetaminophen- or carbon tetrachloride (CCl4)-induced liver damage; the level of activation correlates w
ith the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury. We investigated the role of JNK in drug-induced liver injury (DILI) in liver tissue from patients and in mice with genetic deletion of JNK in hepatocytes. METHODS: We studied liver sections from patients with DILI (due to acetaminophen, phenprocoumon, nonsteroidal anti-inflammatory drugs, or autoimmune hepatitis) or patients without acute liver failure (controls) collected from a DILI Biobank in Germany. Levels of total and activated (phosphorylated) JNK were measured by immunohistochemistry and Western blotting. Mice with hepatocyte-specific deletion of Jnk1 (Jnk1(Deltahepa)) or combination of Jnk1 and Jnk2 (Jnk(Deltahepa)), as well as Jnk1-floxed C57BL/6 (control) mice, were given injections of CCl4 (to induce fibrosis) or acetaminophen (to induce toxic liver injury). We performed gene expression microarray and phosphoproteomic analyses to determine mechanisms of JNK activity in hepatocytes. RESULTS: Liver samples from DILI patients contained more activated JNK, predominantly in nuclei of hepatocytes and in immune cells, than healthy tissue. Administration of acetaminophen to Jnk(Deltahepa) mice produced a greater level of liver injury than that observed in Jnk1(Deltahepa) or control mice, based on levels of serum markers and microscopic and histologic analysis of liver tissues. Administration of CCl4 also induced stronger hepatic injury in Jnk(Deltahepa) mice, based on increased inflammation, cell proliferation, and fibrosis progression, compared with Jnk1(Deltahepa) or control mice. Hepatocytes from Jnk(Deltahepa) mice given acetaminophen had an increased oxidative stress response, leading to decreased activation of adenosine monophosphate-activated protein kinase, total protein adenosine monophosphate-activated protein kinase levels, and pJunD and subsequent necrosis. Administration of SP600125 before or with acetaminophen protected Jnk(Deltahepa) and control mice from liver injury. CONCLUSIONS: In hepatocytes, JNK1 and JNK2 appear to have combined effects in protecting mice from CCl4- and acetaminophen-induced liver injury. It is important to study the tissue-specific functions of both proteins, rather than just JNK1, in the onset of toxic liver injury. JNK inhibition with SP600125 shows off-target effects.
Heintz MM, etal., Toxicol Sci. 2024 Jun 26;200(1):183-198. doi: 10.1093/toxsci/kfae045.
Recent in vitro transcriptomic analyses for the short-chain polyfluoroalkyl substance, HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), support conclusions from in vivo data that HFPO-DA-mediated liver effects in mice are part of the early key events of the peroxisome proli
ferator-activated receptor alpha (PPARα) activator-induced rodent hepatocarcinogenesis mode of action (MOA). Transcriptomic responses in HFPO-DA-treated rodent hepatocytes have high concordance with those treated with a PPARα agonist and lack concordance with those treated with PPARγ agonists or cytotoxic agents. To elucidate whether HFPO-DA-mediated transcriptomic responses in mouse liver are PPARα-dependent, additional transcriptomic analyses were conducted on samples from primary PPARα knockout (KO) and wild-type (WT) mouse hepatocytes exposed for 12, 24, or 72 h with various concentrations of HFPO-DA, or well-established agonists of PPARα (GW7647) and PPARγ (rosiglitazone), or cytotoxic agents (acetaminophen or d-galactosamine). Pathway and predicted upstream regulator-level responses were highly concordant between HFPO-DA and GW7647 in WT hepatocytes. A similar pattern was observed in PPARα KO hepatocytes, albeit with a distinct temporal and concentration-dependent delay potentially mediated by compensatory responses. This delay was not observed in PPARα KO hepatocytes exposed to rosiglitazone, acetaminophen, d-galactosamine. The similarity in transcriptomic signaling between HFPO-DA and GW7647 in both the presence and absence of PPARα in vitro indicates these compounds share a common MOA.
Schwartz CL, etal., Toxicol Sci. 2019 May 1;169(1):303-311. doi: 10.1093/toxsci/kfz046.
A short anogenital distance (AGD) in males is a marker for incomplete masculinization and a predictor of adverse effects on male reproductive health. For this reason, AGD is used to assess the endocrine disrupting potential of chemicals for risk assessment purposes. The molecular mechanisms underpin
ning this chemically induced shortening of the AGD, however, remains unclear. Although it is clear that androgen receptor-mediated signaling is essential, evidence also suggest the involvement of other signaling pathways. This study presents the first global transcriptional profile of the anogenital tissue in male rat fetuses with chemically induced short AGD, also including comparison to normal male and female control animals. The antiandrogenic drug finasteride (10 mg/kg bw/day) was used to induce short AGD by exposing time-mated Sprague Dawley rats at gestation days 7-21. The AGD was 37% shorter in exposed male fetuses compared with control males at gestation day 21. Transcriptomics analysis on anogenital tissues revealed a sexually dimorphic transcriptional profile. More than 350 genes were found to be differentially expressed between the 3 groups. The expression pattern of 4 genes of particular interest (Esr1, Padi2, Wnt2, and Sfrp4) was also tested by RT-qPCR analyses, indicating that estrogen and Wnt2 signaling play a role in the sexually dimorphic development of the anogenital region. Our transcriptomics profiles provide a stepping-stone for future studies aimed at characterizing the molecular events governing development of the anogenital tissues, as well as describing the detailed Adverse Outcome Pathways for short AGD; an accepted biomarker of endocrine effects for chemical risk assessment.
Fahmy SR, etal., Toxicol Lett. 2019 Feb;301:73-78. doi: 10.1016/j.toxlet.2018.11.006. Epub 2018 Nov 17.
BACKGROUND: Drug-induced hepatotoxicity is an extremely widespread condition and is responsible for a variety of pathological effects on the liver. It was reported that hepatotoxicity induced by angiotensin conver
ting enzyme inhibitors (ACEIs) is cholestasis mediated hepatitis. Bradykinin-potentiating factor (BPF) is one of the natural ACEIs. Although prolonged treatment with ACEIs provides protection against liver injury, the effect of short-term treatment with ACEIs has not been fully elucidated before. Thereby, the present study sought to determine if transient ACE inhibition may exacerbate the hepatotoxicity caused by bile duct ligation (BDL) in rats. METHODS: Twenty one Wistar rats were divided into 3 groups: Sham-operated group, bile duct ligated (BDL) rats, and BDL rats treated for short-term with BPF (1 μg/kg body weight) day after day for one week and biochemical parameters were measured. Also, we assessed expression level of ACE1 and detection of hepatotoxicity in the liver tissues of different groups. RESULTS: There was a significant increase in liver enzymes, bilirubin levels, and oxidative stress in the BDL group after treatment with BPF as compared to BDL group. We found overexpression of ACE1 gene in BDL group compared to BPF and Sham-operated control group. Histopathological examination of liver treated with BPF showed severe degeneration hepatic architecture and hepatocytes as compared to BDL group. Collagen deposition increased after BPF treatment as compared to BDL groups. CONCLUSION: The present investigation suggests and recommends that short- term ACE inhibition pathway potentiates liver fibrosis during cholestasis disease.
Female Sprague-Dawley rats were treated with a single ip dose of aflatoxin B1 (AFB1) (3 or 6 mg/kg). Twenty-four hours later and weekly until killed, some of the rats treated with AFB1 were given ethynylestradiol (EE) by gavage at the dose of 13 mg/kg. One, thre
e, six, and nine months following the beginning of the experiment, animals were killed. Light microscopy of liver and histochemical determinations of gamma-glutamyltransferase (GGT) as well as the measurement of hepatic drug-metabolizing enzyme activities were investigated. The results show that AFB1 induced only very weak changes in the levels of different constituents studied. Thus, the mycotoxin did not affect GGT activity and increased epoxide hydrolase activity by a maximum of 42%. In contrast, EE significantly and progressively decreased (20 to 50%) the activity of UDP-glucuronosyltransferase (UDPGT) as well as the concentration of cytochrome P-450 and microsomal proteins. However, the estrogen increased the activity of epoxide hydrolase up to 150% as well as the activity of the hepatic (400%) and plasma (175%) GGT. The results also indicate that AFB1 amplified the EE-induced increase in liver weight and enhanced the depressive effects of the estrogen on microsomal proteins, cytochrome P-450, and UDPGT. Foci of cellular alteration which consisted of clear, acidophilic and basophilic cell lesions were seen in the livers of treated rats examined by light microscopy. These lesions were more prominent in the livers of animals given combinations of AFB1 and EE; they were accompanied by a strong intensity of GGT staining in the periportal area and a marked increase of the enzyme activity in the plasma (324%). From the sixth month, the livers of some animals treated with the combinations of AFB1 and EE showed hyperplastic nodules. This study indicates that the interaction between chronic administration of EE and a single ip injection of AFB1 induces hepatic lesions considered as possible forerunners of liver cell carcinomas. It also shows that GGT is a potential marker of preneoplastic lesions and may be used, therefore, in epidemiologic surveys in humans exposed to liver carcinogens such as the aflatoxins.
Newell AJ, etal., Toxicol Sci. 2023 Aug 29;195(1):103-122. doi: 10.1093/toxsci/kfad062.
Toxicogenomics is a critical area of inquiry for hazard identification and to identify both mechanisms of action and potential markers of exposure to toxic compounds. However, data generated by these experiments are highly d
imensional and present challenges to standard statistical approaches, requiring strict correction for multiple comparisons. This stringency often fails to detect meaningful changes to low expression genes and/or eliminate genes with small but consistent changes particularly in tissues where slight changes in expression can have important functional differences, such as brain. Machine learning offers an alternative analytical approach for "omics" data that effectively sidesteps the challenges of analyzing highly dimensional data. Using 3 rat RNA transcriptome sets, we utilized an ensemble machine learning approach to predict developmental exposure to a mixture of organophosphate esters (OPEs) in brain (newborn cortex and day 10 hippocampus) and late gestation placenta of male and female rats, and identified genes that informed predictor performance. OPE exposure had sex specific effects on hippocampal transcriptome, and significantly impacted genes associated with mitochondrial transcriptional regulation and cation transport in females, including voltage-gated potassium and calcium channels and subunits. To establish if this holds for other tissues, RNAseq data from cortex and placenta, both previously published and analyzed via a more traditional pipeline, were reanalyzed with the ensemble machine learning methodology. Significant enrichment for pathways of oxidative phosphorylation and electron transport chain was found, suggesting a transcriptomic signature of OPE exposure impacting mitochondrial metabolism across tissue types and developmental epoch. Here we show how machine learning can complement more traditional analytical approaches to identify vulnerable "signature" pathways disrupted by chemical exposures and biomarkers of exposure.
Hiraku Y, etal., Part Fibre Toxicol. 2016 Mar 29;13:16. doi: 10.1186/s12989-016-0127-7.
BACKGROUND: Carbon nanotube (CNT) is used for various industrial purposes, but exhibits carcinogenic effects in experimental animals. Chronic inflammation in the respiratory system may participate in CNT-induced carcinogenesis. 8-Nitroguanine (8-nitroG) is a mutagenic DNA lesion formed during inflam
mation. We have previously reported that multi-walled CNT (MWCNT) induced 8-nitroG formation in lung epithelial cells and this process involved endocytosis. To clarify the mechanism of CNT-induced carcinogenesis, we examined the role of Toll-like receptor (TLR) 9, which resides in endosomes and lysosomes, in 8-nitroG formation in human lung epithelial cell lines. METHODS: We performed immunocytochemistry to examine 8-nitroG formation in A549 and HBEpC cells treated with MWCNT with a length of 1-2 mum (CNT-S) or 5-15 mum (CNT-L) and a diameter of 20-40 nm. We examined inhibitory effects of endocytosis inhibitors, small interfering RNA (siRNA) for TLR9, and antibodies against high-mobility group box-1 (HMGB1) and receptor for advanced glycation end-products (RAGE) on 8-nitroG formation. The release of HMGB1 and double-stranded DNA (dsDNA) into the culture supernatant from MWCNT-treated cells was examined by ELISA and fluorometric analysis, respectively. The association of these molecules was examined by double immunofluorescent staining and co-immunoprecipitation. RESULTS: CNT-L significantly increased 8-nitroG formation at 0.05 mug/ml in A549 cells and its intensity reached a maximum at 1 mug/ml. CNT-L tended to induce stronger cytotoxicity and 8-nitroG formation than CNT-S. Endocytosis inhibitors, TLR9 siRNA and antibodies against HMGB1 and RAGE largely reduced MWCNT-induced 8-nitroG formation. MWCNT increased the release of HMGB1 and dsDNA from A549 cells into culture supernatant. The culture supernatant of MWCNT-exposed cells induced 8-nitroG formation in fresh A549 cells. Double immunofluorescent staining and co-immunoprecipitation showed that TLR9 was associated with HMGB1 and RAGE in lysosomes of MWCNT-treated cells. CONCLUSIONS: MWCNT induces injury or necrosis of lung epithelial cells, which release HMGB1 and DNA into the extracellular space. The HMGB1-DNA complex binds to RAGE on neighboring cells and then CpG DNA is recognized by TLR9 in lysosomes, leading to generation of nitric oxide and 8-nitroG formation. This is the first study demonstrating that TLR9 and related molecules participate in MWCNT-induced genotoxicity and may contribute to carcinogenesis.
Erdely A, etal., Part Fibre Toxicol. 2014 Aug 15;11:34. doi: 10.1186/s12989-014-0034-8.
Welding fume is an exposure that consists of a mixture of metal-rich particulate matter with gases (ozone, carbon monoxide) and/or vapors (VOCs). Data suggests that welders are immune compromised. Given the inability of pulmonary leukocytes to properly respond to a secondary infection in animal mode
ls, the question arose whether the dysfunction persisted systemically. Our aim was to evaluate the circulating leukocyte population in terms of cellular activation, presence of oxidative stress, and functionality after a secondary challenge, following welding fume exposure. Rats were intratracheally instilled (ITI) with PBS or 2 mg of welding fume collected from a stainless steel weld. Rats were sacrificed 4 and 24 h post-exposure and whole blood was collected. Whole blood was used for cellular differential counts, RNA isolation with subsequent microarray and Ingenuity Pathway Analysis, and secondary stimulation with LPS utilizing TruCulture technology. In addition, mononuclear cells were isolated 24 h post-exposure to measure oxidative stress by flow cytometry and confocal microscopy. Welding fume exposure had rapid effects on the circulating leukocyte population as identified by relative mRNA expression changes. Instillation of welding fume reduced inflammatory protein production of circulating leukocytes when challenged with the secondary stimulus LPS. The effects were not related to transcription, but were observed in conjunction with oxidative stress. These findings support previous studies of an inadequate pulmonary immune response following a metal-rich exposure and extend those findings showing leukocyte dysfunction occurs systemically.
Usami M, etal., Birth Defects Res B Dev Reprod Toxicol. 2008 Apr;83(2):80-96. doi: 10.1002/bdrb.20145.
BACKGROUND: Developmental toxicity of selenium (Se) is a nutritional, environmental and medicinal concern. Here, we investigated Se embryotoxicity by proteomic analysis of cultured rat embryos. METHODS: Rat embryos at day 9.
5 or 10.5 of gestation were cultured for 48 or 24 h, respectively, in the presence of sodium selenate (100 or 150 microM) or sodium selenite (20 or 30 microM). Proteins from the embryo proper and yolk sac membrane were analyzed by two-dimensional electrophoresis for quantitative changes from those in control embryos. Proteins with quantitative changes were identified by mass spectrometric analysis. RESULTS: Growth inhibition and morphological abnormalities of cultured embryos were observed in all the Se treatment groups. By the analysis of the embryo proper, actin-binding proteins were identified as proteins with quantitative changes by selenate: increased phosphorylated-cofilin 1, increased phosphorylated-destrin, decreased drebrin E, and decreased myosin light polypeptide 3. Many proteins showed similar changes between selenate and selenite, including increased ATP-synthase, decreased acidic ribosomal phosphoprotein P0, and decreased pyrroline-5-carboxylate reductase-like. In the yolk sac membrane, antioxidant proteins were identified for protein spots with quantitative changes by selenite: increased peroxiredoxin 1 and increased glutathione S-transferase. CONCLUSION: The identified proteins with quantitative changes by selenate or selenite were considered to be candidate proteins involved in Se embryotoxicity: the actin-binding proteins for selenate embryotoxicity, proteins with the similar changes for the common Se embryotoxicity and antioxidant proteins for modification of Se embryotoxicity by redox-related treatments. These proteins may also be used as biomarkers in developmental toxicity studies.
Stiborova M, etal., Toxicol Appl Pharmacol. 2008 Feb 1;226(3):318-27. Epub 2007 Sep 26.
Ellipticine is an antineoplastic agent, which forms covalent DNA adducts mediated by cytochromes P450 (CYP) and peroxidases. We evaluated the role of hepatic versus extra-hepatic metabolism of ellipticine, using the HRN (Hepatic Cytochrome P450 Reductase Null) mouse model, in which cytochrome P450 o
xidoreductase (POR) is deleted in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated i.p. with 1 and 10 mg/kg body weight of ellipticine. Multiple ellipticine-DNA adducts detected by (32)P-postlabelling were observed in organs from both mouse strains. Highest total DNA binding levels were found in liver, followed by lung, kidney, urinary bladder, colon and spleen. Ellipticine-DNA adduct levels in the liver of HRN mice were up to 65% lower relative to WT mice, confirming the importance of CYP enzymes for the activation of ellipticine in livers, recently shown in vitro with human and rat hepatic microsomes. When hepatic microsomes of both mouse strains were incubated with ellipticine, ellipticine-DNA adduct levels with WT microsomes were up to 2.9-fold higher than with those from HRN mice. The ratios of ellipticine-DNA adducts in extra-hepatic organs between HRN and WT mice of up to 4.7 suggest that these organs can activate ellipticine and that more ellipticine is available in the circulation. These results and the DNA adduct patterns found in vitro and in vivo demonstrate that both CYP1A or 3A and peroxidases participate in activation of ellipticine to reactive species forming DNA adducts in the mouse model used in this study.
Pentamethyl-6-chromanol (PMCol), a chromanol-type compound related to vitamin E, was proposed as an anticancer agent with activity against androgen-dependent cancers. In repeat dose-toxicity studies in rats and dogs, PMCol caused hepatotox
00;'>toxicity, nephrotoxicity, and hematological effects. The objectives of this study were to determine the mechanisms of the observed toxicity and identify sensitive early markers of target organ injury by integrating classical toxicology, toxicogenomics, and metabolomic approaches. PMCol was administered orally to male Sprague-Dawley rats at 200 and 2000 mg/kg daily for 7 or 28 days. Changes in clinical chemistry included elevated alanine aminotransferase, total bilirubin, cholesterol and triglycerides-indicative of liver toxicity that was confirmed by microscopic findings (periportal hepatocellular hydropic degeneration and cytomegaly) in treated rats. Metabolomic evaluations of liver revealed time- and dose-dependent changes, including depletion of total glutathione and glutathione conjugates, decreased methionine, and increased S-adenosylhomocysteine, cysteine, and cystine. PMCol treatment also decreased cofactor levels, namely, FAD and increased NAD(P)+. Microarray analysis of liver found that differentially expressed genes were enriched in the glutathione and cytochrome P450 pathways by PMCol treatment. Reverse transcription-polymerase chain reaction of six upregulated genes and one downregulated gene confirmed the microarray results. In conclusion, the use of metabolomics and toxicogenomics demonstrates that chronic exposure to high doses of PMCol induces liver damage and dysfunction, probably due to both direct inhibition of glutathione synthesis and modification of drug metabolism pathways. Depletion of glutathione due to PMCol exposure ultimately results in a maladaptive response, increasing the consumption of hepatic dietary antioxidants and resulting in elevated reactive oxygen species levels associated with hepatocellular damage and deficits in liver function.
Costa R, etal., FEBS Lett. 2008 Mar 19;582(6):936-42. doi: 10.1016/j.febslet.2008.02.034. Epub 2008 Feb 22.
It has been suggested that transthyretin (TTR) is involved in preventing A-Beta fibrillization in Alzheimer's disease (AD). Here, we characterized the TTR/A-Beta interaction by competition binding assays. TTR binds to different A-Beta peptide species: soluble (Kd, 28 nM), oligomers and fibrils; div
erse TTR variants bind differentially to A-Beta. Transmission electron microscopy (TEM) analysis demonstrated that TTR is capable of interfering with A-Beta fibrillization by both inhibiting and disrupting fibril formation. Co-incubation of the two molecules resulted in the abolishment of A-Beta toxicity. Our results confirmed TTR as an A-Beta ligand and indicated the inhibition/disruption of A-Beta fibrils as a possible mechanism underlying the protective role of TTR in AD.
Myelosuppressive anemia is a serious side effect associated with several drugs. Thus, there is an increasing demand for sensitive biomarkers for the early detection of myelosuppressive anemia during toxicological studies. We applied a tox
0;'>toxicogenomic approach to identify useful biomarker genes reflecting myelosuppressive anemia in the rat liver. Expression of the hemoglobin beta chain complex (Hbb), aminolevulinic acid synthase 2 (Alas2), and cell division cycle 25 homolog B (Cdc25b) genes changed as a result of anemia induced by the myelosuppressive agents linezolid, cisplatin, and carboplatin, suggesting that these genes may be suitable biomarkers. Moreover, evaluation of perfused and unperfused livers indicated that changes in the expression of these genes originate in circulating reticulocytes in the liver. Erythroid differentiation-associated changes in expression of the Hbb, Alas2, and Cdc25b genes were confirmed in vitro using Friend leukemia cells. In conclusion, our current research provides novel evidence that gene expression in circulating reticulocytes contained in the liver changes dramatically under myelosuppressive conditions. While further large-scale validation studies are needed, our results indicate that the genes we identified might be useful biomarkers for the sensitive detection of myelosuppressive anemia in rats.
Roberts ES, etal., Inhal Toxicol. 2007 Sep;19(11):941-9. doi: 10.1080/08958370701513113.
The nasal epithelium is an important target site for chemically induced toxicity and carcinogenicity. Experimental studies show that site-specific lesions can arise within the nasal respiratory or olfactory epithelium following the inhalation of certain chemical
s. Moreover, gender differences in epithelial response are also reported. To better understand and predict gender differences in response of the nasal epithelium to inhaled xenobiotics, gene expression profiles from naive male and female Sprague-Dawley rats were constructed. Epithelial cells were manually collected from the nasal septum, naso- and maxillo-turbinates, and ethmoid turbinates of nine male and nine female rats. Gene expression analysis was performed using the Affymetrix Rat Genome 430 2.0 microarray. Surprisingly, there were few gender differences in gene expression. Gene ontology enrichment analysis identified several functional categories, including xenobiotic metabolism, cell cycle, apoptosis, and ion channel/transport, with significantly different expression between tissue types. These baseline data will contribute to our understanding of the normal physiology and selectivity of the nasal epithelial cells' response to inhaled environmental toxicants.
Huntington's disease is an autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the huntingtin gene. Heart disease is the second leading cause of death in patients with Huntington's disease. This study was to evaluate whether cardiac Fas-dependent and mitochondria-depende
nt apoptotic pathways are activated in transgenic mice with Huntington's disease. Sixteen Huntington's disease transgenic mice (HD) and sixteen wild-type (WT) littermates were studied at 10.5 weeks of age. The cardiac characteristics, myocardial architecture, and two major apoptotic pathways in the excised left ventricle from mice were measured by histopathological analysis, Western blotting, and TUNEL assays. The whole heart weight and the left ventricular weight decreased significantly in the HD group, as compared to the WT group. Abnormal myocardial architecture, enlarged interstitial spaces, and more cardiac TUNEL-positive cells were observed in the HD group. The key components of Fas-dependent apoptosis (TNF-alpha, TNFR1, Fas ligand, Fas death receptors, FADD, activated caspase-8, and activated caspase-3) and the key components of mitochondria-dependent apoptosis (Bax, Bax-to-Bcl-2 ratio, cytosolic cytochrome c, activated caspase-9, and activated caspase-3) increased significantly in the hearts of the HD group. Cardiac Fas-dependent and mitochondria-dependent apoptotic pathways were activated in transgenic mice with Huntington's disease, which might provide one of possible mechanisms to explain why patients with Huntington's disease will develop heart failure.
Morales AI, etal., Toxicol Appl Pharmacol. 2006 Jan 1;210(1-2):128-35. Epub 2005 Oct 14.
Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administere
d during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd+quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity.
Kovalenko VM, etal., Toxicol Appl Pharmacol. 2007 Dec 15;225(3):293-9. Epub 2007 Aug 23.
Drug-induced liver injury, including drug-induced hepatotoxicity during the treatment of tuberculosis infection, is a major health problem with increasingly significant challenges to modern hepatology. Therefore, the assessment and monitoring of the hepatotox
style='font-weight:700;'>toxicity of antituberculosis drugs for prevention of liver injury are great concerns during disease treatment. The recently emerged data showing the ability of toxicants, including pharmaceutical agents, to alter cellular epigenetic status, open a unique opportunity for early detection of drug hepatotoxicity. Here we report that treatment of male Wistar rats with antituberculosis drug pyrazinamide at doses of 250, 500 or 1000 mg/kg/day body weight for 45 days leads to an early and sustained decrease in cytosine DNA methylation, progressive hypomethylation of long interspersed nucleotide elements (LINE-1), and aberrant promoter hypermethylation of placental form glutathione-S-transferase (GSTP) and p16(INK4A) genes in livers of pyrazinamide-treated rats, while serum levels of bilirubin and activity of aminotransferases changed modestly. The early occurrence of these epigenetic alterations and their association with progression of liver injury specific pathological changes indicate that alterations in DNA methylation may be useful predictive markers for the assessment of drug hepatotoxicity.
BACKGROUND: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted i
nflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation. METHODS: Primary peritoneal macrophages and bone marrow-derived macrophages from C57BL/6 mice and ctss(-/-) mice were exposed to micro- and nanoparticulates and also the lysosomotropic agent, L-leucyl-L-leucine methyl ester (LLOME). ELISA and immunoblot analyses were used to measure the IL-1beta response in cells, generated by lysosomal rupture. Affinity-binding probes (ABPs), which irreversibly bind to the active site thiol of cysteine proteases, were then used to detect active caspase 1 and CTSS following lysosomal rupture. Reporter substrates were also used to quantify the proteolytic activity of these enzymes, as measured by substrate turnover. RESULTS: We demonstrate that exposure to silica, alum and polystyrene particulates induces IL-1beta release from macrophages, through lysosomal destabilization. IL-1beta secretion positively correlated with an increase in the proteolytic activity signatures of intracellular caspase 1 and extracellular CTSS, which were detected using ABPs and reporter substrates. Interestingly IL-1beta release was significantly reduced in primary macrophages from ctss(-/-) mice. CONCLUSIONS: This study supports the emerging significance of CTSS as a regulator of the innate immune response, highlighting its role in regulating IL-1beta release. Crucially, the results demonstrate the utility of intracellular caspase 1 and extracellular CTSS proteolytic activities as surrogate biomarkers of lysosomal rupture and acute inflammation. In the future, activity-based detection of these enzymes may prove useful for the real-time assessment of particle-induced inflammation and toxicity assessment during the development of nanotherapeutics.
Budak H, etal., Environ Toxicol Pharmacol. 2014 Jan;37(1):365-70. doi: 10.1016/j.etap.2013.12.007. Epub 2013 Dec 22.
The free radicals within the body, produced by metabolic activities or derived from environmental sources are relatively related to hepatoxicity. Since heavy metals including iron have the ability to produce free radicals, the liver glutathione system neutralize
s them to protect cells against any damage. The objective of this study is to indicate the toxic effects of iron on the glutathione system at the enzymatic and molecular level. Thus, any possible correlation between enzymatic and molecular levels can be determined. According to our results, while mRNA expression of glutathione reductase (Gsr) and glutathione S-transferases (Gsta5) genes were not affected by long-term exposure to various concentrations of iron (Fe(3+)), transcription level of glutathione peroxidase (Gpx2) was influenced in the presence of toxic iron. Whereas the enzyme activites of GSR (GR), GPX and GST were significantly affected in rat liver.
Marable CA, etal., Toxicol Sci. 2022 Feb 28;186(1):118-133. doi: 10.1093/toxsci/kfab151.
Development of in vitro new approach methodologies has been driven by the need for developmental neurotoxicity (DNT) hazard data on thousands of chemicals. The network formation assay characterizes DNT hazard based on changes in network formation but provides no
mechanistic information. This study investigated nervous system signaling pathways and upstream physiological regulators underlying chemically induced neural network dysfunction. Rat primary cortical neural networks grown on microelectrode arrays were exposed for 12 days in vitro to cytosine arabinoside, 5-fluorouracil, domoic acid, cypermethrin, deltamethrin, or haloperidol as these exposures altered network formation in previous studies. RNA-seq from cells and gas chromatography/mass spectrometry analysis of media extracts collected on days in vitro 12 provided gene expression and metabolomic identification, respectively. The integration of differentially expressed genes and metabolites for each neurotoxicant was analyzed using ingenuity pathway analysis. All 6 compounds altered gene expression that linked to developmental disorders and neurological diseases. Other enriched canonical pathways overlapped among compounds of the same class; eg, genes and metabolites altered by both cytosine arabinoside and 5-fluorouracil exposures are enriched in axonal guidance pathways. Integrated analysis of upstream regulators was heterogeneous across compounds, but identified several transcriptomic regulators including CREB1, SOX2, NOTCH1, and PRODH. These results demonstrate that changes in network formation are accompanied by transcriptomic and metabolomic changes and that different classes of compounds produce differing responses. This approach can enhance information obtained from new approach methodologies and contribute to the identification and development of adverse outcome pathways associated with DNT.
Marin-Kuan M, etal., Toxicol Appl Pharmacol. 2007 Oct 15;224(2):174-81. Epub 2007 Jul 3.
Kidney samples of male Fischer 344 (F-344) rats fed a carcinogenic dose of OTA over 7 days, 21 days and 12 months were analysed for various cell signalling proteins known to be potentially involved in chemical carcinogenicity. OTA was found to increase the phosphorylation of atypical-PKC. This was c
orrelated with a selective downstream activation of the MAP-kinase extracellular regulated kinases isoforms 1 and 2 (ERK1/2) and of their substrates ELK1/2 and p90RSK. Moreover, analysis of effectors acting upstream of PKC indicated a possible mobilisation of the insulin-like growth factor-1 receptor (lGFr) and phosphoinositide-dependent kinase-1 (PDK1) system. An increased histone deacetylase (HDAC) enzymatic activity associated with enhanced HDAC3 protein expression was also observed. These findings are potentially relevant with respect to the understanding of OTA nephrocarcinogenicity. HDAC-induced gene silencing has previously been shown to play a role in tumour development. Furthermore, PKC and the MEK-ERK MAP-kinase pathways are known to play important roles in cell proliferation, cell survival, anti-apoptotic activity and renal cancer development.
Kim W, etal., Mol Neurobiol. 2016 Jan;53(1):95-108. doi: 10.1007/s12035-014-8989-x. Epub 2014 Nov 19.
Dysfunction of growth factor (GF) activities contributes to the decline and death of neurons during aging and in neurodegenerative diseases. In addition, neurons become more resistant to GF signaling with age. Micro (mi)RNAs are posttranscriptional regulators of gene expression that may be crucial t
o age- and disease-related changes in GF functions. MiR-126 is involved in regulating insulin/IGF-1/phosphatidylinositol-3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) signaling, and we recently demonstrated a functional role of miR-126 in dopamine neuronal cell survival in models of Parkinson's disease (PD)-associated toxicity. Here, we show that elevated levels of miR-126 increase neuronal vulnerability to ubiquitous toxicity mediated by staurosporine (STS) or Alzheimer's disease (AD)-associated amyloid beta 1-42 peptides (Abeta1-42). The neuroprotective factors IGF-1, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and soluble amyloid precursor protein alpha (sAPPalpha) could diminish but not abrogate the toxic effects of miR-126. In miR-126 overexpressing neurons derived from Tg6799 familial AD model mice, we observed an increase in Abeta1-42 toxicity, but surprisingly, both Abeta1-42 and miR-126 promoted neurite sprouting. Pathway analysis revealed that miR-126 overexpression downregulated elements in the GF/PI3K/AKT and ERK signaling cascades, including AKT, GSK-3beta, ERK, their phosphorylation, and the miR-126 targets IRS-1 and PIK3R2. Finally, inhibition of miR-126 was neuroprotective against both STS and Abeta1-42 toxicity. Our data provide evidence for a novel mechanism of regulating GF/PI3K signaling in neurons by miR-126 and suggest that miR-126 may be an important mechanistic link between metabolic dysfunction and neurotoxicity in general, during aging, and in the pathogenesis of specific neurological disorders, including PD and AD.
Tabor CM, etal., Part Fibre Toxicol. 2016 Feb 9;13(1):6. doi: 10.1186/s12989-016-0116-x.
BACKGROUND: Accelerated thrombus formation induced by exposure to combustion-derived air pollution has been linked to alterations in endogenous fibrinolysis and platelet activation in response to pulmonary and systemic inflammation. We hypothesised that mechanisms independent of inflammation contrib
ute to accelerated thrombus formation following exposure to diesel exhaust particles (DEP). METHODS: Thrombosis in rats was assessed 2, 6 and 24 h after administration of DEP, carbon black (CB; control carbon nanoparticle), DQ12 quartz microparticles (to induce pulmonary inflammation) or saline (vehicle) by either intra-tracheal instillation (0.5 mg, except Quartz; 0.125 mg) or intravenous injection (0.5 mg/kg). Thrombogenicity was assessed by carotid artery occlusion, fibrinolytic variables and platelet-monocyte aggregates. Measures of inflammation were determined in plasma and bronchoalveolar lavage fluid. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1 were measured following direct in vitro exposure of human umbilical vein endothelial cells (HUVECs) to DEP (10-150 mug/mL). RESULTS: Instillation of DEP reduced the time to thrombotic occlusion in vivo, coinciding with the peak of DEP-induced pulmonary inflammation (6 h). CB and DQ12 produced greater inflammation than DEP but did not alter time to thrombotic occlusion. Intravenous DEP produced an earlier (2 h) acceleration of thrombosis (as did CB) without pulmonary or systemic inflammation. DEP inhibited t-PA and PAI-1 release from HUVECs, and reduced the t-PA/PAI-1 ratio in vivo; similar effects in vivo were seen with CB and DQ12. DEP, but not CB or DQ12, increased platelet-monocyte aggregates. CONCLUSION: DEP accelerates arterial thrombus formation through increased platelet activation. This effect is dissociated from pulmonary and systemic inflammation and from impaired fibrinolytic function.
Calcineurin inhibitor (CI) toxicity in renal allografts is frequently associated with arteriolar injury. Platelet activation occurs in response to vascular injury associated with CI therapy. Platelets are detectable in tissue sections by immunohistochemistry fo
r CD61. This immunohistochemical study examines patterns of platelet deposition in CI-associated vascular toxicity of renal allografts. Renal allograft biopsies were grouped into (i) CI-associated thrombotic microangiopathy (CITMA, n = 28); (ii) vascular CI toxicity without thrombotic microangiopathy (VTox, n = 43); and (iii) allograft controls with minimal arteriolopathy abnormalities, both with CI exposure (MA, n = 10) and without CI exposure (NCI, n = 15). Two-micrometer paraffin sections were stained using a monoclonal antibody to CD61 by standard immunoperoxidase methods. Mural and luminal CD61 deposits in arterioles were graded from 0 to 3+, and proportions of arteriolar and glomerular profiles with CD61 deposits were determined for each biopsy. Granular CD61 deposits were detected in arterioles in biopsies with CITMA (92.9%) and VTox (81%) and less frequently in MA (30%) and NCI (33%). The proportion of arterioles with CD61 deposits was greater in CITMA than in VTox (46.3% +/- 28.5% vs 21.3% +/- 22.2%, P = .001) and more extensive than in controls (MA, 3.6% +/- 8.9%; NCI, 3.2% +/- 5.5%). Median arteriolar CD61 grades for CITMA exceeded grades for VTox (2 vs 0.5, P = .001), and CD61 grades in VTox were significantly greater than in controls with MA (0) and NCI (0) (P = .0001). In conclusion, arteriolar mural platelet CD61 deposition was observed in vascular CI toxicity and was most extensive and severe in CI-associated thrombotic microangiopathy. Identification of "insudative platelet arteriolopathy" in renal allograft biopsies, by immunohistochemical detection of CD61, may facilitate recognition of vascular CI toxicity.
Cochran SJ, etal., Toxicol Sci. 2024 May 28;199(2):332-348. doi: 10.1093/toxsci/kfae040.
Exposure to wildfire smoke is associated with both acute and chronic cardiopulmonary illnesses, which are of special concern for wildland firefighters who experience repeated exposure to wood smoke. It is necessary to better understand the underlying pathophysiology by which wood smoke exposure incr
eases pulmonary disease burdens in this population. We hypothesize that wood smoke exposure produces pulmonary dysfunction, lung inflammation, and gene expression profiles associated with future pulmonary complications. Male Long-Evans rats were intermittently exposed to smoldering eucalyptus wood smoke at 2 concentrations, low (11.0 ± 1.89 mg/m3) and high (23.7 ± 0.077 mg/m3), over a 2-week period. Whole-body plethysmography was measured intermittently throughout. Lung tissue and lavage fluid were collected 24 h after the final exposure for transcriptomics and metabolomics. Increasing smoke exposure upregulated neutrophils and select cytokines in the bronchoalveolar lavage fluid. In total, 3446 genes were differentially expressed in the lungs of rats in the high smoke exposure and only 1 gene in the low smoke exposure (Cd151). Genes altered in the high smoke group reflected changes to the Eukaryotic Initiation Factor 2 stress and oxidative stress responses, which mirrored metabolomics analyses. xMWAS-integrated analysis revealed that smoke exposure significantly altered pathways associated with oxidative stress, lung morphogenesis, and tumor proliferation pathways. These results indicate that intermittent, 2-week exposure to eucalyptus wood smoke leads to transcriptomic and metabolic changes in the lung that may predict future lung disease development. Collectively, these findings provide insight into cellular signaling pathways that may contribute to the chronic pulmonary conditions observed in wildland firefighters.
Teng YC, etal., Toxicol Lett. 2015 Mar 18;233(3):239-45. doi: 10.1016/j.toxlet.2015.01.018. Epub 2015 Jan 29.
In the present study, the role of autophagy in sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat primary cultured cortical neurons. Incubation with arsenite concentration-dependently increased LC3-II levels (a biomarker of autophagy), indi
cating that arsenite is capable of inducing autophagy. Co-localization of fluorescent puncta of monodansylcadaverine (a fluorescent dye of autophagic vacuoles) and LysoTracker Red (a fluorescent dye of lysosomes) as well as chloroquine-induced enhancement of arsenite-elevated LC3-II levels suggest that arsenite induced autolysosome formation in primary cultured cortical neurons. Incubation of 3-methyladenine (an autophagy inhibitor) prevented arsenite-induced LC3-II elevation, autolysosome formation, reduction in GAP 43 (a biomarker of neurite outgrowth), caspase 3 activation and neuronal cell loss. Furthermore, Atg7 siRNA transfection attenuated arsenite-induced autophagy and neurotoxicity. At the same time, Atg7siRNA transfection ameliorated arsenite-induced reduction in alpha-synuclein levels (a synaptic protein essential for neuroplasticity), suggesting that arsenite via autophagy may engulf alpha-synuclein. Cytotoxic activities as well as potencies in elevating LC3-II and reducing alpha-synuclein levels by arsenite, arsenate, monomethyl arsenite (MMA(III)), and dimethyl arsenate (DMA(V)) were compared as follows: MMA(III)>arsenite>>arsenate and DMA(V). Taken together, autophagy appears to play a pro-death role in arsenics-induced neurotoxicity. Moreover, autophagy and subsequent reduction in alpha-synuclein levels may be a vicious cycle in arsenics-induced neurotoxicity.
Long Y, etal., Cardiovasc Toxicol. 2017 Jan;17(1):42-48. doi: 10.1007/s12012-015-9354-7.
The aim of the study was to investigate the expression of miR-223 and FAM5C in the peripheral blood mononuclear cells (PBMCs) of cerebral infarction patients with or without diabetes. Sixteen cases with diabetes mellitus (DM), 14 cases with cerebral infarction (CI), 12 cases with cerebral infarction
and diabetes mellitus (CIDM), and 18 healthy subjects were included in this study. Real-time PCR was used to quantify mRNA expression. Western blot was used to detect FAM5C protein level. Recombinant plasmids expressing miR-223-3p and 3' UTR of FAM5C were constructed. Dual-luciferase reporter system was used to analyze the binding of miR-223-3p to FAM5C 3' UTR. FAM5C mRNA and protein level were significantly higher in the PBMCs of CIDM patients compared with healthy controls (P < 0.05). miR-223-3p expression in PBMCs was significantly lower in DM patients than in healthy controls (P < 0.05). The expression of miR-223-3p was negatively correlated with FAM5C mRNA in all patients and healthy controls. Co-transfection of miR-223-3p plasmid with FAM5C 3'UTR dual-luciferase plasmid significantly inhibited the luciferase activity (P < 0.01). FAM5C, but not miR-223, is a risk factor for CI in type 2 DM patients.
Kenna JG Curr Protoc Toxicol. 2014 Aug 7;61:23.7.1-15. doi: 10.1002/0471140856.tx2307s61.
Numerous drugs have been shown to inhibit the activity of the Bile Salt Export Pump (BSEP in humans, Bsep in animals), and this is now considered to be one of several mechanisms by which idiosyncratic drug-induced liver injury (DILI) may be initiated in susceptible patients. The potential importance
of BSEP inhibition by drugs has been recognized by the European Medicines Agency and the International Transporter Consortium, who have recommended that it should be evaluated during drug development when evidence of cholestatic liver injury has been observed in nonclinical safety studies or in human clinical trials. In addition, some pharmaceutical companies have proposed evaluation and minimization of BSEP inhibition during drug discovery, when there is a chemical choice, to help reduce DILI risk. The methods that can be used to assess and quantify BSEP inhibition, and key gaps in our current understanding of the relationship between this process and DILI, are discussed.
Marques-Aleixo I, etal., Cardiovasc Toxicol. 2017 May 23. doi: 10.1007/s12012-017-9412-4.
The cross-tolerance effect of exercise against heart mitochondrial-mediated quality control, remodeling and death-related mechanisms associated with sub-chronic Doxorubicin (DOX) treatment is yet unknown. We therefore analyzed the effects of two distinct chronic exercise models (endurance treadmill
training-TM and voluntary free wheel activity-FW) performed during the course of the sub-chronic DOX treatment on mitochondrial susceptibility to permeability transition pore (mPTP), apoptotic and autophagic signaling and mitochondrial dynamics. Male Sprague-Dawley rats were divided into six groups (n = 6 per group): saline sedentary (SAL + SED), SAL + TM (12-weeks treadmill), SAL + FW (12-weeks voluntary free-wheel), DOX + SED [7-weeks sub-chronic DOX treatment (2 mg kg(-1) week(-1))], DOX + TM and DOX + FW. Apoptotic signaling and mPTP regulation were followed by measuring caspase 3, 8 and 9 activities, Bax, Bcl2, CypD, ANT, and cophilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3, Beclin1, Pink1, Parkin and p62)-related proteins were semi-quantified. DOX treatment results in augmented mPTP susceptibility and apoptotic signaling (caspases 3, 8 and 9 and Bax/Bcl2 ratio). Moreover, DOX decreased the expression of fusion-related proteins (Mfn1, Mfn2, OPA1), increased DRP1 and the activation of auto(mito)phagy signaling. TM and FW prevented DOX-increased mPTP susceptibility and apoptotic signaling, alterations in mitochondrial dynamics and inhibits DOX-induced increases in auto(mito)phagy signaling. Collectively, our results suggest that both used chronic exercise models performed before and during the course of sub-chronic DOX treatment limit cardiac mitochondrial-driven apoptotic signaling and regulate alterations in mitochondrial dynamics and auto(mito)phagy in DOX-treated animals.
Prozialeck WC, etal., Toxicol Appl Pharmacol. 2009 Aug 1;238(3):306-14. Epub 2009 Jan 31.
Cadmium (Cd) is a nephrotoxic industrial and environmental pollutant that causes a generalized dysfunction of the proximal tubule. Kim-1 is a transmembrane glycoprotein that is normally not detectable in non-injured kidney, but is up-regulated and shed into the
urine during the early stages of Cd-induced proximal tubule injury. The objective of the present study was to examine the relationship between the Cd-induced increase in Kim-1 expression and the onset of necrotic and apoptotic cell death in the proximal tubule. Adult male Sprague-Dawley rats were treated with 0.6 mg (5.36 micromol) Cd/kg, subcutaneously, 5 days per week for up to 12 weeks. Urine samples were analyzed for levels of Kim-1 and the enzymatic markers of cell death, lactate dehydrogenase (LDH) and alpha-glutathione-S-transferase (alpha-GST). In addition, necrotic cells were specifically labeled by perfusing the kidneys in situ with ethidium homodimer using a procedure that has been recently developed and validated in the Prozialeck laboratory. Cryosections of the kidneys were also processed for the immunofluorescent visualization of Kim-1 and the identification of apoptotic cells by TUNEL labeling. Results showed that significant levels of Kim-1 began to appear in the urine after 6 weeks of Cd treatment, whereas the levels of total protein, alpha-GST and LDH were not increased until 8-12 weeks. Results of immunofluorescence labeling studies showed that after 6 weeks and 12 weeks, Kim-1 was expressed in the epithelial cells of the proximal tubule, but that there was no increase in the number of necrotic cells, and only a modest increase in the number of apoptotic cells at 12 weeks. These results indicate that the Cd-induced increase in Kim-1 expression occurs before the onset of necrosis and at a point where there is only a modest level of apoptosis in the proximal tubule.
THE TRANSCRIPTION FACTOR NRF2: (NF-E2-related-factor 2) REGULATES A BATTERY OF ANTIOXIDATIVE STRESS-RESPONSE GENES AND DETOXICATION GENES, AND NRF2 KNOCKOUT LINES OF MICE HAVE BEEN CONTRIBUTING CRITICALLY TO THE CLARIFICATION OF ROLES THAT NRF2 PLAYS FOR CELL PR
OTECTION HOWEVER, THERE ARE APPARENT LIMITATIONS IN USE OF THE MOUSE MODELS FOR INSTANCE, RATS EXHIBIT MORE SUITABLE FEATURES FOR TOXICOLOGICAL OR PHYSIOLOGICAL EXAMINATIONS THAN MICE IN THIS STUDY, WE GENERATED 2 LINES OF NRF2 KNOCKOUT RATS BY USING A GENOME EDITING TECHNOLOGY; 1¿LINE HARBORS A 7-BP DELETION ¿7 AND THE OTHER LINE HARBORS A 1-BP INSERTION +1 IN THE NRF2 GENE IN THE LIVERS OF RATS HOMOZYGOUSLY DELETING THE NRF2 GENE, AN ACTIVATOR OF NRF2 SIGNALING, CDDO-IM, COULD NOT INDUCE EXPRESSION OF REPRESENTATIVE NRF2 TARGET GENES TO EXAMINE ALTERED TOXICOLOGICAL RESPONSE, WE TREATED THE NRF2 KNOCKOUT RATS WITH AFLATOXIN B1 AFB1, A CARCINOGENIC MYCOTOXIN THAT ELICITS GENE MUTATIONS THROUGH BINDING OF ITS METABOLITES TO DNA AND FOR WHICH THE RAT HAS BEEN PROPOSED AS A REASONABLE SURROGATE FOR HUMAN TOXICITY INDEED, IN THE NRF2 KNOCKOUT RAT LIVERS THE ENZYMES OF THE AFB1 DETOXICATION PATHWAY WERE SIGNIFICANTLY DOWNREGULATED SINGLE DOSE ADMINISTRATION OF AFB1 INCREASED HEPATOTOXICITY AND BINDING OF AFB1-N7-GUANINE TO HEPATIC DNA IN NRF2 KNOCKOUT RATS COMPARED WITH WILD-TYPE NRF2 KNOCKOUT RATS REPEATEDLY TREATED WITH AFB1 WERE PRONE TO LETHALITY AND CDDO-IM WAS NO LONGER PROTECTIVE THESE RESULTS DEMONSTRATE THAT NRF2 KNOCKOUT RATS ARE QUITE SENSITIVE TO AFB1 TOXICITIES AND THIS RAT GENOTYPE EMERGES AS A NEW MODEL ANIMAL IN TOXICOLOGY.
Li Y, etal., BMC Pharmacol Toxicol. 2018 Mar 20;19(1):11. doi: 10.1186/s40360-018-0201-x.
BACKGROUND: This investigation aimed to evaluate the role of methylation in the regulation of microRNA (miR)-122, miR-125b and miR-106b gene expression and the expression of their target genes during isoniazid (INH)-induced liver injury. METHODS: Rats were given INH 50 mg kg- 1·
d- 1 once per day for 3, 7, 10, 14, 21 and 28 days and were sacrificed. Samples of blood and liver were obtained. RESULTS: We analysed the methylation and expression levels of miR-122, miR-125b and miR-106b and their potential gene targets in livers. Liver tissue pathologies, histological scores and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities changed, indicating the occurrence of liver injury. Relative expression levels of miR-122, miR-125b and miR-106b genes in the liver decreased after INH administration and correlated with the scores of liver pathology and serum AST and ALT activities, suggesting that miR-122, miR-125b and miR-106b are associated with INH-induced liver injury. The amount of methylated miR-122, miR-125b and miR-106b in the liver increased after INH administration and correlated with their expression levels, suggesting the role of methylation in regulating miRNA gene expression. Two miR-122 gene targets, cell cycle protein G1 (Cyclin G1) and cationic amino acid transporter-1 (CAT-1), also increased at the mRNA and protein levels, which suggests that lower levels of miR-122 contribute to the upregulation of Cyclin G1 and CAT-1 and might play a role in INH-induced liver injury. Signal transducer and activator of transcription 3 (STAT3) was a common target gene of miR-125b and miR-106b, and its expression levels of mRNA and protein increased after INH administration. The protein expression of phosphorylated (p)-STAT3 and the mRNA expression of RAR-related orphan receptor gamma (RORγt) regulated by p-STAT3 also increased. Meanwhile, the mRNA and protein expression of interleukin (IL)-17 regulated by RORγt, and the mRNA and protein expression of CXCL1 and MIP-2 regulated by IL-17 increased after INH administration. These results demonstrate that lower levels of hepatic miR-125b and miR-106b contribute to the upregulation of STAT3 in stimulating the secretion of inflammatory factors during INH-induced liver injury. CONCLUSIONS: Our results suggested that DNA methylation probably regulates the expression of miRNA genes (miR-122, miR-125b, and miR-106b), affecting the expression of their gene targets (Cyclin G1, CAT-1, and STAT3) and participating in the process of INH-induced liver injury.
Yoshikawa Y, etal., Toxicology. 2009 Oct 1;264(1-2):89-95. doi: 10.1016/j.tox.2009.07.017. Epub 2009 Jul 30.
Drug-induced hepatotoxicity is a major problem in drug development, and oxidative stress is known as one of the causes. Superoxide dismutases (SODs) are important antioxidant enzymes against reactive oxygen species (ROS). Mitochondria are the major source of sup
eroxide production, and SOD2 is mainly localized in mitochondria and, with other SODs, plays an important role in scavenging superoxide. Previously, we reported the establishment of an adenovirus vector with short hairpin RNA against rat SOD2 (AdSOD2-shRNA), and applied this to evaluate drug-induced cytotoxicity. In this study, infection of AdSOD2-shRNA to Fisher 344 rats resulted in a significant decrease of SOD2 mRNA, protein expression, and SOD2 enzyme activity to 28%, 35%, and 39%, respectively, 7 days after infection. Serum AST and ALT were significantly increased by single oral administration of acetaminophen (1000 mg/kg) to these SOD2-knockdown rats without fasting compared with the control adenovirus infected groups. Heme oxygenase-1 protein, known to be induced by oxidative stress, was detected in SOD2-knockdown rats administered acetaminophen. In addition, protein carbonyl and lipid peroxidation, also known to be induced by oxidative stress, were significantly increased in SOD2 knockdown rats. This is the first report of a SOD2-knockdown rat model that could be useful to evaluate the drug-induced hepatotoxicity with high sensitivity.
Recently, it was reported that the intraperitoneal administration of 30 mg/kg/day troglitazone to heterozygous superoxide dismutase 2 gene knockout (Sod2+/-) mice for twenty-eight days caused liver injury, manifested by increased serum ALT activity and hepatic necrosis. Therefore, we evaluated the r
eproducibility of troglitazone-induced liver injury in Sod2+/- mice, as well as their validity as an animal model with higher sensitivity to mitochondrial toxicity by single-dose treatment with acetaminophen in Sod2+/- mice. Although we conducted a repeated dose toxicity study in Sod2+/- mice treated orally with 300 mg/kg/day troglitazone for twenty-eight days, no hepatocellular necrosis was observed in our study. On the other hand, six hours and twenty-four hours after an administration of 300 mg/kg acetaminophen, plasma ALT activity was significantly increased in Sod2+/- mice, compared to wild-type mice. In particular, six hours after administration, hepatic centrilobular necrosis was observed only in Sod2+/- mice. These results suggest that Sod2+/- mice are valuable as an animal model with higher sensitivity to mitochondrial toxicity. On the other hand, it was suggested that the mitochondrial damage alone might not be the major cause of the troglitazone-induced idiosyncratic liver injury observed in humans.
In this study, we examined the effects of low levels and sub-chronic exposure to methylmercury (MeHg) on butyrylcholinesterase (BuChE) activity in rats. Moreover, we examined the relationship between BuChE activity and oxidative stress biomarkers [delta-aminolevulinic acid dehydratase (delta-ALA-D)
and malondialdehyde levels (MDA)] in the same animals. Rats were separated into three groups (eight animals per group): (Group I) received water by gavage; (Group II) received MeHg (30 microg/kg/day) by gavage; (Group III) received MeHg (100 microg/kg/day). The time of exposure was 90 days. BuChE and ALA-D activities were measured in serum and blood, respectively; whereas MDA levels were measured in plasma. We found BuChE and ALA-D activities decreased in groups II and III compared to the control group. Moreover, we found an interesting negative correlation between plasmatic BuChE activity and MDA (r = -0.85; p < 0.01) and a positive correlation between plasmatic BuChE activity and ALA-D activities (r = 0.78; p < 0.01), thus suggesting a possible relationship between oxidative damage promoted by MeHg exposure and the decrease of BuChE activity. In conclusion, long-term exposure to low doses of MeHg decreases plasmatic BuChE activity. Moreover, the decrease in the enzyme is strongly correlated with the oxidative stress promoted by the metal exposure. This preliminary finding highlights a possible mechanism for MeHg to reduce BuChE activity in plasma. Additionally, this enzyme could be an auxiliary biomarker on the evaluation of MeHg exposure.
Erkekoglu P, etal., Arch Environ Contam Toxicol. 2012 Apr;62(3):539-47. Epub 2011 Oct 16.
This study aimed to investigate the effects of di(2-ethylhexyl)phthalate (DEHP) on Sertoli-cell vimentin filaments and germ-cell apoptosis in testes of pubertal rats at different selenium (Se) status. Se deficiency was produced in 3-weeks old Sprague-Dawley rats by feeding them =0.05 Se mg/kg die
t for 5 weeks, Se supplementation group was on 1 mg Se/kg diet, and DEHP was applied at 1000 mg/kg dose by gavage during the last 10 days of the feeding period. The diet with excess Se did not cause any appreciable alteration in vimentin staining and apoptosis of germ cells, but Se deficiency caused a mild decrease in the intensity of vimentin immunoreactivity and enhanced germ-cell apoptosis significantly (approximately 3-fold, p <0.0033). DEHP exposure caused disruption and collapse of vimentin filaments and significantly induced apoptotic death of germ cells (approximately 8-fold, p <0.0033). In DEHP-exposed Se-deficient animals, compared with the control, collapse of vimentin filaments was more prominent; there was serious damage to the seminiferous epithelium; and a high increment (approximately 25-fold, p <0.0033) in apoptotic germ cells was observed. Thus, Se deficiency exacerbated the toxicity of DEHP on Sertoli cells and spermatogenesis, whereas Se supplementation provided protection. These results put forward the critical role of Se in the modulation of redox status of testicular cells and emphasize the importance of Se status for reproductive health.
Thomas AG, etal., Brain Res. 1999 Oct 2;843(1-2):48-52.
Folates have been shown to be neurotoxic and convulsive. Endogenously, folates exist in the brain in a polyglutamated form with 1-7 terminal glutamates (approx. 1 microM). The brain enzyme N-acetylated alpha-linked acidic dipeptidase (NAALADase) has been shown t
o remove sequentially the gamma-linked glutamates from folic acid polyglutamates. We report that, at high concentrations (300 microM-30 mM), a folic acid hexaglutamate analog is dose-dependently toxic to dissociated rat cortical cultures and that this toxicity is reversed by 2-PMPA, a potent and selective NAALADase inhibitor. These data suggest a new mechanism for folic acid toxicity.
Pulmonary toxoplasmosis is a rarely recognized opportunistic infection in immunocompromised patients. A few case reports have described pulmonary toxoplasmosis in human immunodeficiency virus-infected patients in association
with Toxoplasma gondii central nervous system disease. We encountered six cases of pulmonary toxoplasmosis in human immunodeficiency virus-infected patients who presented with a protracted febrile illness, respiratory symptoms, and an abnormal chest roentgenogram in the absence of neurologic findings. No clinical or roentgenographic features distinguished T gondii pneumonitis from more common opportunistic pulmonary infections. As the acquired immunodeficiency syndrome epidemic progresses, the presenting illnesses have evolved. Toxoplasma gondii must be considered a potential cause of pulmonary disease during the evaluation of human immunodeficiency virus-infected patients with respiratory symptoms.
Hendriksen PJ, etal., Toxicol Appl Pharmacol. 2007 Dec 1;225(2):171-88. Epub 2007 Aug 29.
The present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were
administered daily for 14 days at the Lowest-Observed-Adverse-Effect-Level (LOAEL) or at a two- or threefold lower concentration individually or in binary or ternary mixtures. The compounds had strong antagonistic effects on each other's gene expression changes, which included several genes encoding Phase I and II metabolizing enzymes. On the other hand, the mixtures affected the expression of "novel" genes that were not or little affected by the individual compounds. The three compounds exhibited a synergistic interaction on gene expression changes at the LOAEL in the liver and both at the sub-LOAEL and LOAEL in the kidney. Many of the genes induced by mixtures but not by single compounds, such as Id2, Nr2f6, Tnfrsf1a, Ccng1, Mdm2 and Nfkb1 in the liver, are known to affect cellular proliferation, apoptosis and tissue-specific function. This indicates a shift from compound specific response on exposure to individual compounds to a more generic stress response to mixtures. Most of the effects on cell viability as concluded from transcriptomics were not detected by classical toxicological endpoints illustrating the benefit of increased sensitivity of assessing gene expression profiling. These results emphasize the benefit of applying toxicogenomics in mixture interaction studies, which yields biomarkers for joint toxicity and eventually can result in an interaction model for most known toxicants.
Cote JF, etal., Clin Cancer Res. 2007 Jun 1;13(11):3269-75. Epub 2007 May 17.
PURPOSE: Irinotecan (CPT-11) is approved in metastatic colorectal cancer treatment and can cause severe toxicity. The main purpose of our study was to assess the role of different polymorphisms on the occurrence of hematologic tox
/span>icities and disease-free survival in high-risk stage III colon cancer patients receiving 5-fluorouracil (5FU) and CPT-11 adjuvant chemotherapy regimen in a prospective randomized trial. EXPERIMENTAL DESIGN: Four hundred patients were randomized in a phase III trial comparing LV5FU2 to LV5FU2 + CPT-11. DNA from 184 patients was extracted and genotyped to detect nucleotide polymorphism: 3435C>T for ABCB1, 6986A>G for CYP3A5, UGT1A1*28 and -3156G>A for UGT1A1. RESULTS: Genotype frequencies were similar in both treatment arms. In the test arm, no significant difference was observed in toxicity or disease-free survival for ABCB1 and CYP3A5 polymorphisms. UGT1A1*28 homozygous patients showed more frequent severe hematologic toxicity (50%) than UGT1A1*1 homozygous patients (16.2%), P = 0.06. Moreover, patients homozygous for the mutant allele of -3156G>A UGT1A1 polymorphism showed more frequent severe hematologic toxicity (50%) than patients homozygous for wild-type allele (12.5%), P = 0.01. This toxicity occurred significantly earlier in homozygous mutant than wild-type homozygous patients (P = 0.043). In a Cox model, the hazard ratio for severe hematologic toxicity is significantly higher for patients with the A/A compared with the G/G genotype [hazard ratio, 8.4; 95% confidence interval, 1.9-37.2; P = 0.005]. CONCLUSIONS: This study supports the clinical utility of identification of UGT1A1 promoter polymorphisms before LV5FU2 + CPT-11 treatment to predict early hematologic toxicity. The -3156G>A polymorphism seems to be a better predictor than the UGT1A1 (TA)(6)TAA>(TA)(7)TAA polymorphism.
BACKGROUND: Previously, we have demonstrated that human ABCB5 is a full-sized ATP-binding cassette transporter that shares strong homology with ABCB1/P-glycoprotein. ABCB5-transfected cells showed resistance to taxanes and anthracyclines. Herein, we further screened ABCB5 substrates, and explored th
e mechanism of resistance. METHODS: Sensitivity of the cells to test compounds was evaluated using cell growth inhibition assay. Cellular levels of buthionine sulfoximine (BSO), glutathione and amino acids were measured using HPLC and an enzyme-based assay. Cellular and vesicular transport of glutathione was evaluated by a radiolabeled substrate. Expression levels of glutathione-metabolizing enzymes were assessed by RT-PCR. RESULTS: Human ABCB5-transfected 293/B5-11 cells and murine Abcb5-transfected 293/mb5-8 cells showed 6.5- and 14-fold higher resistance to BSO than the mock-transfected 293/mock cells, respectively. BSO is an inhibitor of gamma-glutamylcysteine ligase (GCL), which is a key enzyme of glutathione synthesis. 293/B5-11 and 293/mb5-8 cells also showed resistance to methionine sulfoximine, another GCL inhibitor. A cellular uptake experiment revealed that BSO accumulation in 293/B5-11 and 293/mb5-8 cells was similar to that in 293/mock cells, suggesting that BSO is not an ABCB5 substrate. The cellular glutathione content in 293/B5-11 and 293/mb5-8 cells was significantly higher than that in 293/mock cells. Evaluation of the BSO effect on the cellular glutathione content showed that compared with 293/mock cells the BSO concentration required for a 50 % reduction in glutathione content in 293/B5-11 and 293/mb5-8 cells was approximately 2- to 3-fold higher. This result suggests that the BSO resistance of the ABCB5- and Abcb5-transfected cells can be attributed to the reduced effect of BSO on the transfectants. Cellular and vesicular transport assays showed that the transport of radiolabeled glutathione in 293/B5-11 cells was similar to that in 293/mock cells. The mRNA expression of genes encoding glutathione-metabolizing enzymes in 293/B5-11 cells was similar to that in 293/mock cells. The cellular content of Glu, a precursor of glutathione, in 293/B5-11 and 293/mb5-8 cells was higher than that in 293/mock cells. CONCLUSIONS: ABCB5/Abcb5-transfected cells showed resistance to BSO, which is not a substrate of ABCB5. Our results suggest that ABCB5/Abcb5 upregulates cellular glutathione levels to protect cells from various poisons.
Tenreiro S, etal., Hum Mol Genet. 2016 Jan 15;25(2):275-90. doi: 10.1093/hmg/ddv470. Epub 2015 Nov 18.
Synucleins belong to a family of intrinsically unstructured proteins that includes alpha-synuclein (aSyn), beta-synuclein (bSyn) and gamma-synuclein (gSyn). aSyn is the most studied member of the synuclein family due to its central role in genetic and sporadic forms of Parkinson's disease and other
neurodegenerative disorders known as synucleionopathies. In contrast, bSyn and gSyn have been less studied, but recent reports also suggest that, unexpectedly, these proteins may also cause neurotoxicity. Here, we explored the yeast toolbox to investigate the cellular effects of bSyn and gSyn. We found that bSyn is toxic and forms cytosolic inclusions that are similar to those formed by aSyn. Moreover, we found that bSyn shares similar toxicity mechanisms with aSyn, including vesicular trafficking impairment and induction of oxidative stress. We demonstrate that co-expression of aSyn and bSyn exacerbates cytotoxicity, due to increased dosage of toxic synuclein forms, and that they are able to form heterodimers in both yeast and in human cells. In contrast, gSyn is not toxic and does not form inclusions in yeast cells. Altogether, our findings shed light into the question of whether bSyn can exert toxic effects and confirms the occurrence of aSyn/bSyn heterodimers, opening novel perspectives for the development of novel strategies for therapeutic intervention in synucleinopathies.
Yang S, etal., Nat Commun. 2015 Sep 30;6:8297. doi: 10.1038/ncomms9297.
The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that p
otently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.
Lin YY, etal., Cardiovasc Toxicol. 2017 Apr;17(2):163-174. doi: 10.1007/s12012-016-9370-2.
Food restriction and weight loss are known to prevent obesity-related heart diseases. This study investigates whether food restriction elicits anti-apoptotic and pro-survival effects on high-fat diet-induced obese hearts. Histopathological analysis, TUNEL assay, and Western blotting were performed o
n the excised hearts from three groups of Sprague-Dawley rats which were fed with regular chow diet (CON, 13.5 % fat), a high-fat ad libitum diet (HFa, 45 % fat), or a high-fat food-restricted diet (HFr, 45 % fat, maintaining the same weight as CON) for 12 weeks. Body weight, blood pressure, heart weight, triglycerides, insulin, HOMAIR, interstitial spaces, cardiac fibrosis, and cardiac TUNEL-positive apoptotic cells were increased in HFa relative to CON, whereas these parameters were decreased in HFr relative to HFa. The protein levels of cardiac Fas ligand, Fas receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas receptor-dependent apoptotic pathways), as well as t-Bid/Bid, Bax/Bcl-2, Bad/p-Bad, Cytochrome c, activated caspase-9, and activated caspase-3 (mitochondria-dependent apoptotic pathways) in HFr were lower than those in HFa. Moreover, the Bcl-xL and IGF-1-related components of IGF-1, p-PI3 K/PI3 K, p-Akt/Akt in HFr were higher than those in HFa. Our findings suggest that a restricted high-fat diet for maintaining weight control could diminish cardiac Fas receptor-dependent and mitochondria-dependent apoptotic pathways as well as might enhance IGF-1-related pro-survival pathways. In sum, food restriction for maintaining normal weight could elicit anti-apoptotic and pro-survival effects on high-fat diet-induced obese hearts.
Naito Y, etal., Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995 Jan;110(1):71-5.
We tested antibacterial and antiviral activities of rat cystatin S, a cysteine proteinase inhibitor, belonging to the family 2 cystatins against 18 different bacterial species and poliovirus type 1 (Sabin). Rat cystatin S specifically inhibited the growth of a human oral anaerobic bacterium Porphyro
Naphthalene, a ubiquitous environmental contaminant, produces cytotoxicity in nonciliated bronchiolar epithelial (Clara) cells in mice; rats are refractory to lung cytotoxicity from naphthalene. In contrast, 1-nitronaphthale
ne is a potent toxicant in both species. Naphthalene is metabolized by CYP2F to a 1,2-epoxide, the first and obligate step in events leading to cytotoxicity. 1-Nitronaphthalene is metabolized to both the 5,6- and the 7,8-epoxides with the 7,8-epoxide predominating in lung. Previous studies have demonstrated recombinant CYP2F2 (mouse) to efficiently metabolize both naphthalene and 1-nitronaphthalene. To better understand the mechanism for the unique toxicity profiles for both compounds, a CYP2F ortholog (CYP2F4) was isolated from rat lung and expressed using a baculovirus system. Recombinant CYP2F4 efficiently generates 1R,2S-naphthalene oxide (K(m) = 3 microM, V(max) = 107 min(-1)) and the 5,6- and 7,8-epoxides of 1-nitronaphthalene (K(m) = 18 microM, V(max) = 25 min(-1) based on total generated glutathione conjugates). Kinetics and regio/stereoselectivity of rat CYP2F4 were indistinguishable from mouse CYP2F2. These results, combined with our recent immunomapping studies demonstrating minimal pulmonary CYP2F expression in rats, indicate that CYP2F expression is the factor most clearly associated with susceptibility to naphthalene-induced pneumotoxicity. CYP2F4 failed to display an enhanced ability to bioactivate 1-nitronaphthalene, an ability that could have potentially compensated for the lower CYP2F pulmonary expression levels in the rat, yet equal species susceptibilities. These results suggest the importance of other P450 enzymes in the epoxidation/bioactivation of 1-nitronaphthalene. Expression of recombinant CYP2F1 (human) yielded an immunoreactive protein with no detectable CO-difference spectrum suggesting inadequate heme incorporation.
The phosphoinositide-dependent kinase 1 (PDK1)/Akt pathway is an important regulator of multiple biological processes including cell growth, survival, and glucose metabolism. In light of the mechanistic link between Akt signaling and prostate tumorigenesis, we evaluated the chemopreventive relevance
of inhibiting this pathway in the transgenic adenocarcinoma of the model prostate (TRAMP) mouse with OSU03012, a celecoxib-derived, but COX-2-inactive, PDK1 inhibitor. Beginning at ten weeks of age when prostatic intraepithelial neoplasia (PIN) lesions are well developed, TRAMP mice received OSU03012 via daily oral gavage for 8 weeks. The drug treatment significantly decreased the weight of all 4 prostate lobes as well as the grade of epithelial proliferation in the dorsal and lateral lobes compared to vehicle-treated control mice. The incidences of carcinoma and metastasis were decreased, although not to statistically significant levels. Treated mice lost body fat and failed to gain weight independent of food intake. This change and periportal hepatocellular atrophy can be linked to sustained PDK1 inhibition through downstream inactivation of glycogen synthase. Centrilobular hepatocellular hypertrophy and necrosis of Type II skeletal myofibers were also compound-related effects. We conclude that targeting of the PDK1/Akt pathway has chemopreventive relevance in prostate cancer and causes other in vivo effects mediated in part by an alteration of bioenergetic signaling.
Lima CH, etal., Toxicol Ind Health. 2005 Oct;21(9):207-13. doi: 10.1191/0748233705th230oa.
Three groups of male F344 rats were exposed to a water-soluble metal working fluid (MWF) aerosol at concentrations of 20, 60 or 180 mg/m3 for 6 h/day, five days a week, for 13 weeks in inhalation chambers. The aerosol particles were normally distributed and the mass median aerodynamic diameter was 1
.56 microm. Despite the absence of clinical findings or significant changes in body weight during the 13-week exposure period, the numbers of white blood cells and lung weights were significantly higher at the end of the 13-week exposure period. Exposure to 20 mg/m3 of the MWF aerosol was found to have an effect on the respiratory system, including an accumulation of foamy macrophages in the bronchoalveolar lavage (BAL) fluid and thickening of the alveolar walls in the histopathology. The level of histamine and number of polymorphonuclear (PMN) cells were also higher in the BAL fluid from the rats exposed to 60 mg/m3 of the MWF aerosol, while the respiratory inflammation was most pronounced in the rats exposed to 180 mg/m3 of the MWF aerosol, including the accumulation of PMNs and foamy macrophages in the BAL cells, lung weight increase and thickening of the alveolar walls. Immunoglobulin IgG2a level was also lower in the sera from the rats exposed to 180 mg/m3 of the MWF aerosol. Therefore, even though no clinical symptoms were observed in the rats exposed to the high MWF concentration, respiratory inflammation was still induced by a relatively low concentration of the MWF, while the immune system was affected by the high MWF concentration.
Heinloth AN, etal., Toxicol Pathol. 2007 Feb;35(2):276-83. doi: 10.1080/01926230601178207.
Liver diseases that induce nonuniform lesions often give rise to greatly varying histopathology results in needle biopsy samples from the same patient. This study examines whether gene expression analysis of such biopsies could provide a more representative picture of the overall condition of the li
ver. We utilized acetaminophen (APAP) as a model hepatotoxicant that gives a multifocal pattern of necrosis following toxic doses. Rats were treated with a single toxic or subtoxic dose of APAP and sacrificed 6, 24, or 48 hours after exposure. Left liver lobes were harvested, and both gene expression and histopathological analysis were performed on biopsy-sized samples. While histopathological evaluation of such small samples revealed significant sample to sample differences after toxic doses of APAP, gene expression analysis provided a very homogeneous picture and allowed clear distinction between subtoxic and toxic doses. The main biological function differentiating animals that received sub-toxic from those that had received toxic doses was an acute stress response at 6 hours and signs of energy depletion at later time points. Our results suggest that the use of genomic analysis of biopsy samples together with histopathological analysis could provide a more precise representation of the overall condition of a patient's liver than histopathological evaluation alone.
Spaan AN, etal., Science. 2022 Jun 17;376(6599):eabm6380. doi: 10.1126/science.abm6380. Epub 2022 Jun 17.
The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typical
ly triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.
Ioannou MS, etal., Cell. 2019 May 30;177(6):1522-1535.e14. doi: 10.1016/j.cell.2019.04.001. Epub 2019 May 23.
Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic f
atty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial β-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.
Phosgene inhalation results in acute lung injury (ALI) mostly, pulmonary edema and even acute respiratory distress syndrome, but there is no specific antidote. Inflammatory cells play an important role in the ALI caused by phosgene. Intercellular adhesion molecule-1 (ICAM-1) is a critical factor fo
r inflammatory organ injury. We hypothesized that pentoxifylline (PTX), an inhibitor of leukocyte activation, would have a protective effect on experimental phosgene-induced lung injury rats by inhibiting ICAM-1. To prove this hypothesis, we used rat models of phosgene (400 ppm x 1 min)-induced injury to investigate: (1) the time course of lung injury (control 1, 3, 6, 12, 24, and 48 h group), including pathological changes in hematoxylin and eosin staining and transmission electron microscope, myeloperoxidase (MPO) activity by colorimetric method and ICAM-1 protein level detected by western blot, (2) At 3 h after phosgene exposure, protective effects of different dosages of PTX (50 mg/kg and 100 mg/kg) administration were evaluated by MPO activity, ICAM-1 differential expression and WBC count in bronchoalveolar lavage fluid. The results showed that inflammatory cells emerged out of lung blood vessels at 3 h after phosgene exposure. The MPO activity of lung tissue increased significantly from 3 to 48 h after phosgene exposure (P < 0.05) and ICAM-1 expression presented a similar change, especially at 3 h and 24 h (P < 0.05). After pretreatment and treatment with PTX (100 mg/kg), significant protective effects were shown (P < 0.05). These data supported our hypothesis that PTX reduced phosgene-induced lung injury, possibly by inhibiting ICAM-1 differential expression.
Konstandi M, etal., Basic Clin Pharmacol Toxicol. 2008 Jan;102(1):35-44. Epub 2007 Oct 31.
The potential involvement of catecholamines and in particular of alpha(2)-adrenoceptor-related signalling pathways, in the regulation of drug-metabolizing enzymes by stress was investigated in Wistar rats after exposure to the environmental pollutant benzo(alpha)pyrene. For this purpose, total cytoc
hrome P450 content, the CYP1A2 mRNA levels, 7-methoxyresorufin-O-dealkylase (MROD), 7-pentoxyresorufin-O-dealkylase (PROD) and p-nitrophenol hydroxylase activity levels were determined in the livers of rats exposed to repeated restraint stress after treatment with benzo(alpha)pyrene coupled with pharmacological manipulations of peripheral and/or central catecholamines and alpha(2)-adrenoceptors. The data show that stress is a significant factor in the regulation of CYP1A2 induction and that catecholamines play a central role in the stress-mediated modulation of hepatic CYP1A2 inducibility by benzo(alpha)pyrene. The up-regulating effect of stress on benzo(alpha)pyrene-induced CYP1A2 gene expression was eliminated after a generalized catecholamine depletion with reserpine. Similarly, in a state where only peripheral catecholamines were depleted and central catecholamines remained intact after guanethidine administration, the up-regulating effect of stress was eliminated. It is apparent that stress up-regulates the induction of CYP1A2 by benzo(alpha)pyrene mainly via peripheral catecholamines, while central catecholamines hold a minor role in the regulation. Pharmacological manipulations of alpha(2)-adrenoceptors appear to interfere with the effect of stress on the regulation of CYP1A2 inducibility. Either blockade or stimulation of alpha(2)-adrenoceptors with atipamezole and dexmedetomidine respectively, eliminated the up-regulating effect of stress on CYP1A2 benzo(alpha)pyrene-induced expression, while it enhanced MROD activity. In contrast, stress and pharmacological manipulations of catecholamines and alpha(2)-adrenoceptors did not affect total P450 content, the CYP2B1/2-dependent PROD and the CYP2E1-dependent p-nitrophenol hydroxylase activities. In conclusion, stress is a significant factor in the regulation of the CYP1A2 inducibility by benzo(alpha)pyrene, which in turn is involved in the metabolism of a large spectrum of toxicants, drugs and carcinogenic agents. Although the mechanism underlying the stress effect on CYP1A2 induction has not been clearly elucidated, it appears that peripheral catecholamines hold a predominant role, while central catecholamines and in particular, central noradrenergic pathways hold a minor role.
Smith JC and Curry SC, J Med Toxicol. 2011 Sep;7(3):220-3. doi: 10.1007/s13181-011-0158-2.
INTRODUCTION: Amitriptyline and its metabolite, nortriptyline, are metabolized, in part, by CYP2D6, a polymorphic enzyme. About 8% of Caucasians are deficient in CYP2D6 activity. CASE REPORT: We present the case of a comatose woman who intentionally overdosed on amitriptyline and displayed rising se
rum total tricyclic antidepressant concentrations for at least 6 days after admission. Serial immunoassay total tricyclic antidepressant concentrations in our patient showed gradual decline beginning day 7, although the patient did not regain normal mental status until day 12. Genotyping revealed the patient to be homozygous for the CYP2D6*4 allele, the most common explanation of CYP2D6 enzymatic deficiency among Caucasians. Patients taking tricyclic antidepressants who are homozygous for CYP2D6*4 demonstrate >3 times concentration-time curve (AUCs) and prolonged elimination half-lives, especially of secondary amines such as nortriptyline. DISCUSSION: We believe this is the first report describing toxicokinetics after tricyclic antidepressant overdose in a CYP2D6-deficient patient.
To elucidate the effect of size on the pulmonary toxicity of single-wall carbon nanotubes (SWCNTs), we prepared two types of dispersed SWCNTs, namely relatively thin bundles with short linear shapes (CNT-1) and thick bundles with long linear shapes (CNT-2), and
conducted rat intratracheal instillation tests and in vitro cell-based assays using NR8383 rat alveolar macrophages. Total protein levels, MIP-1α expression, cell counts in BALF, and histopathological examinations revealed that CNT-1 caused pulmonary inflammation and slower recovery and that CNT-2 elicited acute lung inflammation shortly after their instillation. Comprehensive gene expression analysis confirmed that CNT-1-induced genes were strongly associated with inflammatory responses, cell proliferation, and immune system processes at 7 or 30 d post-instillation. Numerous genes were significantly upregulated or downregulated by CNT-2 at 1 d post-instillation. In vitro assays demonstrated that CNT-1 and CNT-2 SWCNTs were phagocytized by NR8383 cells. CNT-2 treatment induced cell growth inhibition, reactive oxygen species production, MIP-1α expression, and several genes involved in response to stimulus, whereas CNT-1 treatment did not exert a significant impact in these regards. These results suggest that SWCNTs formed as relatively thin bundles with short linear shapes elicited delayed pulmonary inflammation with slower recovery. In contrast, SWCNTs with a relatively thick bundle and long linear shapes sensitively induced cellular responses in alveolar macrophages and elicited acute lung inflammation shortly after inhalation. We conclude that the pulmonary toxicity of SWCNTs is closely associated with the size of the bundles. These physical parameters are useful for risk assessment and management of SWCNTs.
Zhang S, etal., Reprod Toxicol. 2020 Jun 10;96:90-94. doi: 10.1016/j.reprotox.2020.06.006.
Due to the cellular entry of the novel coronavirus (SARS-CoV-2) modulated by angiotensin converting enzyme 2 (ACE2), the ACE2 bearing prostate is therefore hypothesized as a susceptible organ to COVID-19. To delineate whether the pathogenic SARS-CoV-2 of the coronavirus disease (COVID-19) could be d
etected in the expressed prostatic secretion (EPS), a total of ten male patients with confirmed COVID-19 were recruited. All patients were stratified into two groups: one group with positive nasopharyngeal swabbing SARS-CoV-2 within 3 days of the EPS taken day (PNS group, n = 3) and the other group with previously positive nasopharyngeal swabbing SARS-CoV-2 but turned negative before the taken day (PNNS group, n = 7). The COVID-19 patients showed elevated inflammatory indictors, i.e. C-reaction protein (3.28 (1.14, 33.33) mg/L), erythrocyte sedimentation rate (22.50 (8.00, 78.50) mm/h), and interleukin-6 (6.49 (4.96, 21.09) pg/ml). Serum IgM against SARS-CoV-2 was only positive in the PNS group, whereas serum IgG was positive for all patients. Furthermore, our data showed for the first time that none of the COVID-19 patients had positive SARS-CoV-2 RNA in EPS. To this end, this study found the negativity of SARS-CoV-2 in EPS and possibly exclude the sexual transmission of COVID-19.
Wang Y, etal., J Exp Med. 2016 May 2;213(5):667-75. doi: 10.1084/jem.20151948. Epub 2016 Apr 18.
Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor that recognizes changes in the lipid microenvironment, which may occur during amyloid beta (Abeta) accumulation and neuronal degeneration in Alzheimer's disease (AD). Rare TREM2 variants that affect TREM2 function lead
to an increased risk of developing AD. In murine models of AD, TREM2 deficiency prevents microglial clustering around Abeta deposits. However, the origin of myeloid cells surrounding amyloid and the impact of TREM2 on Abeta accumulation are a matter of debate. Using parabiosis, we found that amyloid-associated myeloid cells derive from brain-resident microglia rather than from recruitment of peripheral blood monocytes. To determine the impact of TREM2 deficiency on Abeta accumulation, we examined Abeta plaques in the 5XFAD model of AD at the onset of Abeta-related pathology. At this early time point, Abeta accumulation was similar in TREM2-deficient and -sufficient 5XFAD mice. However, in the absence of TREM2, Abeta plaques were not fully enclosed by microglia; they were more diffuse, less dense, and were associated with significantly greater neuritic damage. Thus, TREM2 protects from AD by enabling microglia to surround and alter Abeta plaque structure, thereby limiting neuritic damage.
Dallas ML, etal., Brain Res. 2008 Jan 16;1189:51-7. Epub 2007 Nov 9.
Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functi
onal role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.
Gonzalez Melo M, etal., Mol Genet Metab. 2021 Dec;134(4):287-300. doi: 10.1016/j.ymgme.2021.10.003. Epub 2021 Nov 10.
Glutaric aciduria type I (GA-I, OMIM # 231670) is an autosomal recessive inborn error of metabolism caused by deficiency of the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH). The principal clinical manifestation in GA-I patients is striatal injury most often triggered by catabolic stress. E
arly diagnosis by newborn screening programs improved survival and reduced striatal damage in GA-I patients. However, the clinical phenotype is still evolving in the aging patient population. Evaluation of long-term outcome in GA-I patients recently identified glomerular filtration rate (GFR) decline with increasing age. We recently created the first knock-in rat model for GA-I harboring the mutation p.R411W (c.1231 C>T), corresponding to the most frequent GCDH human mutation p.R402W. In this study, we evaluated the effect of an acute metabolic stress in form of high lysine diet (HLD) on young Gcdhki/ki rats. We further studied the chronic effect of GCDH deficiency on kidney function in a longitudinal study on a cohort of Gcdhki/ki rats by repetitive 68Ga-EDTA positron emission tomography (PET) renography, biochemical and histological analyses. In young Gcdhki/ki rats exposed to HLD, we observed a GFR decline and biochemical signs of a tubulopathy. Histological analyses revealed lipophilic vacuoles, thinning of apical brush border membranes and increased numbers of mitochondria in proximal tubular (PT) cells. HLD also altered OXPHOS activities and proteome in kidneys of Gcdhki/ki rats. In the longitudinal cohort, we showed a progressive GFR decline in Gcdhki/ki rats starting at young adult age and a decline of renal clearance. Histopathological analyses in aged Gcdhki/ki rats revealed tubular dilatation, protein accumulation in PT cells and mononuclear infiltrations. These observations confirm that GA-I leads to acute and chronic renal damage. This raises questions on indication for follow-up on kidney function in GA-I patients and possible therapeutic interventions to avoid renal damage.
Firoved AM, etal., Am J Pathol. 2005 Nov;167(5):1309-20.
Bacillus anthracis edema toxin (ET), an adenylyl cyclase, is an important virulence factor that contributes to anthrax disease. The role of ET in anthrax pathogenesis is, however, poorly understood. Previous studies using crude tox
in preparations associated ET with subcutaneous edema, and ET-deficient strains of B. anthracis showed a reduction in virulence. We report the first comprehensive study of ET-induced pathology in an animal model. Highly purified ET caused death in BALB/cJ mice at lower doses and more rapidly than previously seen with the other major B. anthracis virulence factor, lethal toxin. Observations of gross pathology showed intestinal intralumenal fluid accumulation followed by focal hemorrhaging of the ileum and adrenal glands. Histopathological analyses of timed tissue harvests revealed lesions in several tissues including adrenal glands, lymphoid organs, bone, bone marrow, gastrointestinal mucosa, heart, and kidneys. Concomitant blood chemistry analyses supported the induction of tissue damage. Several cytokines increased after ET administration, including granulocyte colony-stimulating factor, eotaxin, keratinocyte-derived cytokine, MCP-1/JE, interleukin-6, interleukin-10, and interleukin-1beta. Physiological measurements also revealed a concurrent hypotension and bradycardia. These studies detail the extensive pathological lesions caused by ET and suggest that it causes death due to multiorgan failure.
BACKGROUND: We report the case of a patient with Shiga toxin (Stx)-associated hemolytic-uremic syndrome (HUS) (STEC-HUS) with a concomitant heterozygous mutation of the gene coding for complement Factor H (CFH). CASE DIAGNOSIS/TREATMENT: An 18-month-old patient
presented with hemolytic anemia and thrombotic microangiopathy in the context of acute gastroenteritis. While the patient did not show kidney or other organ failure, he had persistent hemolysis and complement 3 activation (low C3), leading to the decision to commence immunotherapy with eculizumab (Soliris(R)) together with transient antibiotic coverage and meningococcal vaccination. Patient outcome was favorable. Diagnostic work-up identified Escherichia coli-associated Type 2 Shiga toxin. Complement analysis showed a heterozygous mutation of the CFH gene (c.2103 G>A, p. Trp701X) resulting in a quantitative CFH defect. CONCLUSIONS: We report a case of STEC-HUS with a quantitative CFH defect caused by a mutation of the CFH gene. To the best of our knowledge, very few cases of STEC-HUS with complement gene mutation have been reported, but none to date with a CFH mutation. We therefore suggest that complement analyses be performed in patients diagnosed with STEC-HUS in association with low C3 levels, especially in patients presenting with severe or unexpected clinical symptoms.
Dendritic cells (DCs) are critical for resistance to Toxoplasma gondii, and infection with this pathogen leads to increased numbers of DCs at local sites of parasite replication and in secondary lymphoid organs, but the factors that regulate this expansion are
poorly understood. The cytokine Flt3 ligand (Flt3L) is critical for the generation and maintenance of DCs, and Flt3L(-/-) mice were found to be highly susceptible to acute toxoplasmosis. This phenotype correlated with decreased production of IL-12 and IFN-gamma, as well as impaired NK cell responses. Surprisingly, despite low basal numbers of DCs, Flt3L(-/-) mice infected with T. gondii displayed an expansion of CD8alpha(+) and CD11b(lo)CD8alpha(-) DCs. Infection also induced an expansion of parasite-specific CD4(+) and CD8(+) T cells in Flt3L(-/-) mice; however, these cells were reduced in number and displayed impaired ability to produce IFN-gamma relative to wild-type controls. Exogenous IL-12 treatment partially restored NK and T cell responses in Flt3L(-/-) mice, as well as acute resistance; however, these mice eventually succumbed to toxoplasmic encephalitis, despite the presence of large numbers of DCs and T cells in the brain. These results highlight the importance of Flt3L for resistance to toxoplasmosis and demonstrate the existence of Flt3L-independent pathways that can mediate infection-induced expansion of DCs and T cell priming.
Zwadlo C and Borlak J, Toxicol Appl Pharmacol. 2006 Jun 15;213(3):224-34. Epub 2005 Dec 15.
The Ca(2+) antagonists nifedipine has been used for more than three decades to treat hypertension, but its effects on the transcriptional regulation of cardiac genes are basically unknown. We therefore studied expression of genes coding for ion channels, ion transporters and associated partners as w
ell as Ca(2+)-binding proteins in ventricular tissue of normotensive and spontaneously hypertensive (SH) rats after repeated intraperitoneally (i.p.) dosing of nifedipine. Notably, we observed significant (P < 0.05) repression in transcript levels of most of the genes investigated, including cardiac Na(+), K(+), Ca(2+)-channels (L-type Ca(2+)-channel, K(ir)3.4, K(ir)6.1, Na(v)1.5), ATP-driven ion exchangers (Na(+)-K(+)-ATPase, NCX-1, PMCA 2 and 4, SERCA 2a and 2b) and their associated partners (phospholamban, RyR-2) as well as cytoskeletal proteins (alpha and beta-MHC, alpha cardiac and alpha skeletal actin, troponin T and I). Repression in transcript levels was, however, only seen in ventricular tissue of hypertensive animals. This points to fundamental differences in the mode of action of nifedipine in diseased and healthy animals. Indeed, this preponderance of repressed genes will promote disturbed ion homeostasis to result in contractile dysfunction. It is of considerable importance that repressed gene expression was also seen in end-stage human heart failure. We propose repression of cardiac-specific gene expression as a hallmark of nifedipine treatment in hypertrophic hearts.
Schlief ML, etal., Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14919-24. Epub 2006 Sep 26.
Menkes disease, a fatal neurodegenerative disorder resulting in seizures, hypotonia, and failure to thrive, is due to inherited loss-of-function mutations in the gene encoding a copper-transporting ATPase (Atp7a) on the X chromosome. Although affected patients exhibit signs and symptoms of copper d
eficiency, the mechanisms resulting in neurologic disease remain unknown. We recently discovered that Atp7a is required for the production of an NMDA receptor-dependent releasable copper pool within hippocampal neurons, a finding that suggests a role for copper in activity-dependent modulation of synaptic activity. In support of this hypothesis, we now demonstrate that copper chelation exacerbates NMDA-mediated excitotoxic cell death in primary hippocampal neurons, whereas the addition of copper is specifically protective and results in a significant decrease in cytoplasmic Ca(2+) levels after NMDA receptor activation. Consistent with the known neuroprotective effect of NMDA receptor nitrosylation, we show here that this protective effect of copper depends on endogenous nitric oxide production in hippocampal neurons, demonstrating in vivo links among neuroprotection, copper metabolism, and nitrosylation. Atp7a is required for these copper-dependent effects: Hippocampal neurons isolated from newborn Mo(br) mice reveal a marked sensitivity to endogenous glutamate-mediated NMDA receptor-dependent excitotoxicity in vitro, and mild hypoxic/ischemic insult to these mice in vivo results in significantly increased caspase 3 activation and neuronal injury. Taken together, these data reveal a unique connection between copper homeostasis and NMDA receptor activity that is of broad relevance to the processes of synaptic plasticity and excitotoxic cell death.
Mitchell DA, etal., Nature. 2015 Mar 19;519(7543):366-9. doi: 10.1038/nature14320. Epub 2015 Mar 11.
After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treat
ment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.
Goetz AK and Dix DJ, Toxicol Appl Pharmacol. 2009 Jul 1;238(1):80-9. doi: 10.1016/j.taap.2009.04.016. Epub 2009 May 3.
The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple timepoints and
various study designs, gene expression profiling was conducted on rat livers from three separate studies with triazole treatment groups ranging from 6 h after a single oral gavage exposure, to prenatal to adult exposures via feed. To explore conservation of responses across species, gene expression from the rat liver studies were compared to in vitro data from rat and human primary hepatocytes exposed to the triazoles. Toxicogenomic data on triazoles from 33 different treatment groups and 135 samples (microarrays) identified thousands of probe sets and dozens of pathways differentially expressed across time, dose, and species--many of these were common to all three triazoles, or conserved between rodents and humans. Common and conserved pathways included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Differentially expressed genes included the Phase I xenobiotic, fatty acid, sterol and steroid metabolism genes Cyp2b2 and CYP2B6, Cyp3a1 and CYP3A4, and Cyp4a22 and CYP4A11; Phase II conjugation enzyme genes Ugt1a1 and UGT1A1; and Phase III ABC transporter genes Abcb1 and ABCB1. Gene expression changes caused by all three triazoles in liver and hepatocytes were concentrated in biological pathways regulating lipid, sterol and steroid homeostasis, identifying a potential common mode of action conserved between rodents and humans. Modulation of hepatic sterol and steroid metabolism is a plausible mode of action for changes in serum testosterone and adverse reproductive outcomes observed in rat studies, and may be relevant to human risk assessment.
BACKGROUND: Taurochenodeoxycholic acid (TCDCA) is one of the major active components in bile acid. It was proven to have inhibitory activities on inflammation and also participate in host immuno-regulation. TCDCA exerts anti-inflammatory and immuno-regulatory effects through the glucocort
icoid receptor (GR) mediated genomic signaling pathway and the G protein-coupled bile acid receptor 5 (TGR5) mediated AC-cAMP-PKA signaling pathway. However, it is unclear whether GR or TGR5 plays an important role in the regulatory effects of TCDCA. In order to further investigate this effects mechanism of TCDCA, the research use the transcriptome to identify the major genes and pathway in the anti-inflammatory and immuno-regulatory effects. METHODS: After the Fibroblast-like synoviocytes (FLS) being treated by different concentrations (10- 5, 10- 6 and 10- 7 M) of TCDCA for 12 h, the resulting mRNA was analyzed by RNA-seq. The differentially expressed genes were screened from sequencing results using bioinformatics techniques. In the next step, other published literature were referred in order to find out whether those genes mentioned above are related to inflammation. The final selected differentially expressed genes associated with inflammation were then validated by q-PCR and western blot assays. RESULTS: Five genes associated with anti-inflammatory and immuno-regulatory effects, include Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Glutathione peroxidase 3 (GPX3), Serine/arginine-rich splicing factor-9 (SRSF9), Connective tissue growth factor (CTGF) and Cystatin B (CSTB) were identified. TCDCA at the concentrations of 10- 5, 10- 6 and 10- 7 M significantly (p < 0.05) up-regulate the mRNA and protein expression of SRSF9 and GPX3 and also up-regulate the mRNA expression of CSTB, CTGF and GAPDH. RNA-seq results of GPX3 and SRSF9 expression were consistent with q-PCR results, while q-PCR results of CTGF, GAPDH showed inconsistent with their RNA-seq results. Q-PCR result of CSTB expression also showed inconsistent with the RNA-seq result. CONCLUSIONS: The anti-inflammatory and immuno-regulatory activities of TCDCA are proven to be related to the up-regulation expression of GPX3, SRSF9 and CSTB.
Wang Y, etal., Zhonghua Zhong Liu Za Zhi. 2007 Dec;29(12):913-6.
OBJECTIVE: To assess the polymorphism of UGT1A gene in Chinese, and to investigate the correlation between UGT1A polymorphism and irinotecan toxicity in colorectal cancer patients. METHODS: 70 patients with advanced colorectal cancer were tr
eated with irinotecan and 5-fluorouracil. Polymorphism analysis was performed in all those patients and 100 healthy subjects. Genomic DNA was extracted from peripheral blood and genotyped using polymerase chain reaction and direct sequencing. RESULTS: 14 patients exhibiting grade 3 - 4 neutropenia (20.0%), 16 patients experienced grade 2 - 4 diarrhea (22.9%), including only 4 patients with grade 3 - 4 diarrhea (5.7%). Compared with TA6/7 and TA7/7, UGT1 A1 * 28 wild genotype TA6/6 was significantly associated with reduced toxicity (42.1% vs. 15.7%, P = 0.027). There was no significant difference in the distribution of UGT1A genotypes between colorectal cancer patients and healthy subjects. CONCLUSION: Chinese patients exhibit less irinotecan-related diarrhea due to higher frequence of UGT1A A1 * 28 wild genotype TA6/6.
Pucheu-Haston CM, etal., Toxicol Appl Pharmacol. 2010 Apr 15;244(2):144-55. Epub 2010 Jan 4.
Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute expo
sure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of approximately 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.
BACKGROUND: It is an established fact that excess of glucocorticoids could cause the harmful effects, such as suppression on the male reproduction. Although glucocorticoids pharmacologically inhibit the Leydig cell function, their roles in Leydig cell development are unclear. Therefore, t
he present study was designed to investigate effects of synthetic glucocorticoid dexamethasone (DEX) on rat stem Leydig cell proliferation and differentiation. METHODS: Male Sprague-Dawley rats received a single intraperitoneal injection of 75 mg/kg EDS to eliminate Leydig cells and an in vitro culture system of the seminiferous tubules was established from Leydig cell-depleted testis. Using basal medium and Leydig cell differentiation-inducing medium (LIM) in the culture system, we examined the effects of DEX (0-100 nM) on the proliferation and differentiation of the stem Leydig cells in vitro, respectively. RESULTS: Results showed that LIM is a good agent to induce stem Leydig cell differentiation into Leydig cells that produce testosterone in vitro. DEX inhibited the differentiation of stem Leydig cells by reducing the expression levels of Cyp17a1 and Scarb1 and that NR3C1 antagonist RU38486 reversed the DEX-mediated effects. However, DEX are not involved with the proliferation of stem Leydig cells. CONCLUSIONS: DEX suppressed the differentiation of rat Leydig cells in vitro and glucocorticoid-induced effects acted through NR3C1. This suppression partially targets on Cyp17a1 and Scarb1 gene expression.
In-vitro studies were performed to shed light on previous findings that showed increased uptake of cyclosporine A in the kidneys and liver of hyperlipidemic rats, and increased signs of kidney toxicity. Hepatocytes were obtained from rats, cultured, and exposed
to a diluted serum from hyperlipidemic rats. Some cells were also exposed to lipid-lowering drugs. After washing out the rat serum or lipid-lowering drugs, cells were exposed to cyclosporine A embedded in serum lipoproteins. Pretreatment with hyperlipidemic serum and lipid-lowering drugs was associated with an increased uptake of cyclosporine A. As expected, atorvastatin caused an increase in low density lipoprotein receptor and a decrease in MDR1A mRNA in the hepatocytes. A decrease in NRK-52E rat renal tubular cellular viability caused by cyclosporine A was noted when cells were preincubated with diluted hyperlipidemic serum. This was matched with evidence of hyperlipidemic-serum-associated increases in the NRK-52E cellular uptake of cyclosporine A and rhodamine-123. The findings of these experiments suggested that in hyperlipidemia the expression and (or) the functional activity of P-glycoprotein was diminished, leading to greater hepatic and renal uptake of cyclosporine A, and renal cellular toxicity.
Ng E, etal., Hum Mol Genet. 2015 Aug 15;24(16):4739-45. doi: 10.1093/hmg/ddv190. Epub 2015 May 29.
The accumulation of toxic metals in the human body is influenced by exposure and mechanisms involved in metabolism, some of which may be under genetic control. This is the first genome-wide association study to investigate variants associated with whole blood l
evels of a range of toxic metals. Eleven toxic metals and trace elements (aluminium, cadmium, cobalt, copper, chromium, mercury, manganese, molybdenum, nickel, lead and zinc) were assayed in a cohort of 949 individuals using mass spectrometry. DNA samples were genotyped on the Infinium Omni Express bead microarray and imputed up to reference panels from the 1000 Genomes Project. Analyses revealed two regions associated with manganese level at genome-wide significance, mapping to 4q24 and 1q41. The lead single nucleotide polymorphism (SNP) in the 4q24 locus was rs13107325 (P-value = 5.1 x 10(-11), beta = -0.77), located in an exon of SLC39A8, which encodes a protein involved in manganese and zinc transport. The lead SNP in the 1q41 locus is rs1776029 (P-value = 2.2 x 10(-14), beta = -0.46). The SNP lies within the intronic region of SLC30A10, another transporter protein. Among other metals, the loci 6q14.1 and 3q26.32 were associated with cadmium and mercury levels (P = 1.4 x 10(-10), beta = -1.2 and P = 1.8 x 10(-9), beta = -1.8, respectively). Whole blood measurements of toxic metals are associated with genetic variants in metal transporter genes and others. This is relevant in inferring metabolic pathways of metals and identifying subsets of individuals who may be more susceptible to metal toxicity.
Cordeiro CA, etal., Acta Ophthalmol. 2013 Jun;91(4):e311-4. doi: 10.1111/aos.12046. Epub 2013 Jan 22.
PURPOSE: Experimental data have demonstrated a relevant role for IL-6 in the modulation of acute ocular toxoplasmosis. Therefore, we aim to investigate the possible association between the IL-6 gene polymorphism at position -174 and tox
'>toxoplasmic retinochoroiditis (TR) in humans. METHODS: Ninety-seven patients with diagnosed TR were recruited from the Uveitis Section, Federal University of Minas Gerais. For comparison, 83 healthy blood donors with positive serology for toxoplasmosis and without retinal signs of previous TR were included in the study. Genomic DNA was obtained from oral swabs of individuals and amplified using polymerase chain reaction (PCR) with specific primers flanking the locus -174 of IL-6 (-174G/C). PCR products were submitted to restriction endonuclease digestion and analysed by polyacrylamide gel electrophoresis to distinguish allele G and C of the IL-6 gene, allowing the detection of the polymorphism and determination of genotypes. RESULTS: There was a significant difference in the genotype (chi(2) = 12.9, p = 0.001) and allele (chi(2) = 6.62, p = 0.01) distribution between TR patients and control subjects. In a subgroup analysis, there was no significant difference in genotypes and allele frequencies regarding TR recurrence. CONCLUSIONS: This study suggests that the genotypes related with a lower production of IL-6 may be associated with the occurrence of TR.
Kojima M, etal., Toxicol Lett. 2004 Dec 1;154(1-2):35-44. doi: 10.1016/j.toxlet.2004.06.010.
Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72
h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.
Although a number of animal model studies have addressed changes in gene expression in the parenchyma and their relationship to emphysema, much less is known about the pathogenesis of cigarette smoke-induced small airway remodeling. In this study the authors exposed rat tracheal explants, a model of
the airway wall, to whole smoke for 15 min, and then cultured the explants in air. The airway transcriptome was evaluated using RAE 230_2 gene chips. By 2 h after starting smoke exposure, expression levels of 502 genes were differentially expressed by more than 1.5 times (p < .01 or less) and by 24 h 1870 genes were significantly changed up or down. These included genes involved in antioxidant protection, epithelial defense and remodeling, inflammatory mediators and transcription factors, and a number of unexpected genes, including the matrix metalloproteinase (MMP)-12 inducer, tachykinin-1 (substance P). Pretreatment of the explants with 1 x 10(-7) M dexamethasone reduced the number of significantly changed genes by approximately 47% at 2 h and 68% at 24 h and in almost all instances reduced the magnitude of the smoke-induced changes. The authors conclude that even a very brief exposure to cigarette smoke can lead to rapid changes in the expression of a large number of genes in rat tracheal explants, and that these effects are directly mediated by smoke, without a need for exogenous inflammatory cells. Steroids, contrary to the usual belief, are able to ameliorate many of these changes, at least in this very acute model.
Proctor EA, etal., Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):614-9. doi: 10.1073/pnas.1516725113. Epub 2015 Dec 30.
Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques con
taining misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies.
Myocardial infarction causes a cascade of events, which leads to heart failure, debilitation and death. This study examined possible cardioprotective effect of oleuropein in rats with acute myocardial infarction. Male Sprague-Dawly rats were allocated to five groups: sham, myocardial infarction rece
iving vehicle, and three myocardial infarction receiving oleuropein at 10, 20, and 30 mg/kg/day for 7 days, and underwent sham operation or coronary ligation. Twenty-four hours later, animals underwent echocardiographic and hemodynamic studies, and infarct areas, serum concentrations of oxidative stress and inflammatory markers were determined. Myocardial infarction group receiving vehicle had significantly lower left ventricular developed and systolic pressures, rate of rise/decrease of left ventricular pressure, stroke volume, ejection fraction and cardiac output, and serum superoxide dismutase and glutathione reductase than those of sham group. Pretreatment with oleuropein prevented the reduction of these variables. Moreover, the group had a significantly higher serum malondialdehyde, interleukin-1beta, TNF-alpha, creatin kinase-MB, and troponin I, lactate dehydrogenase, and infarct area than those of sham group. Pretreatment with oleuropein prevented the increase of these variables. The findings indicate that coronary ligation results in acute myocardial infarction characterized by impaired cardiac function, and oleuropein pretreatment prevented cardiac impairment partly by reducing oxidative stress and release of proinflammatory cytokines.
Hester SD and Nesnow S, Toxicol Appl Pharmacol. 2008 Mar 15;227(3):357-69. Epub 2007 Nov 28.
Conazoles are azole-containing fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay. The goal of this study was to identify pathways and networks of genes that were associated with thyroid tumorigenesis thro
ugh transcriptional analyses. To this end, we compared transcriptional profiles from tissues of rats treated with a tumorigenic and a non-tumorigenic conazole. Triadimefon, a rat thyroid tumorigen, and myclobutanil, which was not tumorigenic in rats after a 2-year bioassay, were administered in the feed to male Wistar/Han rats for 30 or 90 days similar to the treatment conditions previously used in their chronic bioassays. Thyroid gene expression was determined using high density Affymetrix GeneChips (Rat 230_2). Gene expression was analyzed by the Gene Set Expression Analyses method which clearly separated the tumorigenic treatments (tumorigenic response group (TRG)) from the non-tumorigenic treatments (non-tumorigenic response group (NRG)). Core genes from these gene sets were mapped to canonical, metabolic, and GeneGo processes and these processes compared across group and treatment time. Extensive analyses were performed on the 30-day gene sets as they represented the major perturbations. Gene sets in the 30-day TRG group had over representation of fatty acid metabolism, oxidation, and degradation processes (including PPARgamma and CYP involvement), and of cell proliferation responses. Core genes from these gene sets were combined into networks and found to possess signaling interactions. In addition, the core genes in each gene set were compared with genes known to be associated with human thyroid cancer. Among the genes that appeared in both rat and human data sets were: Acaca, Asns, Cebpg, Crem, Ddit3, Gja1, Grn, Jun, Junb, and Vegf. These genes were major contributors in the previously developed network from triadimefon-treated rat thyroids. It is postulated that triadimefon induces oxidative response genes and activates the nuclear receptor, Ppargamma, initiating transcription of gene products and signaling to a series of genes involved in cell proliferation.
Although microarray technology has emerged as a powerful tool to explore expression levels of thousands of genes or even complete genomes after exposure to toxicants, the functional interpretation of microarray data sets still represents a time-consuming and cha
llenging task. Gene ontology (GO) and pathway mapping have both been shown to be powerful approaches to generate a global view of biological processes and cellular components impacted by toxicants. However, current methods only allow for comparisons across two experimental settings at one particular time point. In addition, the resulting annotations are presented in extensive gene lists with minimal or limited quantitative information, data that are crucial in the application of toxicogenomic data for risk assessment. To facilitate quantitative interpretation of dose- or time-dependent genomic data, we propose to use combined average raw gene expression values (e.g., intensity or ratio) of genes associated with specific functional categories derived from the GO database. We developed an extended program (GO-Quant) to extract quantitative gene expression values and to calculate the average intensity or ratio for those significantly altered by functional gene category based on MAPPFinder results. To demonstrate its application, we applied this approach to a previously published dose- and time-dependent toxicogenomic data set (J. F. Dillman et al., 2005, Chem. Res. Toxicol. 18, 28-34). Our results indicate that the above systems approach can describe quantitatively the degree to which functional gene systems change across dose or time. Additionally, this approach provides a robust measurement to illustrate results compared to single-gene assessments and enables the user to calculate the corresponding ED(50) for each specific functional GO term, important for risk assessment.
Osicka R, etal., Elife. 2015 Dec 9;4:e10766. doi: 10.7554/eLife.10766.
Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter
numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis.
Alzheimer's disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendrit
ic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.
Hexachloronaphthalene (HxCN) is one of the most toxic congeners of polychlorinated naphthalenes (PCNs). This study assesses the prenatal toxicity of HxCN after daily administration at doses of 0.1-1.0mg/kg b.w. to pregnant W
istar rats during organogenesis. We evaluated also the expression of CYP1A1 mRNA and protein in the livers of dams and fetuses, as well as the placenta. The results indicate that 0.3mg/kg b.w. was the lowest HxCN toxic dose for dams (LOAEL) while a dose of 0.1mg/kg b.w. was sufficient to impair the intrauterine development of embryos/fetuses without maternal toxicity. Regardless of the applied dose, HxCN generated embryotoxic effects. Dose-dependent fetotoxic effects were associated with HxCN exposure. HxCN was found to be a strong inducer of maternal and fetal CYP1A1. Expression of CYP1A1 mRNA in the placenta appears to be the most sensitive marker of HxCN exposure.
Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9) and glutathione reductase (GR, EC 1.6.4.2) activities at rats liver injury, after 12, 36, 70, 96, 110, and
125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96 h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96 h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr) was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress.
BACKGROUND: This study aimed to determine whether single nucleotide polymorphisms (SNPs) in genes involved in DNA repair or metabolism of taxanes or platinum could predict toxicity or response to first-line chemotherapy in ovarian cancer. METHODS: Twenty-six sel
ected SNPs in 18 genes were genotyped in 322 patients treated with first-line paclitaxel-carboplatin or carboplatin mono-therapy. Genotypes were correlated with toxicity events (anemia, neutropenia, thrombocytopenia, febrile neutropenia, neurotoxicity), use of growth factors and survival. RESULTS: The risk of anemia was increased for variant alleles of rs1128503 (ABCB1, C > T; p = 0.023, OR = 1.71, 95% CI = 1.07-2.71), rs363717 (ABCA1, A > G; p = 0.002, OR = 2.08, 95% CI = 1.32-3.27) and rs11615 (ERCC1, T > C; p = 0.031, OR = 1.61, 95% CI = 1.04-2.50), while it was decreased for variant alleles of rs12762549 (ABCC2, C > G; p = 0.004, OR = 0.51, 95% CI = 0.33-0.81). Likewise, increased risk of thrombocytopenia was associated with rs4986910 (CYP3A4, T > C; p = 0.025, OR = 4.99, 95% CI = 1.22-20.31). No significant correlations were found for neurotoxicity. Variant alleles of rs2073337 (ABCC2, A > G; p = 0.039, OR = 0.60, 95% CI = 0.37-0.98), rs1695 (ABCC1, A > G; p = 0.017, OR = 0.55, 95% CI 0.33-0.90) and rs1799793 (ERCC2, G > A; p = 0.042, OR = 0.63, 95% CI 0.41-0.98) associated with the use of colony stimulating factors (CSF), while rs2074087 (ABCC1, G > C; p = 0.011, OR = 2.09, 95% CI 1.18-3.68) correlated with use of erythropoiesis stimulating agents (ESAs). Homozygous carriers of the rs1799793 (ERCC2, G > A) G-allele had a prolonged platinum-free interval (p = 0.016). CONCLUSIONS: Our data reveal significant correlations between genetic variants of transport, hepatic metabolism, platinum related detoxification or DNA damage repair and toxicity or outcome in ovarian cancer.
Yildiz N and Barlas N, Hum Exp Toxicol. 2013 Jul;32(7):675-86. doi: 10.1177/0960327112464796.
This study aimed to determine the effects of 13-week bisphenol A (BPA) and octylphenol (OP) exposure on the liver, kidney, and spleen of growing male rats. A total of 29 male Wistar rats aged 4-5 weeks were divided into five groups. The treatment groups were given low-dose (125 mg/kg bw/day) or hi
gh-dose (250 mg/kg bw/day) BPA or OP. These compounds were dissolved in corn oil and given via oral route for 13 weeks. Rats in the control group received corn oil for 13 weeks, as well. After 13 weeks of treatment, blood samples were analyzed for biochemical parameters. Tissue samples from the liver, kidney, and spleen were histopathologically and histomorphometrically examined. Liver tissue specimens were also stained by immunohistochemically; the number of apoptotic cells was counted, and the apoptotic indices were calculated. There were significant differences between the control and treatment groups with respect to the following parameters: body weight, relative left kidney weight, and total protein, glucose, and alkaline phosphatase levels. Edema and parenchymal degeneration in the liver and tubular degeneration in the kidney were more frequent in the treatment groups. The control and treatment groups were comparable with respect to the frequency of histopathological lesions in the spleen. Glomerular histomorphometry revealed no significant differences between the control and treatment groups. No significant differences existed between the control and treatment groups with respect to the number of apoptotic cells and apoptotic indices. Subchronic exposure to BPA and OP induced functional and structural changes in the liver, kidney, and spleen of growing male rats.
Ohhira S, etal., Toxicol Lett. 2004 Mar 14;148(1-2):141-8. doi: 10.1016/j.toxlet.2004.01.002.
The in vivo and in vitro metabolism of triphenyltin using rat hepatic cytochrome P-450 (CYP) systems was investigated to confirm the specific CYP that is closely related to triphenyltin metabolism. No significant sex differences occurred between the in vivo and in vitro metabolic patterns of the che
mical, indicating that the principal CYP for triphenyltin metabolism in rats is not a sex-specific form of CYP. In addition, seven types of complementary DNA (cDNA)-expressed rat CYPs, typical phenobarbital (PB)-inducible forms and the CYP2C subfamily were tested to determine the activity of triphenyltin metabolism. Among the CYP isoforms studied, although CYP2B1 had a small metabolic capacity, a marked dearylation of the chemical was induced by CYP2C6. Furthermore, anti-rat CYP2C6 antibodies and cimetidine, a selective CYP2C6 inhibitor, inhibited triphenyltin dearylation activity in the hepatic microsomes of rats. Taken together, these findings suggest that CYP2C6 is the principal CYP for the triphenyltin metabolism in rats.
Cordeiro CA, etal., Invest Ophthalmol Vis Sci. 2008 May;49(5):1979-82. doi: 10.1167/iovs.07-1393.
PURPOSE: Experimental data have demonstrated a relevant role for IL-10, an anti-inflammatory cytokine, in the modulation of acute ocular toxoplasmosis. Therefore, this study was conducted to investigate the possible association between an IL10 gene polymorphism
at position -1082 and toxoplasmic retinochoroiditis (TR) in humans. METHODS: One hundred patients with diagnosed TR were recruited from the Uveitis Section, Federal University of Minas Gerais. For comparison, one hundred healthy blood donors with positive serology for toxoplasmosis and without retinal signs of previous TR were included in the study. Genomic DNA was obtained from oral swabs of individuals and amplified using polymerase chain reaction (PCR) with specific primers flanking the locus -1082 of IL10 (-1082G/A). PCR products were subjected to restriction endonuclease digestion and analyzed by polyacrylamide gel electrophoresis, to distinguish allele G and A of the IL-10 gene, allowing the detection of the polymorphism and determination of genotypes. RESULTS: There was a significant difference in the genotype distribution between TR patients and control subjects (chi(2) = 6.33, P = 0.04). Carriers of the IL10 -1082 A allele (AA+AG genotypes) were more often patients with TR than control subjects (chi(2) = 5.97, P = 0.01, OR, 2.55; 95% CI, 1.11 < OR < 5.55). In a subgroup analysis, there was no significant difference in genotypes and allele carriage regarding visual acuity, involvement of both eyes and TR recurrence. CONCLUSIONS: This study suggests that the genotypes related with a low production of IL-10 may be associated with the occurrence of TR.
Das S, etal., Toxicol Mech Methods. 2012 Nov;22(9):711-20. doi: 10.3109/15376516.2012.718812.
The immune cells use reactive oxygen species (ROS) for carrying out their normal functions while an excess amount of ROS can attack cellular components that lead to cell damage. The present study was undertaken to determine the dose as well as time dependent effects of nicotine administration on t
he superoxide anion generation, lipid peroxidation and antioxidant defense systems in lymphocytes. Male Wistar rats were treated with vehicle (normal saline) and nicotine [3-(1-methyl-2-pyrrolidinyl) pyridine, C(10)H(14)N(2)] (in physiological saline, pH was adjusted at 7.4 prior to injection) as indicated in a dose and duration fashion and the superoxide anion generation, lipid peroxidation, and antioxidant enzymes status were monitored. Superoxide anion generation, lipid peroxidation and oxidized glutathione levels were increased significantly (P < 0.05), and reduced glutathione level, activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-s-transferase were decreased significantly (P < 0.05) with the increasing dose and duration of nicotine treatment. The highest changes in lymphocytes were observed at the dose of 1.0 mg/kg/day for 7 days. It may be concluded that nicotine is able to enhance the production of ROS that produced oxidative stress in lymphocytes in a dose and time dependent manner.
Zhang C and Tian B, Int J Toxicol. 2020 May/Jun;39(3):232-240. doi: 10.1177/1091581820918511.
Zanubrutinib an oral irreversible Bruton's tyrosine kinase (BTK) inhibitor, is under development for the treatment of a variety of B-cell malignancies and has received accelerated approval by the US Food and Drug Administration for treatment of adult patients with mantel cell lymphoma who have recei
ved at least one prior therapy. Zanubrutinib moderately inhibited the human ether- à -go-go-related gene channel with half maximal inhibition concentration (IC50) of 9.11 µM and showed neither effects on the cardiovascular system functions in telemetry-implanted dogs nor on the respiratory and central nervous system functions in rats. No toxicologically significant changes were noted in rats and dogs at the systemic exposure ratios (area under the curve ratio between animals and humans at the therapeutic dose) up to 26- and 15-fold for 26-weeks and 39-weeks of treatment, respectively. Zanubrutinib was not genotoxic. Fertility studies showed no abnormal findings in both male and female rats at the systemic exposure ratios of up to 12-fold; embryo-fetal studies showed no fetal lethality or teratogenicity in rabbit or rat fetuses at the systemic exposure ratios of up to 25- and 16-fold, respectively, except for 0.3% to 1.5% of 2 or 3 chambered hearts in rat fetuses; pre- and postnatal developmental toxicity showed no effects in rats at the systemic exposure ratios up to 16-fold except for an increased incidence (26% to 42%) and severity of various ophthalmic lesions in treated groups compared to the concurrent control group (26%). These nonclinical study results suggest that zanubrutinib has a broad safety window and an optimal safety profile while treating patients with advanced cancers.
Podtelezhnikov AA, etal., Toxicol Sci. 2020 May 1;175(1):98-112. doi: 10.1093/toxsci/kfaa026.
The robust transcriptional plasticity of liver mediated through xenobiotic receptors underlies its ability to respond rapidly and effectively to diverse chemical stressors. Thus, drug-induced gene expression changes in liver serve not only as biomarkers of liver injury, but also as mechanistic senti
nels of adaptation in metabolism, detoxification, and tissue protection from chemicals. Modern RNA sequencing methods offer an unmatched opportunity to quantitatively monitor these processes in parallel and to contextualize the spectrum of dose-dependent stress, adaptation, protection, and injury responses induced in liver by drug treatments. Using this approach, we profiled the transcriptional changes in rat liver following daily oral administration of 120 different compounds, many of which are known to be associated with clinical risk for drug-induced liver injury by diverse mechanisms. Clustering, correlation, and linear modeling analyses were used to identify and optimize coexpressed gene signatures modulated by drug treatment. Here, we specifically focused on prioritizing 9 key signatures for their pragmatic utility for routine monitoring in initial rat tolerability studies just prior to entering drug development. These signatures are associated with 5 canonical xenobiotic nuclear receptors (AHR, CAR, PXR, PPARα, ER), 3 mediators of reactive metabolite-mediated stress responses (NRF2, NRF1, P53), and 1 liver response following activation of the innate immune response. Comparing paradigm chemical inducers of each receptor to the other compounds surveyed enabled us to identify sets of optimized gene expression panels and associated scoring algorithms proposed as quantitative mechanistic biomarkers with high sensitivity, specificity, and quantitative accuracy. These findings were further qualified using public datasets, Open TG-GATEs and DrugMatrix, and internal development compounds. With broader collaboration and additional qualification, the quantitative toxicogenomic framework described here could inform candidate selection prior to committing to drug development, as well as complement and provide a deeper understanding of the conventional toxicology study endpoints used later in drug development.
Wang W, etal., Toxicol Appl Pharmacol. 2000 Mar 1;163(2):125-34. doi: 10.1006/taap.1999.8870.
Kinase activities were previously proposed to be central to germ cell apoptosis induced by ethylene glycol monomethyl ether (EGME) and its active metabolite methoxyacetic acid (MAA). We evaluated the role of tyrosine kinase pp60(c-src) in control and EGME-treated adult rat testis in vivo, as well as
in vitro using cultured adult rat seminiferous tubules treated with MAA. In normal testicular tissue, immunoreactivity of Src was mostly detected in Sertoli cell cytoplasm and reached the maximum level around the lumen at spermiation. Src localization was confirmed by immunostaining of cocultures of Sertoli and germ cells and was further confirmed by electron microscopic observation that immunoreactivity was predominant in Sertoli cell cytoplasm as well as occasionally at the Sertoli/germ cell junctions. A single dose of 200 mg/kg EGME induced an increase of Src immunoexpression in both epithelium and interstitium in rat testis. Eight hours after treatment, an intensive immunostaining of Src began to be observed specifically in the cytoplasm of the dying spermatocytes. The apoptotic changes were replicated by exposure of 5 mM MAA in the adult rat seminiferous tubule culture model. Furthermore, spermatocyte degeneration was significantly prevented by cotreatment with 0.1 microM geldanamycin, 10 microM herbimycin A, or 10 microM PP2, which are inhibitors of Src activity. These data collectively suggest that pp60(c-src) mediates Sertoli-germ cell interaction in physiological events, and may play an important role in EGME/MAA-induced germ cell apoptosis.
Roman BL, etal., Toxicol Appl Pharmacol. 1998 Jun;150(2):228-39. doi: 10.1006/taap.1998.8388.
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) either in adulthood or during late fetal and early postnatal development causes a variety of adverse effects on the male rat reproductive system. It was therefore of interest to identify male rat reproductive organs and cell types within these o
rgans that might be direct targets of TCDD exposure. Because TCDD toxicity could possibly be the result of alterations in gene transcription mediated by the TCDD/aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) complex, the presence of the AhR and ARNT in the various organs of the adult male reproductive tract was examined using Western blotting. Both proteins were detectable in all organs examined (testis, epididymis, vas deferens, ventral prostate, dorsolateral [combined dorsal and lateral] prostate, and seminal vesicle). Although technical difficulties precluded the immunohistochemical evaluation of AhR distribution in these organs, ARNT was localized in all organs in a variety of cell types, including germ cells, epithelial cells, fibroblasts, smooth muscle cells, and endothelial cells. Subcellular localization varied across organs and across cell types within these organs. In order to determine whether TCDD exposure could alter gene expression in these organs, animals were dosed with TCDD (25 micrograms/kg po) or vehicle and euthanized at 24 h, and cytochrome P4501A1 (CYP1A1) expression was evaluated. By Western blotting, only the ventral and dorsolateral prostates exhibited significant induction of CYP1A1. Immunohistochemistry confirmed this induction and localized CYP1A1 expression to epithelial cells of the ventral and lateral lobes of the prostate. Immunohistochemistry also revealed CYP1A1 induction in select epithelial cells in the epididymis and seminal vesicle, as well as endothelial cells in the vas deferens and seminal vesicle. No induction was observed in the testis. Finally, AhR and ARNT expression in TCDD-exposed and control animals was evaluated by Western blotting. Results revealed no effect of TCDD exposure on ARNT protein expression, while AhR expression was decreased to 5-51% of control in all organs examined. In summary, both AhR and ARNT were expressed in all organs of the adult male rat reproductive tract examined, and epithelial and/or endothelial cells within each of these organs (with the exception of the testis) were responsive to TCDD exposure in terms of CYP1A1 induction. In addition, all tissues exhibited marked reductions in AhR protein content after TCDD exposure that did not correlate with the magnitude of the CYP1A1 response.
Mach J, etal., J Gerontol A Biol Sci Med Sci. 2013 Jul 17.
We investigated the effect of aging on hepatic pharmacokinetics and the degree of hepatotoxicity following a toxic dose of acetaminophen. Young and old male Fischer 344 rats were treated with 800 mg/kg acetaminophen (young n
= 8, old n = 5) or saline (young n = 9, old n = 9). Serum measurements showed old rats treated with acetaminophen had significantly lower serum alanine aminotransferase and higher acetaminophen and acetaminophen glucuronide levels and creatinine, compared with acetaminophen treated young rats (p < .05). Immunoblotting and activity assays showed old saline-treated rats had twofold lower cytochrome P450 2E1 activity and threefold higher NAD(P)H quinone oxireductase 1 protein expression and activity than young saline-treated rats (p < .05), although Nrf2, glutathione cysteine ligase-modulatory subunit, glutathione cysteine ligase-catalytic subunit, and cytochrome P450 2E1 protein expressions were unchanged. Primary hepatocytes isolated from young rats treated with 10 mM acetaminophen had lower survival than those from old rats (52.4% +/- 5.8%, young; 83.6% +/- 1.7%, old, p < .05). The pharmacokinetic changes described may decrease susceptibility to acetaminophen-induced hepatotoxicity but may increase risk of nephrotoxicity in old age.
We have studied sarin-induced global gene expression patterns at an early time point (2 h: 0.5 x LD50) using Affymetrix Rat Neurobiology U34 chips and male Sprague-Dawley rats. A total of 46 genes showed statistically significant alterations from control levels. Three gene categories contained more
of the altered genes than any other groups: ion channel (8 genes) and calcium channel and binding proteins (6 genes). Alterations were also found in the following gene groups: ATPases and ATP-based transporters (4), growth factors (4), G-protein-coupled receptor pathway-related molecules (3), neurotransmission and neurotransmitter transporters (3), cytoskeletal and cell adhesion molecules (2), hormones (2), mitochondria-associated proteins (2), myelin proteins (2), stress-activated molecules (2), cytokine (1), caspase (1), GABAnergic (1), glutamergic (1), immediate early gene (1), prostaglandin (1), transcription factor (1), and tyrosine phosphorylation molecule (1). Persistent alteration of the following genes also were noted: Arrb1, CaMKIIa, CaMKIId, Clcn5, IL-10, c-Kit, and Plp1, suggesting altered GPCR, kinase, channel, and cytokine pathways. Selected genes from the microarray data were further validated using relative RT-PCR. Some of those genes (GFAP, NF-H, CaMKIIa, Calm, and MBP) have been shown by other laboratories and ours, to be involved in the pathogenesis of sarin-induced pathology and organophosphate-induced delayed neurotoxicity (OPIDN). Induction of both proapoptotic (Bcl2l11, Casp6) and antiapoptotic (Bcl-X) genes, besides suppression of p21, suggest complex cell death/protection-related mechanisms operating early on. Principal component analysis (PCA) of the expression data confirmed that the changes in gene expression are a function of sarin exposure, since the control and treatment groups separated clearly. Our model (based on current and previous studies) indicates that both degenerative and regenerative pathways are activated early and contribute to the level of neurodegeneration at a later time, leading to neuro-pathological alterations.
Chen L, etal., Science. 2014 Aug 29;345(6200):1021-6. doi: 10.1126/science.1258409. Epub 2014 Aug 7.
AMPA-sensitive glutamate receptors are crucial to the structural and dynamic properties of the brain, to the development and function of the central nervous system, and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying A
MPA receptor activation have remained elusive. We determined multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator, and orthosteric agonists, at 3.8 to 4.1 angstrom resolution. We show how the toxin acts like a straightjacket on the ligand-binding domain (LBD) "gating ring," restraining the domains via both intra- and interdimer cross-links such that agonist-induced closure of the LBD "clamshells" is transduced into an irislike expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in pulling forces on the M3 helices that, in turn, are coupled to ion channel gating.
Mercury is an established worldwide environmental pollutant with well-known toxicity affecting neurodevelopment in humans, but the molecular basis of cytotoxicity and the detoxification
procedure are still unclear. Here we examined the involvement of the canonical transient receptor potential (TRPC) channel in the mercury-induced cytotoxicity and the potential detoxification strategy. Whole-cell and excised patches, Ca(2+) imaging, and site-directed mutagenesis were used to determine the mechanism of action of mercurial compounds on TRPC channels overexpressed in HEK293 cells, and cytotoxicity and preventive effect were investigated in cell culture models using small interfering RNA and pharmacological blockers. Mercury potently activates TRPC4 and TRPC5 channels. The extracellular cysteine residues (C(553) and C(558)) near the channel pore region of TRPC5 are the molecular targets for channel activation by mercury. The sensitivity of mercury to TRPC5 is presumed to be specific because other divalent heavy metal pollutants, such as Cd(2+), Ni(2+), and Zn(2+), had no stimulating effect, and TRPC3, TRPC6, TRPV1, and TRPM2 were resistant to mercurial compounds. The channel activity of TRPC5, as well as TRPC4, induced by mercury, was prevented by 2-aminoethoxydiphenyl borate and modified by a reducing environment. The inhibition of TRPC5 channels by specific TRPC5 pore-blocking antibody or by SKF-96365 alleviated the cytotoxicity, whereas the mercury chelator, meso-2,3-dimercaptosuccinic acid, showed nonselective prevention of cell survival. Silencing of the TRPC5 gene reduced the mercury-induced neuronal damage. These results indicate that mercurial compounds are activators for TRPC5 and TRPC4 channels. Blockade of TRPC channels could be a novel strategy for preventing mercury-induced cytotoxicity and neurodevelopment impairment.
Kang SA, etal., Korean J Parasitol. 2013 Oct;51(5):583-8. doi: 10.3347/kjp.2013.51.5.583. Epub 2013 Oct 31.
To determine alteration of immune responses during visceral larva migrans (VLM) caused by Toxascaris leonina at several time points, we experimentally infected mice with embryonated eggs of T. leonina and measured T-helper (Th) cell-related serial cytokine produ
ction after infection. At day 5 post infection (PI), most larvae were detected from the lungs, spleen, intestine, and muscle. Expression of thymic stromal lymphopoietin (TSLP) and CCL11 (eotaxin) showed a significant increase in most infected organs, except the intestine. However, expression of the CXCL1 (Gro-α) gene was most highly enhanced in the intestine at day 14 PI. Th1-related cytokine secretion of splenocytes showed increases at day 28 PI, and the level showed a decrease at day 42 PI. Th2-related cytokine secretion of splenocytes also showed an increase after infection; in particular, IL-5 level showed a significant increase at day 14 PI, and the level showed a decrease at day 28 PI. However, levels of Th17-related cytokines, IL-6 and IL-17A, showed gradual increases until day 42 PI. In conclusion, Th1, Th2, and Th17-related cytokine production might be important in immune responses against T. leonina VLM in experimental mice.
Toxoplasma gondii, the causative agent of toxoplasmosis and a major opportunistic parasite associated with AIDS, is able to invade host cells of animals and humans. Studies suggested that the ability of host invasion by the
tachyzoite, the infectious form of T. gondii, is essential for the pathogenicity to promote its dissemination to other parts of animal hosts. However, the detailed molecular mechanisms for host invasion and dissemination of the parasites are not clear. On the other hand, viruses and bacteria are able to interact with and hijack DC-SIGN (CD209) C-type lectin on antigen presenting cells (APCs), such as dendritic cells and macrophages as the Trojan horses to promote host dissemination. In this study, we showed that invasion of T. gondii into host cells was enhanced by this parasite-CD209 interaction that were inhibited by ligand mimicking-oligosaccharides and the anti-CD209 antibody. Furthermore, covering the exposures of DC-SIGN by these oligosaccharides reduced parasite burden, host spreading and mortality associated with T. gondii infection. These results suggested that interaction of T. gondii to APCs expressing DC-SIGN might promote host dissemination and infection. Can the blockage of this interaction with Mannan and/or anti-CD209 antibody be developed as a prevention or treatment method for T. gondii infection?
Song X, etal., Toxicol Mech Methods. 2012 Nov;22(9):679-86. doi: 10.3109/15376516.2012.717119.
Astaxanthin (AST), a xanthophylls carotenoid, possesses significant anticancer effects. However, to date, the molecular mechanism of anticancer remains unclear. In the present research, we studied the anticancer mechanism of AST, including the changes in cell ultrastructure, such as the mitochondrio
n, rough endoplasmic reticulum (RER), Golgi complex, and cytoskeleton, the inhibition of Janus kinase 1(JAK1)/transduction and the activators of the transcription-3 (STAT3) signaling pathway using rat hepatocellular carcinoma CBRH-7919 cells. Cell apoptosis was evaluated and the expressions of JAK1, STAT3, non-metastasis23-1 (nm23-1), and apoptotic gene like B-cell lymphoma/leukemia-2 (bcl-2), B-cell lymphoma-extra large (bcl-xl), proto-oncogene proteins c myc (c-myc) and bcl-2- associated X (bax) were also examined. The results showed that AST could induce cancer cell apoptosis. Under transmission electron microscope, the ultrastructure of treated cells were not clearly distinguishable, the membranes of the mitochondrion, RER, Golgi complex were broken or loosened, and the endoplasmic reticulum (ER) was degranulated. Cytoskeleton depolymerization of the microtubule system led to the collapse of extended vimentin intermediate filament bundles into short agglomerations with disordered distributions. AST inhibited the expression of STAT3, its upstream activator JAK1, and the STAT3 target antiapoptotic genes bcl-2, bcl-xl, and c-myc. Conversely, AST enhanced the expressions of nm23-1 and bax. Overall, our findings demonstrate that AST could induce the apoptosis of CBRH-7919 cells, which are involved in cell ultrastructure and the JAK1/STAT3 signaling pathway.
The purpose of this study was to investigate the effects of corn oil (CO), which is widely used as a vehicle for water-insoluble agents in drug development, on the gene expression profiles in rat thymus with microarray technique. Female Wistar rats were administered daily with normal saline (NS) and
CO 2, 5 and 10 ml kg⁻¹ per day for 14 days, respectively. Then, the thymus samples of rats were collected for microarray test and histopathology examination. CD4⁺ and CD8⁺ lymphocytes in peripheral blood were also numerated to assess the effects on lymphocyte subpopulations. The microarray data showed that the numbers of differentially expressed genes in the 2, 5 and 10 ml kg⁻¹ CO groups were 0, 40 and 458, respectively, compared with the NS control group. The altered genes were mainly associated with immune response, cellular response to organic cyclic substance and regulation of fatty acid β-oxidation. However, no abnormal changes in thymus weight, CD4⁺ and CD8⁺ lymphocytes counts and histopathological examination were observed in the three CO groups. These data showed that 10 ml kg⁻¹ CO, the usually recommended dosing volume as a vehicle in drug safety assessment, caused obvious dysregulated genes in rat thymus. Our study suggests that the appropriate dosing volume of CO gavage as a vehicle for water-insoluble agents in drug development should be 2 ml kg⁻¹ per day, if agent effects on thymus will be assessed in gene levels.
Römer M, etal., PLoS One. 2014 May 15;9(5):e97640. doi: 10.1371/journal.pone.0097640. eCollection 2014.
In the area of omics profiling in toxicology, i.e. toxicogenomics, characteristic molecular profiles have previously been incorporated into prediction models for early assessment of a carcinogenic potential and mechanism-bas
ed classification of compounds. Traditionally, the biomarker signatures used for model construction were derived from individual high-throughput techniques, such as microarrays designed for monitoring global mRNA expression. In this study, we built predictive models by integrating omics data across complementary microarray platforms and introduced new concepts for modeling of pathway alterations and molecular interactions between multiple biological layers. We trained and evaluated diverse machine learning-based models, differing in the incorporated features and learning algorithms on a cross-omics dataset encompassing mRNA, miRNA, and protein expression profiles obtained from rat liver samples treated with a heterogeneous set of substances. Most of these compounds could be unambiguously classified as genotoxic carcinogens, non-genotoxic carcinogens, or non-hepatocarcinogens based on evidence from published studies. Since mixed characteristics were reported for the compounds Cyproterone acetate, Thioacetamide, and Wy-14643, we reclassified these compounds as either genotoxic or non-genotoxic carcinogens based on their molecular profiles. Evaluating our toxicogenomics models in a repeated external cross-validation procedure, we demonstrated that the prediction accuracy of our models could be increased by joining the biomarker signatures across multiple biological layers and by adding complex features derived from cross-platform integration of the omics data. Furthermore, we found that adding these features resulted in a better separation of the compound classes and a more confident reclassification of the three undefined compounds as non-genotoxic carcinogens.
Grice SJ, etal., Hum Mol Genet. 2015 Aug 1;24(15):4397-406. doi: 10.1093/hmg/ddv176. Epub 2015 May 13.
Charcot-Marie-Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT di
sease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene.
Begum R, etal., Indian J Exp Biol. 1994 Mar;32(3):192-5.
Homeopathic drugs plumbum 1M and Opium 30 were partially effective in the recovery of delta ALAD activity of the lead (150 mg% lead acetate) intoxicated rats. Plumbum 1M did not exhibit protective effect when dietary lead at high concentrations (> 25 mg% lead ac
etate) were given concurrently as assessed by blood delta ALAD activity and hemoglobin concentration. However it was partially effective in the recovery of delta ALAD activity and relieving anemia caused by chronic exposure of low doses of lead (below 15 mg% lead acetate).
Valencia C, etal., Toxicol Lett. 2004 Mar 14;148(1-2):21-8. doi: 10.1016/j.toxlet.2003.12.003.
Nuclear factor-kappaB (NF-kappaB) DNA binding, tumor necrosis factor-alpha (TNF-alpha) expression, and parameters related to liver oxidative stress and Kupffer cell function were assessed in control rats and in animals given 3,3',5-triiodothyronine (T3) (0.1 mg T3/kg) and/or lindane (50 mg/kg; 4 h a
fter T3). Liver NF-kappaB DNA binding and serum TNF-alpha levels were enhanced by the combined T3-lindane administration after 16-22 h, effects that were lower than those elicited by the separate treatments and coincided with increased hepatic TNF-alpha mRNA levels. Thyroid calorigenesis occurred independently of lindane, whereas T3, lindane and T3-lindane groups showed liver glutathione (GSH) depletion, with higher protein carbonyl levels in lindane and T3-lindane groups. Carbon-induced O2 consumption/carbon uptake ratios were not altered by T3 or lindane compared to controls, whereas combined T3-lindane administration elicited a 92% diminution with enhancement in the sinusoidal efflux of lactate dehydrogenase (LDH). In conclusion, depression of T3- or lindane-induced liver NF-kappaB activation and TNF-alpha expression occurred after their combined treatment, effects that correlate with the impairment of the respiratory burst activity of Kupffer cells and exacerbation of liver injury.
Champiat S, etal., Ann Oncol. 2016 Apr;27(4):559-74. doi: 10.1093/annonc/mdv623. Epub 2015 Dec 28.
Monoclonal antibodies targeted against the immune checkpoint molecules CTLA-4 and PD-1 have recently obtained approval for the treatment of metastatic melanoma and advanced/refractory non small-cell lung cancers. Therefore, their use will not be limited anymore to selected hospitals involved in clin
ical trials. Indeed, they will be routinely prescribed in many cancer centers across the world. Besides their efficacy profile, these immune targeted agents also generate immune-related adverse events (irAEs). This new family of dysimmune toxicities remains largely unknown to the broad oncology community. Although severe irAEs remain rare (~10% of cases under monotherapy), they can become life-threatening if not anticipated and managed appropriately. Over the last 5 years, Gustave Roussy has accumulated a significant experience in the prescription of immune checkpoint blockade (ICB) antibodies and the management of their toxicities. Together with the collaboration of Gustave Roussy's network of organ specialists with expertise in irAEs, we propose here some practical guidelines for the oncologist to help in the clinical care of patients under ICB immunotherapy.
Annat G, etal., Obstet Gynecol. 1978 Aug;52(2):219-24.
Toxemic and normotensive pregnant women were compared for plasma renin activity (PRA), aldosterone (PA), and dopamine-beta-hydroxylase (DBH). At term, hypertensive patients exhibited higher levels of PRA and PA, but similar levels of DBH, progesterone, and estra
diol. Their elevated blood pressure was significantly correlated to their levels of PRA. During the delivery levels of PRA increased significantly in toxemic patients in spontaneous labor. Venous and arterial cord PRA levels were higher in babies born to hypertensive mothers than in babies born to normotensive mothers. Three days postpartum, maternal PRA level was lower than at term. Seven days postpartum, PRA levels remained higher in toxemic than in normal women. Maternal DBH levels did not change during and after delivery. Levels of DBH were undetectable in cord blood. We conclude that the renin-angiotensin system is involved in the pathogenesis of toxemia.
Nie BM, etal., Neuropharmacology. 2008 Apr;54(5):845-53. doi: 10.1016/j.neuropharm.2008.01.003. Epub 2008 Jan 14.
Amyloid beta protein (Abeta), the central constituent of senile plaques in Alzheimer's disease (AD), is known to exert toxic effects on cultured neurons. In the present study, the protective effect of panaxydol (PND) and panaxynol (PNN) on Abeta25-35-induced neu
ronal apoptosis and potential mechanisms were investigated in primary cultured rat cortical neurons. Pretreatment of the cells with PND or PNN prior to 10 microM Abeta25-35 exposure resulted significantly in elevation of cell survival determined by MTT assay, TUNEL/Hoechst staining and western blot. Furthermore, a marked increase in calcium influx and intracellular free radical generation was found after Abeta25-35 exposure, which could be almost completely reversed by pretreatment of PND or PNN. PND and PNN could also alleviate Abeta25-35-induced early-stage neuronal degeneration. These results indicated that inhibition of calcium influx and free radical generation is a mechanism of the anti-apoptotic action of PND and PNN. Since Abeta plays critical roles in the pathogenesis of AD, these findings raise the possibility that PND and PNN reduce neurodegeneration in AD.
Zhang Y, etal., Aquat Toxicol. 2013 Jul 29;142-143C:26-32. doi: 10.1016/j.aquatox.2013.07.014.
Phenanthrene (Phe) is one of the most abundant and ubiquitous polycyclic aromatic hydrocarbons in the aquatic environment. It is known that Phe has cardiotoxic effects, but knowledge concerning the mechanism of cardiac dysfunction caused by Phe is still limited
. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of Phe, and an increase of an irregular rhythm was observed in Phe treated embryos. Disordered calcium (Ca2+) handling characterized by impaired sarcoplasmic reticulum Ca2+ uptake, and obvious Ca2+ accumulation in the cytoplasm was observed in rat embryonic cardiac myoblasts (H9C2) exposed to Phe. The mRNA level as well as protein expression of the SERCA2a Ca2+ pump in zebrafish hearts or H9C2 cells was significantly decreased by Phe exposure. The activity of Ca2+-ATPase in H9C2 cells was inhibited by Phe. Both the mRNA and protein levels of TBX5, a direct regulator of SERCA2a, were significantly decreased by Phe exposure. These results suggested that exposure to Phe could lead to arrhythmia in zebrafish embryos via perturbing the calcium handling pathway.
Belyy A, etal., PLoS One. 2015 Dec 29;10(12):e0145708. doi: 10.1371/journal.pone.0145708. eCollection 2015.
Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determ
ined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human beta-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia.
Anthrax toxin receptor 1/tumor endothelial marker 8 (Antxr1 or TEM8) is up-regulated in tumor vasculature and serves as a receptor for anthrax toxin, but its physiologic function is unclear. The objective of this study was t
o evaluate the role of Antxr1 in arteriogenesis. The role of Antxr1 in arteriogenesis was tested by measuring gene expression and immunohistochemistry in a mouse model of hindlimb ischemia using wild-type and ANTXR1(-/-) mice. Additional tests were performed by measuring gene expression in in vitro models of fluid shear stress and hypoxia, as well as in human muscle tissues obtained from patients having peripheral artery disease. We observed that Antxr1 expression transiently increased in ischemic tissues following femoral artery ligation and that its expression was necessary for arteriogenesis. In the absence of Antxr1, the mean arterial lumen area in ischemic tissues decreased. Antxr1 mRNA and protein expression was positively regulated by fluid shear stress, but not by hypoxia. Furthermore, Antxr1 expression was elevated in human peripheral artery disease requiring lower extremity bypass surgery. These findings demonstrate an essential physiologic role for Antxr1 in arteriogenesis and peripheral artery disease, with important implications for managing ischemia and other arteriogenesis-dependent vascular diseases.
Vahidnia A, etal., Chem Biol Interact. 2008 Nov 25;176(2-3):188-95. doi: 10.1016/j.cbi.2008.07.001. Epub 2008 Jul 12.
In our previous study in rats acutely exposed to As, we observed an effect of As on neurofilaments in the sciatic nerve. This study deals with the effects of inorganic As in Wistar rats on the cytoskeletal protein composition of the sciatic nerve after subchronic intox
xication. Sodium meta-arsenite (NaAsO2) dissolved in phosphate-buffered saline (PBS) was administered daily in doses of 0, 3 and 10 mg/kg body weight/day (n=9 rats/group) by intragastric route for 4, 8 and 12 week periods. Toxicokinetic measurements revealed a saturation of blood As in the 3- and 10-mg/kg dose groups at approximately 14 microg/ml, with an increase in renal clearance of As at increasing doses. After exsanguination, sciatic nerves were excised and the protein composition was analyzed. Analysis of the sciatic nerves showed compositional changes in their proteins. Protein expression of neurofilament Medium (NF-M) and High (NF-H) was unchanged. Neurofilament protein Low (NF-L) expression was reduced, while mu- and m-calpain protein expression was increased, both in a dose/time pattern. Furthermore, NF-H protein was hypophosphorylated, while NF-L and microtubule-associated protein tau (MAP-tau) proteins were (hyper)-phosphorylated. In conclusion, we show that expression of mu- and m-calpain protein is increased by exposure to As, possibly leading to increased NF-L degradation. In addition, hyperphosphorylation of NF-L and MAP-tau by As also contribute to destabilization and disruption of the cytoskeletal framework, which eventually may lead to axonal degeneration.
Royland JE and Kodavanti PR, Toxicol Appl Pharmacol. 2008 Sep 1;231(2):179-96. Epub 2008 May 6.
Epidemiological studies indicate that low levels of polychlorinated biphenyl (PCB) exposure can adversely affect neurocognitive development. In animal models, perturbations in calcium signaling, neurotransmitters, and thyroid hormones have been postulated as potential mechanisms for PCB-induced deve
lopmental neurotoxicity. In order to understand the role of these proposed mechanisms and to identify other mechanisms in PCB-induced neurotoxicity, we have chosen a global approach utilizing oligonucleotide microarrays to examine gene expression profiles in the brain following developmental exposure to Aroclor 1254 (0 or 6 mg/kg/day from gestation day 6 through postnatal day (PND) 21) in Long-Evans rats. Gene expression levels in the cerebellum and hippocampus from PNDs 7 and 14 animals were determined on Affymetrix rat 230A_2.0 chips. In the cerebellum, 87 transcripts were altered at PND7 compared to 27 transcripts at PND14 by Aroclor 1254 exposure, with only one transcript affected at both ages. In hippocampus, 175 transcripts and 50 transcripts were altered at PND7 and PND14, respectively, by Aroclor 1254 exposure with five genes commonly affected. Functional analysis suggests that pathways related to calcium homeostasis (Gng3, Ryr2, Trdn, Cacna1a), intracellular signaling (Camk2d, Stk17b, Pacsin2, Ryr2, Trio, Fert2, Ptk2b), axonal guidance (Lum, Mxd3, Akap11, Gucy1b3), aryl hydrocarbon receptor signaling (Nfia, Col1a2), and transcripts involved in cell proliferation (Gspt2, Cdkn1c, Ptk2b) and differentiation (Ifitm31, Hpca, Zfp260, Igsf4a, Hes5) leading to the development of nervous system were significantly altered by Aroclor 1254 exposure. Of the two brain regions examined, Aroclor 1254-induced genomic changes were greater in the hippocampus than the cerebellum. The genomic data suggests that PCB-induced neurotoxic effects were due to disruption of normal ontogenetic pattern of nervous system growth and development by altering intracellular signaling pathways but not by endocrine disruption.
Cui Y, etal., Toxicol Sci. 2011 Nov;124(1):23-34. doi: 10.1093/toxsci/kfr217. Epub 2011 Aug 24.
Calcineurin inhibitor (CI) therapy has been associated with chronic nephrotoxicity, which limits its long-term utility for suppression of allograft rejection. In order to understand the mechanisms of the toxicity, we analyze
d gene expression changes that underlie the development of CI immunosuppressant-mediated nephrotoxicity in male Sprague-Dawley rats dosed daily with cyclosporine (CsA; 2.5 or 25 mg/kg/day), FK506 (0.6 or 6 mg/kg/day), or rapamycin (1 or 10 mg/kg/day) for 1, 7, 14, or 28 days. A significant increase in blood urea nitrogen was observed in animals treated with CsA (high) or FK506 (high) for 14 and 28 days. Histopathological examination revealed tubular basophilia and mineralization in animals given CsA (high) or FK506 (low and high). We identified a group of genes whose expression in rat kidney is correlated with CI-induced kidney injury. Among these genes are two genes, Slc12a3 and kidney-specific Wnk1 (KS-Wnk1), that are known to be involved in sodium transport in the distal nephrons and could potentially be involved in the mechanism of CI-induced nephrotoxicity. The downregulation of NCC (the Na-Cl cotransporter coded by Slc12a3) in rat kidney following CI treatment was confirmed by immunohistochemical staining, and the downregulation of KS-Wnk1 was confirmed by quantitative real-time-polymerase chain reaction (qRT-PCR). We hypothesize that decreased expression of Slc12a3 and KS-Wnk1 could alter the sodium chloride reabsorption in the distal tubules and contribute to the prolonged activation of the renin-angiotensin system, a demonstrated contributor to the development of CI-induced nephrotoxicity in both animal models and clinical settings. Therefore, if validated as biomarkers in humans, SLC12A3 and KS-WNK1 could potentially be useful in the early detection and reduction of CI-related nephrotoxicity in immunosuppressed transplant patients when monitoring the health of kidney xenographs in clinical practice.
Tumor necrosis factor-alpha (TNF-alpha) is assumed to act as a mediator in toxic liver injury, aggravating the primary damage to the parenchymal liver cell, but also stimulating liver regeneration. Reports on the effect of acetaminophen in vivo on TNF-alpha tran
script concentrations and serum TNF-alpha concentrations, under different experimental, or clinical conditions have yielded controversial results. We used primary rat hepatocyte and Kupffer cell cultures to test the direct action of subtoxic and toxic concentrations of acetaminophen on TNF-alpha expression and release. We observed a dose-dependent decrease of TNF-alpha mRNA in the hepatocytes, and of TNF-alpha release into the medium of hepatocyte cultures. The data also indicate an impairment of TNF-alpha release in Kupffer cell cultures after treatment with nontoxic, as well as with toxic, acetaminophen concentrations. The results suggest that inhibition of TNF-alpha expression and release in the liver is a consequence of acetaminophen exposure. It is at present unknown how this effect modulates the course of acetaminophen intoxication.
Jorritsma U, etal., Toxicology. 2000 Apr 3;144(1-3):229-36. doi: 10.1016/s0300-483x(99)00211-5.
Various studies suggest that induction of cytochrome P-450 1A (CYP1A) might be a valuable therapeutic modality for reducing the hyperbilirubinemia of infants with Crigler-Najjar syndrome type I (CNS-I), a severe form of congenital jaundice. To evaluate inducers of CYP1A as possible tools in the trea
tment of hyperbilirubinemia, a novel assay was established, based on the analysis of the urinary pattern of caffeine metabolites in rats. Wistar rats received [1-Me-(14)C]-caffeine (10 mg/kg i.p.), before and 48h after administration of the potent CYP1A inducer 5,6-benzoflavone (BNF) (80 mg/kg, i.p.). A substantial increase in the fractions of the terminal caffeine metabolites 1-methyluric acid (1-U), 1-methylxanthine (1-X), and a concomitant decrease in the caffeine demethylation product 1,7-dimethylxanthine (1,7-X) was observed after application of BNF. The ratio of the caffeine metabolites (1-U+1-X)/1,7-X may serve as an index of CYP1A activity in rats in vivo. Hyperbilirubinemic, homozygous (jj) Gunn rats are an accepted model for human CNS-I. In male jj Gunn rats treated with BNF or with indole-3-carbinol (I3C, 80 mg/kg, oral gavage), the inducing effect of BNF and 13C on CYP1A activity was confirmed by the urinary pattern of caffeine metabolites, and was parallelled by a decrease in plasma bilirubin levels. These data demonstrate the usefulness of the established caffeine assay for the evaluation of inducers of CYP1A as tools for reducing hyperbilirubinemia and further confirm the potential value of I3C in the treatment of CNS-I.
Suzuki Y, etal., Arch Toxicol. 2012 Oct;86(10):1593-601. doi: 10.1007/s00204-012-0865-8. Epub 2012 May 11.
Estragole (ES) is a natural organic compound used frequently as a flavoring food additive. Although it has been reported to be tumorigenic and induce DNA adducts in the mouse liver, there have been no reports regarding ES hepatocarcinogenicity in rats. In the current study, we therefore examined p
otent carcinogenicity, DNA adduct formation and in vivo genotoxicity of ES in the livers of wild and reporter gene-carrying F344 rats. Males were administered 600 mg/kg bw ES by gavage and sequentially sacrificed at weeks 4, 8 and 16 for GST-P and PCNA immunohistochemistry and measurement of ES-specific DNA adducts by LC-MS/MS in the livers. GST-P-positive foci increased with time in ES-treated rats from week 4, PCNA-labeling indices being similarly elevated at both weeks 4 and 8. ES-specific DNA adducts such as ES-3'-N(2)-dG, 3'-8-dG and 3'-N(6)-dA were consistently detected, particularly at week 4. In a second study, male F344 gpt delta rats were administered 0, 22, 66, 200 or 600 mg/kg bw ES for 4 weeks. Gpt mutant frequency in the liver was increased in a dose-dependent manner, with significance at 200 and 600 mg/kg bw in good correlation with PCNA-labeling indices. Mutation spectra analysis showed A:T to G:C transitions to be predominantly increased in line with the formation of ES-3'-N(6)-dA or 3'-8-dG. These results indicate that ES could be a possible genotoxic hepatocarcinogen in the rat, at least when given at high doses.
Although the extent of chemical-induced liver injury differs substantially from individual to individual, it is very hard to identify susceptible population priori to chemical exposure. We report here that the gene expression of the blood samples collected predose might identify the susceptible popu
lation without actual exposure to hepatotoxicant. The innate gene expressions in the blood samples collected at predose were compared using whole-genome microarray analysis and semiquantitative PCR with the extent of hepatotoxicity following the treatment of a model hepatotoxicant, carbon tetrachloride (CCl(4)) posteriori. The expression of 18 genes was found to innately differ in the blood of the susceptible animals from the resistant to CCl(4)-induced hepatotoxicity. Of these 18 genes, three genes, NADH dehydrogenase subunit 6 (ND6), transient receptor potential cation channel, subfamily C, member 6 (Trpc6), and tetraspanin 12 (Tspan12), were found to be different reproducibly in real-time PCR analysis with independent sets of animals. Of particular note, animals with the low expression level of ND6 and Tspan12 showed significantly higher susceptibility to CCl(4)-induced hepatotoxicity indeed. This study demonstrated that blood gene expression profiling might identify the susceptible individuals to chemical-induced hepatotoxicity without actual chemical exposure, providing a novel and important methodology for the prevention of drug-induced hepatotoxicity.
Fu X, etal., Toxicol Sci. 2014 Jun;139(2):432-51. doi: 10.1093/toxsci/kfu048. Epub 2014 Mar 10.
Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was
designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury.
Banerjee A, etal., Elife. 2013 May 21;2:e00594. doi: 10.7554/eLife.00594.
Pore-blocking toxins inhibit voltage-dependent K(+) channels (Kv channels) by plugging the ion-conduction pathway. We have solved the crystal structure of paddle chimera, a Kv channel in complex with charybdotoxin (CTX), a p
ore-blocking toxin. The toxin binds to the extracellular pore entryway without producing discernable alteration of the selectivity filter structure and is oriented to project its Lys27 into the pore. The most extracellular K(+) binding site (S1) is devoid of K(+) electron-density when wild-type CTX is bound, but K(+) density is present to some extent in a Lys27Met mutant. In crystals with Cs(+) replacing K(+), S1 electron-density is present even in the presence of Lys27, a finding compatible with the differential effects of Cs(+) vs K(+) on CTX affinity for the channel. Together, these results show that CTX binds to a K(+) channel in a lock and key manner and interacts directly with conducting ions inside the selectivity filter. DOI:http://dx.doi.org/10.7554/eLife.00594.001.
TA1 is a rat liver oncofetal cDNA and a member of an emerging family of evolutionarily conserved molecules with homology to amino acid transporters and permeases. The aim of these studies was to characterize the regulation and role of TA1 in acute rat liver injury by examining its relation to regene
ration and metabolic stress. Following a single dose of CCl4, TA1 message was expressed 3-48 h. The major 3.3-kb TA1 transcript correlated temporally with c-myc expression. A novel 2.9-kb TA1 transcript was expressed more variably 24-48 h. TA1 protein was restricted to hepatocytes in G0 and G1 phases of the cell cycle. Relative to CCl4, a much smaller increase in TA1 was noted after partial hepatectomy and TA1 preceded the peak of c-myc expression. In vitro TA1 was not induced in hepatocytes by EGF or the acute-phase cytokines IL-6 and TNF-alpha, but was found to be modulated in response to amino acid availability. TA1 expression increased in media without arginine and glutamine and was repressed by total amino acid levels 5-fold over basal MEM. Together, these results contrast with the constitutive expression observed in transformed cells and suggest an adaptive role for TA1 during liver injury.
Lee LY, etal., Toxicol Sci. 2014 Dec;142(2):361-74. doi: 10.1093/toxsci/kfu184. Epub 2014 Oct 6.
Oxidative stress is implicated in the development of non-alcoholic steatohepatitis (NASH). The Nrf2-antioxidant response element pathway protects cells from oxidative stress. Studies have shown that global Nrf2 deficiency hastens the progression of NASH. The purpose of this study was to determine wh
ether long-term hepatocyte-specific activation of Nrf2 mitigates NASH progression. Transgenic mice expressing a constitutively active Nrf2 construct in hepatocytes (AlbCre+/caNrf2+) and littermate controls were generated. These mice were fed standard or methionine-choline-deficient (MCD) diet, a diet used to induce NASH development in rodents. After 28 days of MCD dietary feeding, mice developed significant increases in steatosis, inflammation, oxidative stress, and HSC activation compared with those mice on standard diet. AlbCre+/caNrf2+ animals had significantly decreased serum transaminases and reduced steatosis when compared with the AlbCre+/caNrf2- animals. This significant reduction in steatosis was associated with increased expression of genes involved in triglyceride export (MTTP) and beta-oxidation (CPT2). However, there were no differences in the increased oxidative stress, inflammation, and HSC activation from MCD diet administration between the AlbCre+/caNrf2- and AlbCre+/caNrf2+ animals. We conclude that hepatocyte-specific activation of Nrf2-mediated gene expression decreased hepatocellular damage and steatosis in a dietary model of NASH. However, hepatocyte-specific induction of Nrf2-mediated gene expression alone is insufficient to mitigate inflammation, oxidative stress, and HSC activation in this nutritional NASH model.
Sommer RJ, etal., Toxicol Appl Pharmacol. 1999 Mar 1;155(2):177-89. doi: 10.1006/taap.1998.8597.
Effects of stage of development and 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) protein concentrations in reproductive organs of male rats were determined. AhR protein levels in developing rat ventral and dorsolateral pr
ostate decreased with age, declining approximately 70% between Postnatal Days (PND) 1 and 21. ARNT protein levels also decreased with age in dorsolateral, but not ventral prostate. The developmental decreases in prostatic AhR and ARNT protein were associated with decreases in AhR and ARNT mRNA. AhR and ARNT protein concentrations in fetal urogenital sinus on Gestation Days (GD) 16, 18, and 20 were similar to levels in ventral prostate on PND 7. TCDD exposure of adult male rats (0.2, 1, 5, or 25 micrograms/kg po, 24 h) decreased AhR but not ARNT protein in ventral and dorsolateral prostate, vas deferens, and epididymis. In utero and lactational TCDD exposure (1.0 micrograms/kg dam po, GD 15) did not alter ARNT levels but reduced prostatic AhR protein levels on PND 7 and delayed the developmental decrease in AhR protein in ventral and dorsolateral prostate. Finally, pretreatment of rat pups for 24 h with TCDD (5 micrograms/kg ip) down-regulated prostatic AhR protein on PND 7, but not on PND 1. Thus, prostatic AhR and ARNT protein and mRNA levels are regulated with age, whereas only AhR protein concentration is altered by TCDD exposure. Because in utero and lactational TCDD exposure only decreased prostatic AhR on PND 7, it is unlikely that down-regulation of AhR is the mechanism by which perinatal TCDD exposure impairs prostate development.
Quiros Y, etal., Toxicol Sci. 2013 Apr;132(2):493-501. doi: 10.1093/toxsci/kft007. Epub 2013 Jan 18.
Although generally reversible, contrast media toxicity often induces contrast-induced nephropathy (CIN), which is associated with longer hospitalization time, the need for dialysis, and higher incidence of later cardiovascular events and higher mortality. Preven
tive cotreatments have been assayed at the preclinical and clinical levels, but recent meta-analysis has not demonstrated a beneficial effect, which supports the search for new nephroprotective strategies. We have assessed if the administration of cardiotrophin-1 (CT-1), an endogenous cytokine with protective properties on the heart and liver, might mitigate CIN in rats. We have developed a model of CIN induced by the administration of the contrast medium gastrographin iv (3.7mg/kg) in rats sensitized by previous administration of subnephrotoxic doses of gentamicin (50mg/kg/day, ip) for 6 days. The severity of CIN was assessed by the measurement of renal function; renal histological damage; urinary excretion of markers of tubular damage, including N-acetyl beta glucosaminidase (NAG), kidney injury molecule 1 (KIM-1), and plasminogen activator inhibitor 1; lipid peroxidation; and renal apoptosis. Treatment with CT-1 almost completely prevented the renal tissue damage, as evidenced by almost total prevention of tubular desepithelization and tubular obstruction, reduced caspase activation, and cell proliferation. Besides, CT-1 also prevented the increment in renal tissue levels of renal tissue injury markers NAG, KIM-1, and neutrophil gelatinase-associated lipocalin. Oxidative stress, a hallmark of CIN, was also prevented by CT-1. Administration of CT-1 also prevented the derangement in kidney function induced by CIN. Renal hemodynamics, also impaired by the contrast medium, was normal in rats cotreated with CT-1. CT-1 administration significantly prevents the alterations in renal function and structure observed in a rat model of CIN.
Perfluorooctane sulfonate (PFOS) at a high dose of 10 mg/kg has been reported to affect the neuroendocrine system and exert toxic effects in rodents. The present study examined the influence of chronic exposure to a low-dose of PFOS (0.1 mg/kg/day) on female r
eproductive endocrine and function. Herein, we show that adult female mice exposed to PFOS by gavage for 4 months (PFOS-mice) exhibited a prolongation of diestrus without signs of toxic effects. The numbers of mature follicles and corpora luteum were significantly reduced in PFOS-mice with increase of atresic follicles. The levels of serum estrogen (E2) and progesterone at proestrus and diestrus were reduced in PFOS-mice. In comparison with controls, PFOS-mice showed a significant decrease in the levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), and gonadotrophin-releasing hormone, the number of kisspeptin neurons and the level of kiss1 mRNA in anteroventral periventricular nucleus at proestrus but not at diestrus, which could be corrected with the normalization to E2. PFOS-mice did not generate an LH-surge at proestrus, which could be rescued by the application of E2 or kisspeptin-10. Notably, the level of ovarian steroidogenic acute regulatory (StAR) mRNA was decreased in PFOS-mice with the reduction of histone H3K14 acetylation in StAR promoter relative to control mice, whereas the P450scc expression and histone H3K14 acetylation showed no difference between the groups. The present study provides evidence that the chronic exposure to the low-dose of PFOS through selectively reducing histone acetylation of StAR suppresses the biosynthesis of E2 to impair the follicular development and ovulation.
INTRODUCTION: P-glycoprotein is localized in numerous tissues throughout the body and plays an important role in the disposition of many xenobiotics. The contribution of P-glycoprotein-mediated drug transport is being evaluated in early drug discovery stages, particularly for compounds targeted to t
he central nervous system, using in vitro tools including cell lines expressing P-glycoprotein. Previous work in our laboratory suggests there are species differences in P-glycoprotein transport activity between humans and animals. The rat Abcb1a form of P-glycoprotein (formerly known as Mdr1a), the predominate isoform in the brain, has not been described in a functional cell system. Here, we describe the development and characterization of LLC-PK1 cells expressing rat Abcb1. METHODS: We cloned rat Abcb1a and generated a stable LLC-PK1 cell line. Expression and function of the cells were evaluated by immunoblot analysis, cytotoxicity analysis, cellular accumulation assays, and transcellular transport of probe substrates. The transport ratios of structurally diverse compounds obtained from parental cells or cells stably transfected with human ABCB1, mouse Abcb1a or rat Abcb1a were compared. RESULTS: Two forms of rat Abcb1a were cloned from Sprague-Dawley cDNA that differ by six amino acids and a base pair deletion. The intact form was stably transfected in LLC-PK1 cells. Immunoblot analysis demonstrated expression of the protein. The cells demonstrated P-glycoprotein-mediated function by directional transport of dexamethasone, ritonavir, and vinblastine in a transwell assay that was inhibited in the presence of cyclosporin A, verapamil, or quinidine. Likewise, the cells showed reduced cellular accumulation of Rh123 by FACS analysis that was reversed in the presence of cyclosporin A. These cells showed >or=350-fold resistance to colchicine, doxorubicin, vinblastine, and taxol and were sensitized in the presence of verapamil or cyclosporin A. Of 179 chemically diverse compounds evaluated, approximately 20% of the compounds evaluated were predicted to be substrates in one species but not in other species. DISCUSSION: Taken together, these data suggest these cells will be useful for evaluation of rat Abcb1a-mediated transport and for evaluation of species-specific P-glycoprotein-mediated transport.
Tacar O, etal., J Pharm Pharmacol. 2013 Feb;65(2):157-70. doi: 10.1111/j.2042-7158.2012.01567.x. Epub 2012 Aug 2.
OBJECTIVES: The frontline drug doxorubicin has been used for treating cancer for over 30 years. While providing a cure in select cases, doxorubicin causes toxicity to most major organs, especially life-threatening cardiotox
icity, which forces the treatment to become dose-limiting. KEY FINDINGS: Doxorubicin is known to bind to DNA-associated enzymes, intercalate with DNA base pairs, and target multiple molecular targets to produce a range of cytotoxic effects. For instance, it causes the activation of various molecular signals from AMPK (AMP-activated protein kinase inducing apoptosis) to influence the Bcl-2/Bax apoptosis pathway. By altering the Bcl-2/Bax ratio, downstream activation of different caspases can occur resulting in apoptosis. Doxorubicin also induces apoptosis and necrosis in healthy tissue causing toxicity in the brain, liver, kidney and heart. Over the years, many studies have been conducted to devise a drug delivery system that would eliminate these adverse affects including liposomes, hydrogel and nanoparticulate systems, and we highlight the pros and cons of these drug delivery systems. SUMMARY: Overall the future for the continued use of doxorubicin clinically against cancer looks set to be prolonged, provided certain enhancements as listed above are made to its chemistry, delivery and toxicity. Increased efficacy depends on these three aims being met satisfactorily as discussed in turn in this review.
BACKGROUND: It has been shown that glucose degradation products (GDP) generated during heat sterilization of peritoneal dialysis (PD) fluids impair the peritoneal membrane locally, then enter the systemic circulation and cause damage to the remnant kidney. Here we examined in subtotally nephrectomiz
ed (SNX) rats whether GDP also affect the cardiovascular system. Materials and METHODS: Standard 5/6 nephrectomy was carried out in Sprague-Dawley rats; other rats were sham operated and left untreated for 3 weeks. Through an osmotic mini-pump, SNX+GDP group received GDP intravenously for 4 weeks; the SNX and the sham-operated groups remained without GDP. The experiment was terminated for all groups 7 weeks postoperatively. We analyzed cardiovascular damage by serum analyses and immunohistochemical investigation. RESULTS: In SNX+GDP animals, expression of the advanced glycation end product (AGE) marker carboxymethyllysine and receptor of AGE (RAGE) were significantly higher in the myocardium and the aorta compared to the SNX rats. We also found significantly higher levels of apoptosis measured by caspase 3 staining in the cardiovascular system in the SNX+GDP group. Moreover, we observed a more pronounced expression of oxidative stress in the SNX+GDP rats compared to the SNX rats. In serum analyses, advanced oxidation protein products and reactive oxygen species were increased, as was immunohistochemical endothelial nitric oxide synthase. CONCLUSIONS: In addition to local toxic effects, GDP cause systemic toxicity. Here we showed that, in SNX rats, administration of GDP increased cardiovascular damage. In particular, we found increased levels of AGE, RAGE, oxidative stress, and apoptosis. Whether these findings are of clinical relevance has to be further investigated.
Circulating liver-specific mRNAs such as albumin (Alb) and alpha-1-microglobulin/bikunin precursor (Ambp) have been reported to be potential biomarkers for drug-induced liver injury (DILI). We identified novel circulating liver-specific mRNAs and quantified them, together with the two previously re
ported mRNAs, in plasma from rats treated with various hepatotoxicants to validate circulating liver-specific mRNAs as biomarkers for DILI. Among six genes selected from the database, high liver specificity of apolipoprotein h (Apoh) and group-specific component (Gc) mRNAs were confirmed by reverse transcription (RT)-PCR and the copy numbers of these mRNAs elevated in plasma from rats treated with thioacetamide. Liver-specific mRNAs (Alb, Ambp, Apoh, and Gc) were quantified by real-time RT-PCR in plasma from rats with single dosing of seven hepatotoxicants. There were noticeable interindividual and intercompound variabilities in the severity of liver injury. The levels of four mRNAs increased almost in parallel and correlated with changes in the alanine aminotransferase (ALT) values and the hepatocellular necrosis scores at 24h after dosing. It was noteworthy that the magnitude of the increases in mRNA levels was greater than that in the ALT value. Time course analysis within 24h after dosing revealed that the timing of the increase was different among mRNA species, and the plasma levels of Alb and Gc mRNAs increased substantially earlier than the ALT values, suggesting that patterns of changes in circulating liver-specific mRNAs indicate the progression of liver injury. These results strongly support the reliability and usefulness of the four circulating liver-specific mRNAs as biomarkers for DILI.
Lieberman LA, etal., J Immunol. 2004 Aug 1;173(3):1887-93. doi: 10.4049/jimmunol.173.3.1887.
IL-23 and IL-12 are heterodimeric cytokines which share the p40 subunit, but which have unique second subunits, IL-23p19 and IL-12p35. Since p40 is required for the development of the Th1 type response necessary for resistance to Toxoplasma gondii, studies were
performed to assess the role of IL-23 in resistance to this pathogen. Increased levels of IL-23 were detected in mice infected with T. gondii and in vitro stimulation of dendritic cells with this pathogen resulted in increased levels of mRNA for this cytokine. To address the role of IL-23 in resistance to T. gondii, mice lacking the p40 subunit (common to IL-12 and IL-23) and mice that lack IL-12 p35 (specific for IL-12) were infected and their responses were compared. These studies revealed that p40(-/-) mice rapidly succumbed to toxoplasmosis, while p35(-/-) mice displayed enhanced resistance though they eventually succumbed to this infection. In addition, the administration of IL-23 to p40(-/-) mice infected with T. gondii resulted in a decreased parasite burden and enhanced resistance. However, the enhanced resistance of p35(-/-) mice or p40(-/-) mice treated with IL-23 was not associated with increased production of IFN-gamma. When IL-23p19(-/-) mice were infected with T. gondii these mice developed normal T cell responses and controlled parasite replication to the same extent as wild-type mice. Together, these studies indicate that IL-12, not IL-23, plays a dominant role in resistance to toxoplasmosis but, in the absence of IL-12, IL-23 can provide a limited mechanism of resistance to this infection.
Takano M, etal., Asia Pac J Clin Oncol. 2016 Jun;12(2):115-24. doi: 10.1111/ajco.12453. Epub 2016 Feb 10.
AIM: Irinotecan-induced severe toxicities are possibly related to UGT1A1*6 and *28 genotypes. However, the correlation between UGT1A1 polymorphisms and the risk of toxicities induced by low-dose irinotecan plus platinum comb
ination therapy still remains controversial. This prospective observational study aimed to examine the correlation between UGT1A1 genotypes and clinical outcomes of low-dose irinotecan (median 60 mg/m(2) , range 25-115 mg/m(2) ) plus platinum in Japanese patients with solid tumors. METHODS: Toxicity profiles were compared between UGT1A1 SNP heterozygotes (hetero-group) and patients with homozygous SNP profile (*6/*6, *28/*28 and *6/*28). Logistic regression models were used to identify independent risk factors for these toxicities. RESULTS: A total of 331 patients were enrolled: 84% with hetero-group and 16% with homo-group. Although the initial irinotecan dose was similar, the dose intensities during the three cycles were significantly lower in the homo-group (P < 0.01). Grade 3/4 hematological toxicities were significantly more frequent in the homo-group. Multivariable analysis identified UGT1A1 genotype (P < 0.01) as an independent factor for grade 4 hematological toxicity in the first treatment cycle. CONCLUSION: UGT1A1 genotype has a major impact on the increased risk of severe hematological toxicities, even in low-dose irinotecan regimens. UGT1A1 genotypes are useful biomarkers for predicting severe hematological toxicities in patients treated with irinotecan plus platinum analog.
Lauritzen KH, etal., Am J Physiol Heart Circ Physiol. 2015 Aug 1;309(3):H434-49. doi: 10.1152/ajpheart.00253.2014. Epub 2015 Jun 8.
Cardiac mitochondrial dysfunction has been implicated in heart failure of diverse etiologies. Generalized mitochondrial disease also leads to cardiomyopathy with various clinical manifestations. Impaired mitochondrial homeostasis may over time, such as in the aging heart, lead to cardiac dysfunction
. Mitochondrial DNA (mtDNA), close to the electron transport chain and unprotected by histones, may be a primary pathogenetic site, but this is not known. Here, we test the hypothesis that cumulative damage of cardiomyocyte mtDNA leads to cardiomyopathy and heart failure. Transgenic mice with Tet-on inducible, cardiomyocyte-specific expression of a mutant uracil-DNA glycosylase 1 (mutUNG1) were generated. The mutUNG1 is known to remove thymine in addition to uracil from the mitochondrial genome, generating apyrimidinic sites, which obstruct mtDNA function. Following induction of mutUNG1 in cardiac myocytes by administering doxycycline, the mice developed hypertrophic cardiomyopathy, leading to congestive heart failure and premature death after approximately 2 mo. The heart showed reduced mtDNA replication, severely diminished mtDNA transcription, and suppressed mitochondrial respiration with increased Pgc-1alpha, mitochondrial mass, and antioxidative defense enzymes, and finally failing mitochondrial fission/fusion dynamics and deteriorating myocardial contractility as the mechanism of heart failure. The approach provides a model with induced cardiac-restricted mtDNA damage for investigation of mtDNA-based heart disease.
The regulation of cell migration is a key factor for the dissemination of metastatic cells during tumor progression. Aquaporins are membrane channels which allow transmembrane fluxes of water and glycerol in cells in a variety of mammalian tissues. Here, we show that AQP3, which has been incriminate
d in cancer progression, is regulated by the AhR, or dioxin receptor. AhR is a transcription factor which is triggered in response to environmental pollutants and it has been shown to regulate several cellular processes including cell migration and plasticity. In vivo, upon exposure to the aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the expression of AQP3 is increased significantly in several murine tissues including the liver. In vitro, treatment of human HepG2 cells with TCDD also increased the expression of AQP3 mRNA and protein. These effects resulted from the activation of AhR as shown by RNA interference, chromatin immunoprecipitation and the use of several AhR ligands. Immunofluorescence and real-time analysis of cell migration (XCelligence) demonstrated that knockdown of AQP3 mRNA using small interfering RNA impairs the remodeling of cell shape and the triggering of cell migration that is induced by TCDD. Our work reveals, for the first time, a link between exposure to pollutant and the induction of an aquaporin which has been suspected to play a role during metastasis.
1. A time-course study was carried out in mice subchronically exposed to As III (as sodium arsenite) or As V (as sodium arsenate), via drinking water, relating the pattern of urinary porphyrin excretion to the renal and hepatic enzyme activities of porphobilinogen deaminase (PBGD), uroporphyrinogen
III synthetase (URO III-S), uroporphyrinogen decarboxylase (URO-D) and coproporphyrinogen oxidase (COPRO-O), as well as to the hepatic porphyrin accumulation in the treated animals. 2. A time-dependent, wave-like porphyric response was found in mice exposed to As V, and the increases seen in total urinary porphyrins (at 3 weeks of exposure) corresponded to an increased activity of PBGD and Uro III-S in liver. 3. Significant decreases in renal URO-D and hepatic and renal COPRO-O activities were found in treated mice; these inhibitions were more pronounced in animals exposed to As III. 4. The combination of these enzymic effects may explain the time-dependent porphyric response of mice subchronically exposed to As. Finally, the relative magnitudes of URO-D and COPRO-O inhibitions may determine the pattern of porphyrin concentration observed in urine and tissues. 5. The decrease in renal URO-D activity may help to explain the inversion in the coproporphyrin/uroporphyrin ratio previously reported in humans chronically exposed to As; however, there were differences between the urinary porphyrin profiles found in both species. The possible reasons for the similarities and differences are briefly discussed.
Iavicoli I, etal., Eur Rev Med Pharmacol Sci. 2011 May;15(5):481-508.
BACKGROUND AND OBJECTIVE: Recent rapid advances in nanotechnology raise concerns about development, production route, and diffusion in industrial and consumer products of titanium dioxide nanoparticles (TiO2-NPs). In fact, compared to recent increase in applications of this nanomaterial, the health
effects of human exposure have not been systematically investigated. The aim of this review was to provide a comprehensive overview on the current knowledge regarding the effects of TiO2-NPs on mammalian cells. EVIDENCE AND INFORMATION SOURCES: This review is based on an analysis of the current literature on this topic. STATE OF THE ART: Fine TiO2 particles have been considered as safe and to pose little risk to humans, suggesting that exposure to this material is relatively harmless. However, available data in the literature showed that TiO2-NPs can cause several adverse effects on mammalian cells such as increase of reactive oxygen species (ROS) production and cytokines levels, reduction of cell viability and proliferation, induction of apoptosis and genotoxicity. PERSPECTIVES AND CONCLUSIONS: Additional research is needed to obtain up-to-date knowledge on health effects of TiO2-NPs and to avoid any potential risk correlated to their exposure. Consequently, future studies need to: (1) use an homogeneous and rigorous exposure classification to clarify how the physicochemical properties of TiO2-NPs correlate with their toxicological effects; (2) assess the potential adverse effects of low level exposures to TiO2-NPs, as most of the information currently available originates from studies in which exposure levels were excessively and unrealistically high; (3) identify the possible roles of TiO2-NPs in genotoxicity and carcinogenicity (4) carry out epidemiologic studies of exposed workers to provide an assessment of possible risks correlated to the occupational exposure to TiO2-NPs.
Chemical toxicity testing is fast moving in a direction that relies increasingly on cell-basedin vitroassays anchored on toxicity pathways according to the toxicity testing in the 21st
century vision. Identifying points of departure (POD) via these assays and revealing their mechanistic underpinnings via computational modeling of the relevant pathways are critical and challenging steps. Here we used doxorubicin (DOX) as a prototype chemical to study mitochondrial toxicity in human AC16 cells. Mitochondrial toxicity has been linked to cardiovascular risk of DOX, which has limited its clinical use as an antitumor drug. Ourin vitrostudy revealed a well-defined POD concentration of DOX below which adaptive induction of proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) -mediated mitochondrial genes, including NRF-1, MnSOD, UCP2, and COX1, concurred with negligible changes in mitochondrial superoxide and cytotoxicity. At higher DOX concentrations adversity became significant with elevated superoxide and suppressed ATP levels. A computational model was formulated to simulate the PGC-1alpha-mediated transcriptional network comprising multiple negative feedback loops that underlie redox and bioenergetics homeostasis in the mitochondrion. The model recapitulated the transition phase from adaptive to adverse responses, supporting the notion that saturated induction of PGC-1alpha-mediated gene network underpins POD. The model further predicts (follow-up experiments verified) that silencing PGC-1alpha compromises the adaptive function of the transcriptional network, leading to disruption of mitochondria and cytotoxicity at lower DOX concentrations. In summary, our study demonstrates that combining pathway-focusedin vitroassays and computational simulation of relevant biochemical network is synergistic for understanding dose-response behaviors in the low-dose region and identifying POD.
Serpionov GV, etal., Sci Rep. 2015 Dec 17;5:18407. doi: 10.1038/srep18407.
Several neurodegenerative amyloidoses, including Huntington disease, are caused by expansion of polyglutamine (polyQ) stretches in otherwise unrelated proteins. In a yeast model, an N-terminal fragment of mutant huntingtin with a stretch of 103 glutamine residues aggregates and causes tox
ont-weight:700;'>toxicity, while its non-toxic wild type variant with a sequence of 25 glutamines (Htt25Q) does not aggregate. Here, we observed that non-toxic polymers of various proteins with glutamine-rich domains could seed polymerization of Htt25Q, which caused toxicity by seeding polymerization of the glutamine/asparagine-rich Sup35 protein thus depleting the soluble pools of this protein and its interacting partner, Sup45. Importantly, only polymers of Htt25Q, but not of the initial benign polymers, induced Sup35 polymerization, indicating an intermediary role of Htt25Q in cross-seeding Sup35 polymerization. These data provide a novel insight into interactions between amyloidogenic proteins and suggest a possible role for these interactions in the pathogenesis of Huntington and other polyQ diseases.
TGFbeta2 (transforming growth factor-beta2) is a key growth factor regulating epithelial to mesenchymal transition (EMT). TGFbeta2 triggers cardiac progenitor cells to differentiate into mesenchymal cells and give rise to the cellular components of coronary vessels as well as cells of aortic and pu
lmonary valves. TGFbeta signaling is dependent on a dynamic on and off switch in Smad activity. Arsenite exposure of 1.34 muM for 24-48 h has been reported to disrupt Smad phosphorylation leading to deficits in TGFbeta2-mediated cardiac precursor differentiation and transformation. In this study, the molecular mechanism of acute arsenite toxicity on TGFbeta2-induced Smad2/3 nuclear shuttling and TGFbeta2-mediated cardiac EMT was investigated. A 4-h exposure to 5 muM arsenite blocks nuclear accumulation of Smad2/3 in response to TGFbeta2 without disrupting Smad phosphorylation or nuclear importation. The depletion of nuclear Smad is restored by knocking-down Smad-specific exportins, suggesting that arsenite augments Smad2/3 nuclear exportation. The blockage in TGFbeta2-Smad signaling is likely due to the loss of Zn(2+) cofactor in Smad proteins, as Zn(2+) supplementation reverses the disruption in Smad2/3 nuclear translocation and transcriptional activity by arsenite. This coincides with Zn(2+) supplementation rescuing arsenite-mediated deficits in cardiac EMT. Thus, zinc partially protects cardiac EMT from developmental toxicity by arsenite.
Dutra MS, etal., J Infect Dis. 2013 Jan 1;207(1):152-63. doi: 10.1093/infdis/jis640. Epub 2012 Oct 24.
Retinochoroiditis manifests in patients infected with Toxoplasma gondii. Here, we assessed 30 sibships and 89 parent/case trios of presumed ocular toxoplasmosis (POT) to evaluate associations with polymorphisms in the NOD2 g
ene. Three haplotype-tagging single-nucleotide polymorphisms (tag-SNPs) within the NOD2 gene were genotyped. The family-based association test showed that the tag-SNP rs3135499 is associated with retinochoroiditis (P = .039). We then characterized the cellular immune response of 59 cases of POT and 4 cases of active ocular toxoplasmosis (AOT). We found no differences in levels of interferon gamma (IFN-gamma) and interleukin 2 produced by T-helper 1 cells when comparing patients with AOT or POT to asymptomatic individuals. Unexpectedly, we found an increased interleukin 17A (IL-17A) production in patients with POT or OAT. In patients with POT or AOT, the main cellular source of IL-17A was CD4(+)CD45RO(+)T-bet(-)IFN-gamma(-) T-helper 17 cells. Altogether, our results suggest that NOD2 influences the production of IL-17A by CD4(+) T lymphocytes and might contribute to the development of ocular toxoplasmosis.
Youness ER, etal., Toxicol Mech Methods. 2012 Sep;22(7):560-7. doi: 10.3109/15376516.2012.702796.
CONTEXT: Cadmium (Cd) is a widespread environmental pollutant that is associated with increased risk of osteoporosis. It has been proposed that Cd's toxic effect on bone is exerted via impaired activation of vitamin D, secondary to the kidney effects. OBJECTI
VE: The present study was designed to investigate the damaging impact of Cd in drinking water on bone from biochemical and histopathological point of view. MATERIALS AND METHODS: This study was conducted on 30, 3-months-old female Sprague Dawley rats exposed to cadmium chloride in a dose of 50 mg Cd/L in drinking water for 3 months. Serum was taken for determination of calcium, phosphorous levels, parathyroid hormone, 1,25 dihydroxy vitamin D(3), osteocalcin (OC) and bone specific alkaline phosphatase (BALP) activity. RESULTS: The result revealed that Cd administration induces significant increase in serum calcium (Ca), phosphorous (P) and parathyroid hormone (PTH) levels in concomitant with significant reduction in serum vitamin D(3), osteocalcin (OC) levels and bone specific alkaline phosphatase (BALP) activity. CONCLUSION: The present study provided clear evidence that long-term exposure to cadmium chloride produced marked abnormalities in bone biomarkers and increasing risk of fracture.
Carballo-Jane E, etal., J Pharmacol Toxicol Methods. 2007 Nov-Dec;56(3):308-16. Epub 2007 Jun 23.
INTRODUCTION: GPR109A is the receptor mediating both the antilipolytic and vasodilatory effects of nicotinic acid. In order to develop agonists for GPR109A with improved therapeutic indices we have sought to optimize animal models that evaluate both nicotinic acid-mediated inhibition of lipolysis an
d stimulation of vasodilatation. The rat and the dog have previously been used to study the antilipolytic effects of nicotinic acid, but no optimal vasodilatation model exits in either species. METHODS: We have developed a vasodilatation model in the rat that measures changes in ear perfusion using laser Doppler flowmetry. In the dog, we have developed a model of vasodilatation measuring changes in red color values in the ear, using a spectrocolorimeter. Effects of GPR109A agonists on lipolysis were measured in both species after oral dosing of compounds, and measuring plasma levels of free fatty acids. RESULTS: In both rat and dog, GPR109A agonists induce dose- and time-dependent vasodilatation, similar to that observed in humans. Vasodilatation is inhibited in both species with cyclooxygenase inhibitors or a specific DP1 receptor antagonist, indicating that, as in man, nicotinic acid-induced vasodilatation in rats and dogs is mainly mediated by the release of PGD(2). DISCUSSION: Our results show that both rat and dog are useful models for the characterization of GPR109A agonists. A therapeutic index for GPR109A agonists can be calculated in either species.
DNA double-strand breaks (DSBs) induced by exposure to genotoxic agents are known to cause genome instability and cancer development. To evaluate the applicability of gamma-H2AX, a sensitive marker of DSBs, in the early detection of genotox
700;'>toxicity and carcinogenicity of chemicals using animal models, we examined gamma-H2AX expression in urinary bladders of rats. Six-week-old male F344 rats were orally treated for 4 weeks with a total of 12 chemicals divided into 4 categories based on genotoxicity and carcinogenicity in the urinary bladder. Animals were sacrificed at the end of administration or after 2 weeks of recovery, and immunohistochemistry for gamma-H2AX was performed. At week 4, gamma-H2AX expression in bladder epithelial cells was significantly increased by all 4 genotoxic bladder carcinogens as compared with the controls, whereas the 3 chemicals that were genotoxic but not carcinogenic in the bladders did not cause upregulation of gamma-H2AX. After the recovery period, gamma-H2AX expression was markedly reduced in all groups but remained significantly elevated in rats treated with 3 of the 4 genotoxic bladder carcinogens. Although slight increases in gamma-H2AX expression were induced by a weak bladder carcinogen with equivocal genotoxicity (phenethyl isothiocyanate) and 2 nongenotoxic bladder carcinogens (melamine and uracil) at week 4, these differences were not significant and were thought to be associated with activated proliferation by urothelial hyperplasia, as demonstrated by increased Ki67-positive cells. These results suggested that gamma-H2AX may be a potential biomarker for the early detection of genotoxic bladder carcinogens.
Rager JE, etal., Toxicol Sci. 2014 Mar;138(1):36-46. doi: 10.1093/toxsci/kft267. Epub 2013 Dec 4.
MicroRNAs (miRNAs) are critical regulators of gene expression, yet much remains unknown regarding their changes resulting from environmental exposures as they influence cellular signaling across various tissues. We set out to investigate miRNA responses to formaldehyde, a critical air pollutant and
known carcinogen that disrupts miRNA expression profiles. Rats were exposed by inhalation to either 0 or 2 ppm formaldehyde for 7, 28, or 28 days followed by a 7-day recovery. Genome-wide miRNA expression profiles were assessed within the nasal respiratory epithelium, circulating white blood cells (WBC), and bone marrow (BM). miRNAs showed altered expression in the nose and WBC but not in the BM. Notably in the nose, miR-10b and members of the let-7 family, known nasopharyngeal carcinoma players, showed decreased expression. To integrate miRNA responses with transcriptional changes, genome-wide messenger RNA profiles were assessed in the nose and WBC. Although formaldehyde-induced changes in miRNA and transcript expression were largely tissue specific, pathway analyses revealed an enrichment of immune system/inflammation signaling in the nose and WBC. Specific to the nose was enrichment for apoptosis/proliferation signaling, involving let-7a, let-7c, and let-7f. Across all tissues and time points assessed, miRNAs were predicted to regulate between 7% and 35% of the transcriptional responses and were suggested to play a role in signaling processes including immune/inflammation-related pathways. These data inform our current hypothesis that formaldehyde-induced inflammatory signals originating in the nose may drive WBC effects.
Coyne AN, etal., Hum Mol Genet. 2015 Dec 15;24(24):6886-98. doi: 10.1093/hmg/ddv389. Epub 2015 Sep 18.
RNA dysregulation is a newly recognized disease mechanism in amyotrophic lateral sclerosis (ALS). Here we identify Drosophila fragile X mental retardation protein (dFMRP) as a robust genetic modifier of TDP-43-dependent toxicity in a Drosophila model of ALS. We
find that dFMRP overexpression (dFMRP OE) mitigates TDP-43 dependent locomotor defects and reduced lifespan in Drosophila. TDP-43 and FMRP form a complex in flies and human cells. In motor neurons, TDP-43 expression increases the association of dFMRP with stress granules and colocalizes with polyA binding protein in a variant-dependent manner. Furthermore, dFMRP dosage modulates TDP-43 solubility and molecular mobility with overexpression of dFMRP resulting in a significant reduction of TDP-43 in the aggregate fraction. Polysome fractionation experiments indicate that dFMRP OE also relieves the translation inhibition of futsch mRNA, a TDP-43 target mRNA, which regulates neuromuscular synapse architecture. Restoration of futsch translation by dFMRP OE mitigates Futsch-dependent morphological phenotypes at the neuromuscular junction including synaptic size and presence of satellite boutons. Our data suggest a model whereby dFMRP is neuroprotective by remodeling TDP-43 containing RNA granules, reducing aggregation and restoring the translation of specific mRNAs in motor neurons.
Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m(-3), 6
h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA.
High endogenous levels of aryl hydrocarbon receptor (AhR) contribute to hypoxia signaling pathway inhibition following exposure to the potent AhR ligand benzo[a]pyrene (B[a]P) and could alter cellular homeostasis and disease condition. Increasing evidence indicates that AhR might compete with AhR nu
clear translocator (ARNT) for complex formation with hypoxia-inducible factor-1alpha (HIF-1alpha) for transactivation, which could alter several physiological variables. Nuclear receptor coactivator 2 (NcoA2) is a transcription coactivator that regulates transcription factor activation and inhibition of basic helix-loop-helix Per (Period)-ARNT-SIM (single-minded) (bHLH-PAS) family proteins, such as HIF-1alpha, ARNT, and AhR, through protein-protein interactions. In this study, we demonstrated that both hypoxia and hypoxia-mimic conditions decreased NcoA2 protein expression in HEK293T cells. Hypoxia response element (HRE) and xenobiotic-responsive element (XRE) transactivation also were downregulated with NcoA2 knockdown under hypoxic conditions. In addition, B[a]P significantly decreased NcoA2 protein expression be accompanied with AhR degradation. We next evaluated whether the absence of AhR could affect NcoA2 protein function under hypoxia-mimetic conditions. NcoA2 and HIF-1alpha nuclear localization decreased in both B[a]P-pretreated and AhR-knockdown HepG2 cells under hypoxia-mimic conditions. Interestingly, NcoA2 overexpression downregulated HRE transactivation by competing with HIF-1alpha and AhR to form protein complexes with ARNT. Both NcoA2 knockdown and overexpression inhibited endothelial cell tube formation in vitro. We also demonstrated using the in vivo plug assay that NcoA2-regulated vascularization decreased in mice. Taken together, these results revealed a biphasic role of NcoA2 between AhR and hypoxic conditions, thus providing a novel mechanism underlying the cross talk between AhR and hypoxia that affects disease development and progression.
BACKGROUND: In peritoneal dialysis (PD) residual renal function contributes to improved patient survival and quality of life. Glucose degradation products (GDP) generated by heat sterilization of PD fluids do not only impair the peritoneal membrane, but also appear in the systemic circula
tion with the potential for organ toxicity. Here we show that in a rat model of advanced renal failure, GDP affect the structure and function of the remnant kidney. MATERIALS AND METHODS: Sprague-Dawley rats were randomly assigned to a two stage subtotal nephrectomy (SNX) or sham operation and were left untreated for 3 weeks. The SNX + GDP group continuously received chemically defined GDP intravenously for 4 weeks; the SNX and the sham-operated rats remained without GDP. The complete follow-up for all groups was 7 weeks postoperatively. We analysed renal damage using urinary albumin excretion as well as a semiquantitative score for glomerulosclerosis and tubulointerstitial damage, as well as for immunohistochemical analyses. RESULTS: The SNX + GDP rats developed significantly more albuminuria and showed a significantly higher score of glomerulosclerosis index (GSI) and tubulointerstitial damage index (TII) as compared to SNX or control rats. In the SNX + GDP group the expression of carboxymethyllysine and methylglyoxal was significantly higher in the tubulointerstitium and the glomeruli compared to the SNX rats. Caspase 3 staining and TUNEL assay were more pronounced in the tubulointerstitium and the glomeruli of the SNX + GDP group. In SNX + GDP animals, the expression of the slit diaphragm protein nephrin, was significantly lower compared to SNX or control animals. CONCLUSION: In summary, our data suggests that GDP can significantly advance chronic kidney disease and argues that PD solutions containing high GDP might deteriorate residual renal function in PD.
Lai CH, etal., Oncotarget. 2014 Jul 30;5(14):5523-34. doi: 10.18632/oncotarget.2133.
Cytolethal distending toxin (CDT) produced by Campylobacter jejuni is a genotoxin that induces cell-cycle arrest and apoptosis in mammalian cells. Recent studies have demonstrated that prostate cancer (PCa) cells can acquire
radio-resistance when DOC-2/DAB2 interactive protein (DAB2IP) is downregulated. In this study, we showed that CDT could induce cell death in DAB2IP-deficient PCa cells. A combination of CDT and radiotherapy significantly elicited cell death in DAB2IP-deficient PCa cells by inhibiting the repair of ionizing radiation (IR)-induced DNA double-strand break (DSB) during G2/M arrest, which is triggered by ataxia telangiectasia mutated (ATM)-dependent DNA damage checkpoint responses. We also found that CDT administration significantly increased the efficacy of radiotherapy in a xenograft mouse model. These results indicate that CDT can be a potent therapeutic agent for radio-resistant PCa.
Lee MS, etal., J Microbiol Biotechnol. 2016 Feb;26(2):432-9. doi: 10.4014/jmb.1511.11056.
Shiga toxins (Stxs) produced by Shiga toxin-producing Escherichia coli (STEC) strains are major virulence factors that cause fatal systemic complications, such as hemolytic uremic syndrome and disruption of the central nervo
us system. Although numerous studies report proinflammatory responses to Stx type 1 (Stx1) or Stx type 2 (Stx2) both in vivo and in vitro, none have examined dynamic immune regulation involving cytokines and/or unknown inflammatory mediators during intoxication. Here, we showed that enzymatically active Stxs trigger the dissociation of lysyl-tRNA synthetase (KRS) from the multi-aminoacyl-tRNA synthetase complex in human macrophage-like differentiated THP-1 cells and its subsequent secretion. The secreted KRS acted to increase the production of proinflammatory cytokines and chemokines. Thus, KRS may be one of the key factors that mediate transduction of inflammatory signals in the STEC-infected host.
Sang N, etal., Toxicol Sci. 2010 Apr;114(2):226-36. doi: 10.1093/toxsci/kfq010. Epub 2010 Jan 18.
Epidemiological literatures show an association between air pollution and ischemic stroke, and effective pollutants may include SO(2), NO(x), O(3), CO, and particulates. However, existing experimental studies lack evidence as to the presence of effects for SO(2), which has been the focus in developi
ng countries with increasing use of coal as the main resource. In the present study, we treated Wistar rats with SO(2) at various concentrations and determined endothelin-1 (ET-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and intercellular adhesion molecule 1 (ICAM-1) messenger RNA (mRNA) and protein expression in the cortex. The results show that SO(2) elevated the levels of ET-1, iNOS, COX-2, and ICAM-1 mRNA and protein in a concentration-dependent manner. Then, we set up rat model of ischemic stroke using middle cerebral artery occlusion (MCAO) and further treated the model rats with filtered air and lower concentration SO(2) for the same period. As expected, elevated expression of ET-1, iNOS, COX-2, and ICAM-1 occurred in the cortex of MCAO model rats exposed to filtered air, followed by increased activation of caspase-3 and cerebral infarct volume. Interestingly, SO(2) inhalation after MCAO significantly amplified above effects. It implies that SO(2) inhalation caused brain injuries similar to that of cerebral ischemia, and its exposure in atmospheric environment contributed to the development and progression of ischemic stroke.
Gene expression profiling in animal models exposed to cigarette mainstream smoke (CS) shapes up as a promising tool for investigating the molecular mechanisms involved in the onset and development of CS-related disease and may aid in the identification of disease candidate genes. Here we report on d
ifferential gene expression in lungs of rats exposed for 2, 7, and 13 weeks to 300 and 600 microg total particulate matter/l CS with sacrifice 2, 6, or 20 h after the last exposure. Regarding antioxidant and xenobiotic-metabolizing (phase I/II) enzymes, a stereotypic, mostly transient, expression pattern of differentially expressed genes was observed after each exposure period. The expression patterns were generally dose dependent for antioxidant and phase II genes and not dose dependent for phase I genes at the CS concentrations tested. However, with increasing length of exposure, there was a distinct, mostly sustained and dose-sensitive, expression of genes implicated in innate and adaptive immune responses, clearly pointing to an emerging inflammatory response. Notably, this inflammatory response included the expression of lung disease-related genes not yet linked to CS exposure, such as galectin-3, arginase 1, and chitinase, as well as genes encoding proteolytic enzymes. Finally, our experiments also revealed a CS exposure-dependent shift in the cyclical expression of genes involved in controlling the circadian rhythm. Altogether, these results provide further insight into the molecular mechanisms of CS-dependent disease onset and development and thus may also be useful for defining CS-specific molecular biomarkers of disease.
The use of genomic technology for assessing health risks associated with chemical exposure has significant potential, but its direct application has proven to be challenging for the toxicology and risk assessment communities. In this study, a method was establis
hed for analyzing dose-response microarray data using benchmark dose (BMD) calculations and gene ontology (GO) classification. Gene expression changes in the rat nasal epithelium following acute formaldehyde exposure were used as a case study. The gene expression data were first analyzed using a one-way ANOVA to identify genes that showed significant dose-response behavior. These genes were then fit to a series of four statistical models (linear, second-degree polynomial, third-degree polynomial, and power models) and the least complex model that best described the data was selected. The genes were matched to their associated GO categories, and the average BMD and benchmark dose lower confidence limit (BMDL) were calculated for each GO category. The results were used to identify doses at which individual cellular processes were altered. For the formaldehyde exposures, the BMD estimates for the GO categories related to cell proliferation and DNA damage were similar to those measured in previous studies using cell labeling indices and DNA-protein cross-links and consistent with the BMD estimated for rat nasal tumors. The method represents a significant advance in applying genomic information to risk assessment by allowing a comprehensive survey of molecular changes associated with chemical exposure and providing the capability to identify reference doses at which particular cellular processes are altered.
The safety assessment of chemicals for humans relies on identifying no-observed adverse effect levels (NOAELs) in animal toxicity studies using standard methods. With the advent of high information content technologies, especially microarrays, it is pertinent to
determine the impact of molecular data on the NOAELs. Consequently, we conducted an integrative study to identify a no-transcriptomic effect dose using microarray analyses coupled with quantitative reverse transcriptase PCR (RT-qPCR) and determined how this correlated with the NOAEL. We assessed the testicular effects of the antiandrogen, flutamide (FM), in a rat 28-day toxicity study using doses of 0.2-30 mg/kg/day. Plasma testosterone levels and testicular histopathology indicated a NOAEL of 1 mg/kg/day. A no-effect dose of 0.2 mg/kg/day was established based on molecular data relevant to the phenotypic changes. We observed differential gene expression starting from 1 mg/kg/day and a deregulation of more than 1500 genes at 30 mg/kg/day. Dose-related changes were identified for the major pathways (e.g., fatty acid metabolism) associated with the testicular lesion (Leydig cell hyperplasia) that were confirmed by RT-qPCR. These data, along with protein accumulation profiles and FM metabolite concentrations in testis, supported the no-effect dose of 0.2 mg/kg/day. Furthermore, the microarray data indicated a dose-dependent change in the fatty acid catabolism pathway, a biological process described for the first time to be affected by FM in testicular tissue. In conclusion, the present data indicate the existence of a transcriptomic threshold, which must be exceeded to progress from a normal state to an adaptative state and subsequently to adverse toxicity.
Mao QY, etal., Oral Dis. 2021 Jul;27(5):1171-1183. doi: 10.1111/odi.13633. Epub 2020 Oct 1.
OBJECTIVE: In this study, we sought to determine the expression profiles of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) and construct functional networks to analyze their potential roles following botulinum toxin type A (BTXA)-mediated i
nhibition of salivary secretion. METHODS: The submandibular gland of rats in the BTXA and control groups was injected with BTXA and saline, respectively. Microarray analysis was used to identify the differentially expressed lncRNAs and mRNAs. Gene ontology and pathway analysis were performed to examine the biological functions. Functional networks, including lncRNA-mRNA co-expression and competing endogenous RNA (ceRNA) networks, were constructed to reveal the interaction between the coding and non-coding genes. RESULTS: Microarray analysis revealed that 254 lncRNAs and 631 mRNAs were differentially expressed between the BTXA and control groups. Bioinformatic analysis revealed that most of the mRNAs were closely related to transmembrane transporter activity. lncRNA-mRNA co-expression and ceRNA networks were constructed, and several critical mRNA-lncRNA axes and key microRNAs related to salivary secretion were identified. CONCLUSIONS: Our study identified differentially expressed lncRNAs and mRNAs through microarray analysis and explored the interactions between the coding and non-coding genes through bioinformatic analysis. These findings provide new insights into the mechanism of BTXA-mediated inhibition of salivary secretion.
Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using
Church RJ, etal., Toxicol Sci. 2016 Mar;150(1):3-14. doi: 10.1093/toxsci/kfv260. Epub 2015 Nov 26.
Identification of circulating microRNAs for the diagnosis of liver injury and as an indicator of underlying pathology has been the subject of recent investigations. While several studies have been conducted, with particular emphasis on miR-122, the timing of miRNA release into the circulation and an
choring to tissue pathology has not been systematically evaluated. In this study, miRNA profiling was conducted over a time course of hepatobiliary injury and repair using alpha-naphthylisothiocyanate (ANIT) and a proprietary compound, FP004BA. ANIT administration (50 mg/kg) to rats caused significant biliary epithelial cell and hepatocellular necrosis between 24 and 72 h, followed by resolution and progression to biliary hyperplasia by 120 h which was associated with miRNA release into the blood. FP004BA (100 mg/kg) was used to confirm associations of miRNA along a time course with similar hepatic pathology to ANIT. Treatment with ANIT or FP004BA resulted in significant alterations of overlapping miRNAs during the early and peak injury phases. In addition to well-characterized liver injury markers miR-122-5p and miR-192-5p, multiple members of the 200 family and the 101 family along with miR-802-5p and miR-30d-5p were consistently elevated during hepatobiliary injury caused by both toxicants, suggesting that these species may be potential biomarker candidates for hepatobiliary injury. After 14 days of dosing with 4BA, miR-182-5p remained elevated-while miR-122-5p and miR-192-5p had returned to baseline-suggesting that miR-182-5p may have added utility to monitor for hepatobiliary injury in the repair phases when there remains histological evidence of ongoing cellular injury.
Sayed-Ahmed MM, etal., Cardiovasc Toxicol. 2019 Aug;19(4):344-356. doi: 10.1007/s12012-018-9500-0.
This study has been initiated to investigate whether sunitinib (SUN) alters the expression of key genes engaged in mitochondrial transport and oxidation of long chain fatty acids (LCFA), and if so, whether these alterations should be viewed as a mechanism of SUN-induced cardiotox
t:700;'>toxicity, and to explore the molecular mechanisms whereby carnitine supplementation could attenuate SUN-induced cardiotoxicity. Adult male Wister albino rats were assigned to one of the four treatment groups: Rats in group 1 received no treatment but free access to tap water for 28 days. Rats in group 2 received L-carnitine (200 mg/kg/day) in drinking water for 28 days. Rats in group 3 received SUN (25 mg/kg/day) in drinking water for 28 days. Rats in group 4 received the same doses of L-carnitine and SUN in drinking water for 28 days. Treatment with SUN significantly increased heart weight, cardiac index, and cardiotoxicity enzymatic indices, as well as severe histopathological changes. Moreover, SUN significantly decreased level of adenosine monophosphate-activated protein kinase (AMPKα2), total carnitine, adenosine triphosphate (ATP) and carnitine palmitoyltransferase I (CPT I) expression and significantly increased acetyl-CoA carboxylase-2 (ACC2) expression and malonyl-CoA level in cardiac tissues. Interestingly, carnitine supplementation resulted in a complete reversal of all the biochemical, gene expression and histopathological changes-induced by SUN to the control values. In conclusion, data from this study suggest that SUN inhibits AMPK downstream signaling with the consequent inhibition of mitochondrial transport of LCFA and energy production in cardiac tissues. Carnitine supplementation attenuates SUN-induced cardiotoxicity.
Although the mechanism of Aß action in the pathogenesis of Alzheimer's disease (AD) has remained elusive, it is known to increase the expression of the antagonist of canonical wnt signalling, Dickkopf-1 (Dkk1), whereas the silencing of Dkk1 blocks Aß neurotoxici
ty. We asked if clusterin, known to be regulated by wnt, is part of an Aß/Dkk1 neurotoxic pathway. Knockdown of clusterin in primary neurons reduced Aß toxicity and DKK1 upregulation and, conversely, Aß increased intracellular clusterin and decreased clusterin protein secretion, resulting in the p53-dependent induction of DKK1. To further elucidate how the clusterin-dependent induction of Dkk1 by Aß mediates neurotoxicity, we measured the effects of Aß and Dkk1 protein on whole-genome expression in primary neurons, finding a common pathway suggestive of activation of wnt-planar cell polarity (PCP)-c-Jun N-terminal kinase (JNK) signalling leading to the induction of genes including EGR1 (early growth response-1), NAB2 (Ngfi-A-binding protein-2) and KLF10 (Krüppel-like factor-10) that, when individually silenced, protected against Aß neurotoxicity and/or tau phosphorylation. Neuronal overexpression of Dkk1 in transgenic mice mimicked this Aß-induced pathway and resulted in age-dependent increases in tau phosphorylation in hippocampus and cognitive impairment. Furthermore, we show that this Dkk1/wnt-PCP-JNK pathway is active in an Aß-based mouse model of AD and in AD brain, but not in a tau-based mouse model or in frontotemporal dementia brain. Thus, we have identified a pathway whereby Aß induces a clusterin/p53/Dkk1/wnt-PCP-JNK pathway, which drives the upregulation of several genes that mediate the development of AD-like neuropathologies, thereby providing new mechanistic insights into the action of Aß in neurodegenerative diseases.
National Health and Nutrition Examination Survey data show an association between hypertension and exposure to dioxin-like halogenated aromatic hydrocarbons (HAHs). Furthermore, chronic exposure of mice to the prototypical HAH, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces reactive oxygen spec
ies (ROS), endothelial dysfunction, and hypertension. Because TCDD induces cytochrome P4501A1 (CYP1A1) and CYP1A1 can increase ROS, we tested the hypothesis that TCDD-induced endothelial dysfunction and hypertension are mediated by CYP1A1. CYP1A1 wild-type (WT) and knockout (KO) mice were fed one control or TCDD-containing pill (180 ng TCDD/kg, 5 days/week) for 35 days (n = 10-14/genotype/treatment). Blood pressure was monitored by radiotelemetry, and liver TCDD concentration, CYP1A1 induction, ROS, and aortic reactivity were measured at 35 days. TCDD accumulated to similar levels in livers of both genotypes. TCDD induced CYP1A1 in endothelium of aorta and mesentery without detectable expression in the vessel wall. TCDD also induced superoxide anion production, measured by NADPH-dependent lucigenin luminescence, in aorta, heart, and kidney of CYP1A1 WT mice but not KO mice. In contrast, TCDD induced hydrogen peroxide, measured by amplex red assay, to similar levels in aorta of CYP1A1 WT and KO mice but not in heart or kidney. TCDD reduced acetylcholine-dependent vasorelaxation in aortic rings of CYP1A1 WT mice but not in KO mice. Finally, TCDD steadily increased blood pressure after 15 days, which plateaued after 25 days (+20 mmHg) in CYP1A1 WT mice but failed to alter blood pressure in KO mice. These results demonstrate that CYP1A1 is required for TCDD-induced cardiovascular superoxide anion production, endothelial dysfunction, and hypertension.
With the increasing clinical use of titanium dioxide (TiO2 ) nanoparticles, a better understanding of their safety in the blood stream is required. The present study evaluates the toxic effect of commercially available TiO2 nanoparticles (~100 nm) using a batter
y of cytotoxic, genotoxic, hemolytic and morphological parameters. The cytotoxic effects of TiO2 nanoparticles in human lymphocyte cells were studied with respect to membrane damage, mitochondrial function, metabolic activity and lysosomal membrane stability. Genotoxicity in lymphocyte cells was quantitated using a comet assay. The mode of cell death (apoptosis/necrosis) was evaluated using PI/Annexin V staining. TiO2 nanoparticles were also evaluated for their hemolytic properties, osmotic fragility and interaction with hemoglobin. Human erythrocyte cells were studied for morphological alterations using atomic force microscopy (AFM). Results suggest that the particles could induce a significant reduction in mitochondrial dehydrogenase activity in human lymphocyte cells. Membrane integrity remained unaffected by nanoparticle treatment. DNA damage and apoptosis were induced by TiO2 nanoparticles in a dose-dependent manner. A study on human erythrocyte cells revealed a hemolytic property of TiO2 nanoparticles characterized by spherocytosis and echinocytosis. Spectral analysis revealed a hemoglobin TiO2 nanoparticle interaction. Our in vitro study results suggest that commercially available blood contacting nanoparticles (TiO2 nanoparticle) should be carefully evaluated for their toxic potential. Copyright (c) 2013 John Wiley & Sons, Ltd.
Higashimoto Y, etal., Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995 Feb;110(2):207-14.
The hormone, glucose-dependent insulinotropic peptide (GIP), is an important incretin regulator of the gastrointestinal tract. To investigate whether diet is important for the control of GIP gene expression in the small intestine, GIP messenger RNA (mRNA) levels were measured in rats during fasting
and after glucose or fat administration. Ribonuclease protection analyses revealed that glucose and fat administration increased GIP mRNA levels by 4-fold and 2.5-fold, respectively, compared with the control, and that prolonged fasting decreased GIP mRNA levels to 44% of those of control animals. Glucose infusion increased plasma GIP levels and tended to stimulate an increase in the GIP hormone concentration in the mucosa of the small intestine. Administration of fat also stimulated an increase of plasma GIP levels but did not modify tissue GIP concentrations. Prolonged fasting tended to decrease plasma GIP levels, although GIP tissue concentrations did not change. These data suggest that dietary glucose or fat stimulates GIP synthesis and secretion, and that food deprivation causes a decrease in GIP synthesis and secretion. This regulation involves changes at the pretranslational level and is reflected by modifications of GIP mRNA expression.
Li R, etal., Chem Res Toxicol. 2015 Mar 16;28(3):408-18. doi: 10.1021/tx5003723. Epub 2015 Jan 16.
Exposure to ambient fine particulate matter (PM2.5) increases the risk of respiratory disease. Although previous mitochondrial research has provided new information about PM toxicity in the lung, the exact mechanism of PM2.5-mediated structural and functional da
mage of lung mitochondria remains unclear. In this study, changes in lung mitochondrial morphology, expression of mitochondrial fission/fusion markers, lipid peroxidation, and transport ATPase activity in SD rats exposed to ambient PM2.5 at different dosages were investigated. Also, the release of reactive oxygen species (ROS) via the respiratory burst in rat alveolar macrophages (AMs) exposed to PM2.5 was examined by luminol-dependent chemiluminescence (CL). The results showed that (1) PM2.5 deposited in the lung and induced pathological damage, particularly causing abnormal alterations of mitochondrial structure, including mitochondrial swelling and cristae disorder or even fragmentation in the presence of higher doses of PM2.5; (2) PM2.5 significantly affected the expression of specific mitochondrial fission/fusion markers (OPA1, Mfn1, Mfn2, Fis1, and Drp1) in rat lung; (3) PM2.5 inhibited Mn superoxide dismutase (MnSOD), Na(+)K(+)-ATPase, and Ca(2+)-ATPase activities and elevated malondialdehyde (MDA) content in rat lung mitochondria; and (4) PM2.5 induced rat AMs to produce ROS, which was inhibited by about 84.1% by diphenyleneiodonium chloride (DPI), an important ROS generation inhibitor. It is suggested that the pathological injury observed in rat lung exposed to PM2.5 is associated with mitochondrial fusion-fission dysfunction, ROS generation, mitochondrial lipid peroxidation, and cellular homeostasis imbalance. Damage to lung mitochondria may be one of the important mechanisms by which PM2.5 induces lung injury, contributing to respiratory diseases.
Boekelheide K, etal., Toxicol Lett. 1998 Dec 28;102-103:503-8. doi: 10.1016/s0378-4274(98)00242-2.
The Fas system has been identified as a key regulator of testicular germ cell apoptosis. The goal of these experiments was to explore the expression of Fas system-related genes in the testis during development and after toxicant exposure. Both Fas ligand (FasL)
and Fas receptor (Fas) were expressed postnatally in rat testis with peak expression associated with the high levels of germ cell apoptosis found during the first wave of spermatogenesis. The testicular expression of RIP and FAP-1, components of the Fas activating complex, increased after exposure to mono-(2-ethylhexyl)phthalate (MEHP), a Sertoli cell toxicant which induces massive germ cell death. Finally, the expression of additional apoptosis-inducing genes, including tumor necrosis factor receptor (TNFR), FADD, TRAIL, and DR5, was detected in mammalian testis. These results provide additional support for the following concepts: (1) Sertoli-germ cell interactions are important in the control of germ cell apoptosis; and (2) the Fas system and similar paracrine systems are important modulators of testicular homeostasis.
Chen Y, etal., J Neurosci. 2014 Feb 12;34(7):2464-70. doi: 10.1523/JNEUROSCI.0151-13.2014.
The excessive accumulation of soluble amyloid peptides (Abeta) plays a crucial role in the pathogenesis of Alzheimer's disease (AD), particularly in synaptic dysfunction. The role of the two major chaperone proteins, Hsp70 and Hsp90, in clearing misfolded protein aggregates has been established. Des
pite their abundant presence in synapses, the role of these chaperones in synapses remains elusive. Here, we report that Hsp90 inhibition by 17-AAG elicited not only a heat shock-like response but also upregulated presynaptic and postsynaptic proteins, such as synapsin I, synaptophysin, and PSD95 in neurons. 17-AAG treatment enhanced high-frequency stimulation-evoked LTP and protected neurons from synaptic damage induced by soluble Abeta. In AD transgenic mice, the daily administration of 17-AAG over 7 d resulted in a marked increase in PSD95 expression in hippocampi. 17-AAG treatments in wild-type C57BL/6 mice challenged by soluble Abeta significantly improved contextual fear memory. Further, we demonstrate that 17-AAG activated synaptic protein expression via transcriptional mechanisms through the heat shock transcription factor HSF1. Together, our findings identify a novel function of Hsp90 inhibition in regulating synaptic plasticity, in addition to the known neuroprotective effects of the chaperones against Abeta and tau toxicity, thus further supporting the potential of Hsp90 inhibitors in treating neurodegenerative diseases.
The transcription factor Nrf2 (Nfe2l2 nuclear factor, erythroid 2-like 2) regulates gene expression directly, controlling pharmacological and toxicological responses. These processes may also be influenced by the structure of the hepatic vasculature, which distr
ibutes blood flow through compartmentalized microenvironments to maintain organismal stability. Castings of the hepatic portal vasculature of albino C57BL/6J but not ICR Nrf2(-/-) mice revealed a congenital intrahepatic shunt that was present in two thirds of Nrf2-disrupted mice. This shunt directly connected the portal vein to the inferior vena cava and displayed characteristics of a patent ductus venosus. Immunohistochemistry revealed that Nrf2(-/-) mice with an intrahepatic shunt manifest changes to hepatic oxygen and protein expression gradients when compared with wild-type (WT) and non-shunted Nrf2(-/-) mice. Centrilobular hypoxia found in WT and Nrf2(-/-) mice without shunts was reduced in Nrf2(-/-) livers with a shunt. Hepatic protein expression of phosphoenolpyruvate carboxykinase (Pepck), normally confined to the periportal zone, exhibited both periportal and centrilobular zonal expression in livers from Nrf2(-/-) mice with an intrahepatic shunt. Centrilobular expression of Cytochrome P450 2E1 (Cyp2e1) was diminished in shunted Nrf2(-/-) livers compared with WT and Nrf2(-/-) livers without shunts. The intrahepatic shunt in Nrf2(-/-) mice was further found to diminish acetaminophen hepatoxicity compared with WT and Nrf2(-/-) non-shunted mice following a 6 h challenge with 250 mg/kg acetaminophen. The presence of an intrahepatic shunt influences several physiological and pathophysiological properties of Nrf2(-/-) mice through changes in blood flow, hepatic oxygenation, and protein expression that extent beyond loss of canonical transactivation of Nrf2 target genes.
We measured changes in nitric oxide (NO) concentration in the cerebral cortex during experimental carbon monoxide (CO) poisoning and assessed the role for N-methyl-d-aspartate receptors (NMDARs), a glutamate receptor subtype, with progression of CO-mediated oxidative stress. Using microelectrodes, N
O concentration was found to nearly double to 280 nM due to CO exposure, and elevations in cerebral blood flow, monitored as laser Doppler flow (LDF), were found to loosely correlate with NO concentration. Neuronal nitric oxide synthase (nNOS) activity was the cause of the NO elevation based on the effects of specific NOS inhibitors and observations in nNOS knockout mice. Activation of nNOS was inhibited by the NMDARs inhibitor, MK 801, and by the calcium channel blocker, nimodipine, thus demonstrating a link to excitatory amino acids. Cortical cyclic GMP concentration was increased due to CO poisoning and shown to be related to NO, versus CO, mediated guanylate cyclase activation. Elevations of NO were inhibited when rats were infused with superoxide dismutase and in rats depleted of platelets or neutrophils. When injected with MK 801 or 7-nitroindazole, a selective nNOS inhibitor, rats did not exhibit CO-mediated nitrotyrosine formation, myeloperoxidase (MPO) elevation (indicative of neutrophil sequestration), or impaired learning. Similarly, whereas CO-poisoned wild-type mice exhibited elevations in nitrotyrosine and myeloperoxidase, these changes did not occur in nNOS knockout mice. We conclude that CO exposure initiates perivascular processes including oxidative stress that triggers activation of NMDA neuronal nNOS, and these events are necessary for the progression of CO-mediated neuropathology.
Various liver diseases lead to an extensive inflammatory response and release of a number of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). This cytokine is known to play a major role in liver regeneration as well as in carcinogenesis. We investigated possible interactio
ns of TNF-alpha with ligands of the aryl hydrocarbon receptor (AhR) and known liver carcinogens, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and coplanar 3,3',4,4',5-pentachlorobiphenyl (PCB 126). These compounds have been previously found to disrupt cell cycle control in contact-inhibited rat liver WB-F344 cells, an in vitro model of adult liver progenitor cells. TNF-alpha itself had no significant effect on the proliferation/apoptosis ratio in the WB-F344 cell line. However, it significantly potentiated proliferative effects of low picomolar range doses of both TCDD and PCB 126, leading to an increase in cell numbers, as well as an increased percentage of cells entering the S-phase of the cell cycle. The combination of TNF-alpha with low concentrations of AhR ligands increased both messenger RNA (mRNA) and protein levels of cyclin A, a principle cyclin involved in disruption of contact inhibition. TNF-alpha temporarily inhibited AhR-dependent induction of cytochrome P450 1A1 (CYP1A1). In contrast, TNF-alpha significantly enhanced induction of CYP1B1 at both mRNA and protein levels, by a mechanism, which was independent of nuclear factor-kappaB activation. These results suggest that TNF-alpha can significantly amplify effects of AhR ligands on deregulation of cell proliferation control, as well as on expression of CYP1B1, which is involved in metabolic activation of a number of mutagenic compounds.
A close association between microwave (MW) radiation exposure and neurobehavioral disorders has been postulated but the direct effects of MW radiation on central nervous system still remains contradictory. This study was performed to understand the effect of short (15 days) and long-term (30 and 60
days) low-level MW radiation exposure on hippocampus with special reference to spatial learning and memory and its underlying mechanism in Swiss strain male mice, Mus musculus. Twelve-weeks old mice were exposed to 2.45 GHz MW radiation (continuous-wave [CW] with overall average power density of 0.0248 mW/cm(2) and overall average whole body specific absorption rate value of 0.0146 W/Kg) for 2 h/day over a period of 15, 30, and 60 days). Spatial learning and memory was monitored by Morris Water Maze. We have checked the alterations in hippocampal oxidative/nitrosative stress, neuronal morphology, and expression of pro-apoptotic proteins (p53 and Bax), inactive executioner Caspase- (pro-Caspase-3), and uncleaved Poly (ADP-ribose) polymerase-1 in the hippocampal subfield neuronal and nonneuronal cells (DG, CA1, CA2, and CA3). We observed that, short-term as well as long-term 2.45 GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15 < 30 < 60 days) is correlated with a decrease in hippocampal subfield neuronal arborization and dendritic spines. These findings led us to conclude that exposure to CW MW radiation leads to oxidative/nitrosative stress induced p53-dependent/independent activation of hippocampal neuronal and nonneuronal apoptosis associated with spatial memory loss.
There are currently no accurate and well-validated short-term tests to identify nongenotoxic hepatic tumorigens, thus necessitating an expensive 2-year rodent bioassay before a risk assessment can begin. Using hepatic gene expression data from rats treated for 5
days with one of 100 structurally and mechanistically diverse nongenotoxic hepatocarcinogens and nonhepatocarcinogens, a novel multigenebiomarker (i.e., signature) was derived to predict the likelihood of nongenotoxic chemicals to induce liver tumors in longer term studies. Independent validation of the signature on 47 test chemicals indicates an assay sensitivity and specificity of 86% and 81%, respectively. Alternate short-term in vivo pathological and genomic biomarkers were evaluated in parallel for comparison, including liver weight, hepatocellular hypertrophy, hepatic necrosis, serum alanine aminotransferase activity, induction of cytochrome P450 genes, and repression of Tsc-22 or alpha2-macroglobulin messenger RNA. In contrast to these biomarkers, the gene expression-based signature was more accurate. Unlike existing tests, an understanding of potential modes of action for hepatic tumorigenicity can be derived by comparison of the signature profile of test chemicals to hepatic tumorigens of known mechanism, including regenerative proliferation, proliferation associated with xenobiotic receptor activation, peroxisome proliferation, and steroid hormone-mediated mechanisms. This signature is not only more accurate than current methods, but also facilitates the identification of mode of action to aid in the early assessment of human cancer risk.
Harisa GI J Biochem Mol Toxicol. 2013 Aug;27(8):398-405. doi: 10.1002/jbt.21501. Epub 2013 May 28.
The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) i
n the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin-induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin-induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen.
The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focus
ed on cyclin-dependent kinase 5 (Cdk5). Here, we demonstrate that increased mitochondrial fission in mutant huntingtin striatal cells can be a consequence of Cdk5-mediated alterations in Drp1 subcellular distribution and activity since pharmacological or genetic inhibition of Cdk5 normalizes Drp1 function ameliorating mitochondrial fragmentation. Interestingly, mitochondrial defects in mutant huntingtin striatal cells can be worsened by D1 receptor activation a process also mediated by Cdk5 as down-regulation of Cdk5 activity abrogates the increase in mitochondrial fission, the translocation of Drp1 to the mitochondria and the raise of Drp1 activity induced by dopaminergic stimulation. In sum, we have demonstrated a new role for Cdk5 in HD pathology by mediating dopaminergic neurotoxicity through modulation of Drp1-induced mitochondrial fragmentation, which underscores the relevance for pharmacologic interference of Cdk5 signaling to prevent or ameliorate striatal neurodegeneration in HD.
Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), geneti
c risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.
Black MB, etal., Toxicol Sci. 2014 Feb;137(2):385-403. doi: 10.1093/toxsci/kft249. Epub 2013 Nov 5.
Relative to microarrays, RNA-seq has been reported to offer higher precision estimates of transcript abundance, a greater dynamic range, and detection of novel transcripts. However, previous comparisons of the 2 technologies have not covered dose-response experiments that are relevant to tox
='font-weight:700;'>toxicology. Male F344 rats were exposed for 13 weeks to 5 doses of bromobenzene, and liver gene expression was measured using both microarrays and RNA-seq. Multiple normalization methods were evaluated for each technology, and gene expression changes were statistically analyzed using both analysis of variance and benchmark dose (BMD). Fold-change values were highly correlated between the 2 technologies, whereas the -log p values showed lower correlation. RNA-seq detected fewer statistically significant genes at lower doses, but more significant genes based on fold change except when a negative binomial transformation was applied. Overlap in genes significant by both p value and fold change was approximately 30%-40%. Random sampling of the RNA-seq data showed an equivalent number of differentially expressed genes compared with microarrays at ~5 million reads. Quantitative RT-PCR of differentially expressed genes uniquely identified by each technology showed a high degree of confirmation when both fold change and p value were considered. The mean dose-response expression of each gene was highly correlated between technologies, whereas estimates of sample variability and gene-based BMD values showed lower correlation. Differences in BMD estimates and statistical significance may be due, in part, to differences in the dynamic range of each technology and the degree to which normalization corrects genes at either end of the scale.
Thomas RS, etal., Toxicol Sci. 2013 Feb;131(2):629-40. doi: 10.1093/toxsci/kfs314. Epub 2012 Nov 3.
β-Chloroprene (2-chloro-1,3-butadiene), a monomer used in the production of neoprene elastomers, is of regulatory interest due to the production of multiorgan tumors in mouse and rat cancer bioassays. A significant increase in female mouse lung tumors was observed at the lowest exposure concentratio
n of 12.8 ppm, whereas a small, but not statistically significant increase was observed in female rats only at the highest exposure concentration of 80 ppm. The metabolism of chloroprene results in the generation of reactive epoxides, and the rate of overall chloroprene metabolism is highly species dependent. To identify potential key events in the mode of action of chloroprene lung tumorigenesis, dose-response and time-course gene expression microarray measurements were made in the lungs of female mice and female rats. The gene expression changes were analyzed using both a traditional ANOVA approach followed by pathway enrichment analysis and a pathway-based benchmark dose (BMD) analysis approach. Pathways related to glutathione biosynthesis and metabolism were the primary pathways consistent with cross-species differences in tumor incidence. Transcriptional BMD values for the pathway were more similar to differences in tumor response than were estimated target tissue dose surrogates based on the total amount of chloroprene metabolized per unit mass of lung tissue per day. The closer correspondence of the transcriptional changes with the tumor response is likely due to their reflection of the overall balance between metabolic activation and detoxication reactions, whereas the current tissue dose surrogate reflects only oxidative metabolism.
Perinatal environmental exposures are potentially important contributors to the increase in autoimmune diseases. Yet, the mechanisms by which these exposures increase self-reactive immune responses later in life are poorly understood. Autoimmune diseases require CD4(+) T cells for initiation, progre
ssion, and/or clinical symptoms; thus, developmental exposures that cause durable changes in CD4(+) T cells may play a role. Early life activation of the aryl hydrocarbon receptor (AHR) causes persistent changes in the response of CD4(+) T cells to infection later in life but whether CD4(+) T cells are affected by developmental exposure in the context of an autoimmune disease is unknown. Gnaq(+/-) mice develop symptoms of autoimmune disease similar to those measured clinically, and therefore can be used to evaluate gene-environment interactions during development on disease progression. Herein, we examined the effect of AHR activation in utero and via lactation, or solely via lactation, on disease onset and severity in adult Gnaq(+/-) offspring. Developmental activation of the AHR-accelerated disease in Gnaq(+/-) mice, and this correlates with increases in effector CD4(+) T-cell populations. Increased symptom onset and cellular changes due to early life AHR activation were more evident in female Gnaq(+/-) mice compared with males. These observations suggest that developmental AHR activation by pollutants, and other exogenous ligands, may increase the likelihood that genetically predisposed individuals will develop clinical symptoms of autoimmune disease later in life.
The presence of furan in common cooked foods along with evidence from experimental studies that lifetime exposure to furan causes liver tumors in rats and mice has caused concern to regulatory public health agencies worldwide; however, the mechanisms of the furan-induced hepatocarcinogenicity remai
n unclear. The goal of the present study was to investigate whether or not long-term exposure to furan causes epigenetic alterations in rat liver. Treating of male Fisher 344 rats by gavage 5 days per week with 0, 0.92, 2.0, or 4.4 mg furan/kg body weight (bw)/day resulted in dose- and time-dependent epigenetic changes consisting of alterations in DNA methylation and histone lysine methylation and acetylation, altered expression of chromatin modifying genes, and gene-specific methylation. Specifically, exposure to furan at doses 0.92, 2.0, or 4.4 mg furan/kg bw/day caused global DNA demethylation after 360 days of treatment. There was also a sustained decrease in the levels of histone H3 lysine 9 and H4 lysine 20 trimethylation after 180 and 360 days of furan exposure, and a marked reduction of histone H3 lysine 9 and H3 lysine 56 acetylation after 360 days at 4.4 mg/kg bw/day. These histone modification changes were accompanied by a reduced expression of Suv39h1, Prdm2, and Suv4-20h2 histone methyltransferases and Ep300 and Kat2a histone acetyltransferases. Additionally, furan at 2.0 and 4.4 mg/kg bw/day induced hypermethylation-dependent down-regulation of the Rassf1a gene in the livers after 180 and 360 days. These findings indicate possible involvement of dose- and time-dependent epigenetic modifications in the furan hepatotoxicity and carcinogenicity.
Ovarian granulosa cells play a central role in steroidogenesis, which is critical for female reproduction. Follicle-stimulating hormone (FSH) promotes cyclic adenosine monophosphate (cAMP)-mediated signaling to regulate granulosa cell steroidogenesis. We have shown previously that 2,2-bis-(p-hydroxy
phenyl)-1,1,1-trichloroethane (HPTE) inhibits FSH- and dibutyryl cAMP-stimulated steroidogenesis and affects the messenger RNA levels of steroidogenic pathway enzymes in rat granulosa cells. However, HPTE showed a differential effect in FSH- and cAMP-stimulated cells in that HPTE more completely blocked FSH- when compared to cAMP-driven steroidogenesis. The objective of this study was to analyze the effects of HPTE on global gene expression profiles in untreated granulosa cells and those challenged with FSH or cAMP. Granulosa cells from immature rats were cultured with 0, 1, 5, or 10 microM HPTE in the presence or absence of either 3 ng FSH/ml or 1mM cAMP for 48 h. Total RNA was isolated for real-time quantitative PCR and microarray analysis using the GeneChip Rat Genome 230 2.0 and ArrayAssist Microarray Suite. An investigation of changes in gene expression across all HPTE treatments showed that HPTE altered more genes in FSH- (approximately 670 genes) than in cAMP-stimulated cells (approximately 366 genes). Analysis confirmed that HPTE more effectively inhibited FSH- than cAMP-induced steroid pathway gene expression and steroidogenesis. Furthermore, expression patterns of novel genes regulating signal transduction, transport, cell cycle, adhesion, differentiation, motility and growth, apoptosis, development, and metabolism were all altered by HPTE. This study further established that HPTE exerts differential effects within the granulosa cell steroidogenic pathway and revealed that these effects include broader changes in gene expression.
A study into the effects of amorphous nano-SiO2 particles on A549 lung epithelial cells was undertaken using proteomics to understand the interactions that occur and the biological consequences of exposure of lung to nanoparticles. Suitable conditions for treatment, where A549 cells remained viable
for the exposure period, were established by following changes in cell morphology, flow cytometry, and MTT reduction. Label-free proteomics was used to estimate the relative level of proteins from their component tryptic peptides detected by mass spectrometry. It was found that A549 cells tolerated treatment with 100 microg/ml nano-SiO2 in the presence of 1.25% serum for at least 4 h. After this time detrimental changes in cell morphology, flow cytometry, and MTT reduction were evident. Proteomics performed after 4 h indicated changes in the expression of 47 proteins. Most of the proteins affected fell into four functional groups, indicating that the most prominent cellular changes were those that affected apoptosis regulation (e.g. UCP2 and calpain-12), structural reorganisation and regulation of actin cytoskeleton (e.g. PHACTR1), the unfolded protein response (e.g. HSP 90), and proteins involved in protein synthesis (e.g. ribosomal proteins). Treatment with just 10 microg/ml nano-SiO2 particles in serum-free medium resulted in a rapid deterioration of the cells and in medium containing 10% serum the cells were resistant to up to 1000 microg/ml nano-SiO2 particles, suggesting interaction of serum components with the nanoparticles. A variety of serum proteins were found which bound to nano-SiO2 particles, the most prominent of which were albumin, apolipoprotein A-I, hemoglobin, vitronectin and fibronectin. The use of a proteomics platform, with appropriately designed experimental conditions, enabled the early biological perturbations induced by nano-SiO2 in a model target cell system to be identified. The approach facilitates the design of more focused test systems for use in tiered evaluations of nanomaterials.
Ethanol (EtOH) is a reactive oxygen-generating teratogen involved in the etiology of structural and functional developmental defects. Embryonic nutrition, redox environment, and changes in the thiol proteome following EtOH exposures (1.56.0 mg/ml) were studied in rat whole embryo culture. Glutathion
e (GSH) and cysteine (Cys) concentrations with their respective intracellular redox potentials (Eh) were determined using high-performance liquid chromatography. EtOH reduced GSH and Cys concentrations in embryo (EMB) and visceral yolk sac (VYS) tissues, and also in yolk sac and amniotic fluids. These changes produced greater oxidation as indicated by increasingly positive Eh values. EtOH reduced histiotrophic nutrition pathway activities as measured by the clearance of fluorescin isothiocyanate (FITC)-albumin from culture media. A significant decrease in total FITC clearance was observed at all concentrations, reaching approximately 50% at the highest dose. EtOH-induced changes to the thiol proteome were measured in EMBs and VYSs using isotope-coded affinity tags. Decreased concentrations for specific proteins from cytoskeletal dynamics and endocytosis pathways (alpha-actinin, alpha-tubulin, cubilin, and actin-related protein 2); nuclear translocation (Ran and RanBP1); and maintenance of receptor-mediated endocytosis (cubilin) were observed. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis also identified a decrease in ribosomal proteins in both EMB and VYS. Results show that EtOH interferes with nutrient uptake to reduce availability of amino acids and micronutrients required by the conceptus. Intracellular antioxidants such as GSH and Cys are depleted following EtOH and Eh values increase. Thiol proteome analysis in the EMB and VYS show selectively altered actin/cytoskeleton, endocytosis, ribosome biogenesis and function, nuclear transport, and stress-related responses.
Liu A, etal., Arch Toxicol. 2014 Apr;88(4):983-96. doi: 10.1007/s00204-013-1188-0. Epub 2014 Jan 3.
Gemfibrozil, a ligand of peroxisome proliferator-activated receptor alpha (PPARalpha), is one of the most widely prescribed anti-dyslipidemia fibrate drugs. Among the adverse reactions observed with gemfibrozil are alterations in liver function, cholestatic jaundice, and cholelithiasis. However, the
mechanisms underlying these toxicities are poorly understood. In this study, wild-type and Ppara-null mice were dosed with a gemfibrozil-containing diet for 14 days. Ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics and traditional approaches were used to assess the mechanism of gemfibrozil-induced hepatotoxicity. Unsupervised multivariate data analysis revealed four lysophosphatidylcholine components in wild-type mice that varied more dramatically than those in Ppara-null mice. Targeted metabolomics revealed taurocholic acid and tauro-alpha-muricholic acid/tauro-beta-muricholic acid were significantly increased in wild-type mice, but not in Ppara-null mice. In addition to the above perturbations in metabolite homeostasis, phenotypic alterations in the liver were identified. Hepatic genes involved in metabolism and transportation of lysophosphatidylcholine and bile acid compounds were differentially regulated between wild-type and Ppara-null mice, in agreement with the observed downstream metabolic alterations. These data suggest that PPARalpha mediates gemfibrozil-induced hepatotoxicity in part by disrupting phospholipid and bile acid homeostasis.
There is increasing use of transcriptional profiling in hepatotoxicity studies in the rat. Understanding hepatic gene expression changes over time is critical, since tissue collection may occur throughout the day. Furthermore, when comparing results from differe
nt data sets, times of dosing and tissue collection may vary. Circadian effects on the mouse hepatic transcriptome have been well documented. However, limited reports exist for the rat. In one study approximately 7% of the hepatic genes showed a diurnal expression pattern in a comparison of rat liver samples collected during the day versus livers collected at night. The results of a second study comparing rat liver samples collected at multiple time points over a circadian day suggest only minimal variation of the hepatic transcriptome. We studied temporal hepatic gene expression in 48 untreated F344/N rats using both approaches employed in these previous studies. Statistical analysis of microarray (SAM) identified differential expression in day/night comparisons, but was less sensitive for liver samples collected at multiple times of day. However, a Fourier analysis identified numerous periodically expressed genes in these samples including period genes, clock genes, clock-controlled genes, and genes involved in metabolic pathways. Furthermore, rhythms in gene expression were identified for several circadian genes not previously reported in the rat liver. Transcript levels for twenty genes involved in circadian and metabolic pathways were confirmed using quantitative RT-PCR. The results of this study demonstrate a prominent circadian rhythm in gene expression in the rat that is a critical factor in planning toxicogenomic experiments.
Viard I, etal., Science 1998 Oct 16;282(5388):490-3.
Toxic epidermal necrolysis (TEN, Lyell's syndrome) is a severe adverse drug reaction in which keratinocytes die and large sections of epidermis separate from the dermis. Keratinocytes normally express the death receptor Fas (CD95); those from TEN patients were f
ound to express lytically active Fas ligand (FasL). Antibodies present in pooled human intravenous immunoglobulins (IVIG) blocked Fas-mediated keratinocyte death in vitro. In a pilot study, 10 consecutive individuals with clinically and histologically confirmed TEN were treated with IVIG; disease progression was rapidly reversed and the outcome was favorable in all cases. Thus, Fas-FasL interactions are directly involved in the epidermal necrolysis of TEN, and IVIG may be an effective treatment.
Lan Z, etal., Food Chem Toxicol. 2014 Jan;63:62-8. doi: 10.1016/j.fct.2013.10.038. Epub 2013 Nov 5.
In this study, we aimed at evaluating the effect of ligustrazine, a major constituent of Ligusticum wallichii from traditional Chinese medicine, on Cd-induced changes in nephrotoxicity indices. Rats were divided into four experimental groups: control; ligustrazi
ne; Cd and ligustrazine+Cd. Cd treated alone group showed significant decreases (P<0.05) in body weight, renal levels of superoxide dismutase (SOD) and glutathione reductase (GR); and significant increases (P<0.05) in urine volume (24h), pH values, serum blood urea nitrogen (BUN), serum uric acid, kidney malondialdehyde (MDA), urinary total protein, urinary glucose, urinary lactate dehydrogenase (LDH) and urinary alkaline phosphatase (ALP). Apart from indoxyl sulfate (a uremic toxin), two newly accepted nephrotoxicity biomarkers including kidney injury molecule-1 (kim-1) and clusterin were also found to be increased. Nonetheless, all these effects induced by Cd were reversed upon treatment by ligustrazine although it failed in decreasing the concentrations of Cd in kidney and urine. Histopathological studies in Cd-treated rats exhibited renal tubule damage, which was also ameliorated by ligustrazine pretreatment. These results suggest that ligustrazine exhibits protective effects on Cd-induced nephrotoxicity. Additionally, this study also demonstrates Cd exposure induces elevated levels of indoxyl sulfate in serum and kidney, and clusterin in urine.
Dioxin-like chemicals are well known for their ability to upregulate expression of numerous genes via the AH receptor (AHR). However, recent transcriptomic analyses in several laboratories indicate that dioxin-like chemicals or AHR genotype itself also can downregulate levels of mRNAs encoded by num
erous genes. The mechanism responsible for such downregulation is unknown. We hypothesized that microRNAs (miRNAs), which have emerged as powerful negative regulators of mRNA levels in several systems, might be responsible for mRNA downregulation in dioxin/AHR pathways. We used two miRNA array platforms as well as quantitative reverse transcriptase-polymerase chain reaction to measure miRNA levels in wild-type (WT) versus Ahr-null mice, in dioxin-sensitive Long-Evans (L-E; Turku/AB) rats versus dioxin-resistant Han/Wistar (H/W; Kuopio) rats and in rat 5L and mouse Hepa-1 hepatoma cells in culture. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in vivo caused few changes in miRNA levels in mouse or rat livers, and those changes that were statistically significant were of modest magnitude. Hepatoma cells in culture also exhibited few changes in miRNA levels in response to TCDD. AHR genotype had little effect on hepatic miRNA levels, either in constitutive expression or in response to TCDD-only a few miRNAs differed in expression between Ahr-null mice compared to mice with WT AHR or between L-E rats (that have WT AHR) compared to H/W rats (whose AHR has a large deletion in the transactivation domain). It is unlikely that mRNA downregulation by dioxins is mediated by miRNAs, nor are miRNAs likely to play a significant role in dioxin toxicity in adult rodent liver.
Fecto F, etal., J Biol Chem. 2011 May 13;286(19):17281-91. doi: 10.1074/jbc.M111.237685. Epub 2011 Mar 21.
Mutations in TRPV4 have been linked to three distinct axonal neuropathies. However, the pathogenic mechanism underlying these disorders remains unclear. Both gain and loss of calcium channel activity of the mutant TRPV4 have been suggested. Here, we show that the three previously reported TRPV4 muta
nt channels have a physiological localization and display an increased calcium channel activity, leading to increased cytotoxicity in three different cell types. Patch clamp experiments showed that cells expressing mutant TRPV4 have much larger whole-cell currents than those expressing the wild-type TRPV4 channel. Single channel recordings showed that the mutant channels have higher open probability, due to a modification of gating, and no change in single-channel conductance. These data support the hypothesis that a "gain of function" mechanism, possibly leading to increased intracellular calcium influx, underlies the pathogenesis of the TRPV4-linked axonal neuropathies, and may have immediate implications for designing rational therapies.
Wakx A, etal., Toxicol In Vitro. 2016 Apr;32:76-85. doi: 10.1016/j.tiv.2015.11.022. Epub 2015 Nov 30.
Our aim was to study the toxicity of benzo(a)pyrene (BaP), an environmental pollutant that can reach placenta, on two human placental models in order to propose biomarkers in risk assessment for pregnancy. Ex vivo human placental cells isolated from term placent
a and JEG-3 cancer cell line were incubated with BaP at 0.1-10 µM for 48 h or 72 h. BaP induced neither loss of cell viability nor apoptosis in ex vivo placental cells. To go further, we performed experiments on JEG-3 cell line that provides near-unlimited cells. The results we obtained in JEG-3 cells confirmed that BaP, in our experimental conditions, is neither necrotic nor apoptotic for placental cells. BaP toxicity on placental cells resulted in cell cycle arrest (G2/M phase) associated with inhibition of cell proliferation. Besides, we observed that BaP remodeled the protein content of membrane microdomains via increased expression of ZO-1, caveolin-1 and P2X7 cell degenerescence receptor. In conclusion, we identified nuclear and membrane potential biomarkers of risks for placenta and then pregnancy. These potential biomarkers detected on placental cell lines could represent useful tools for toxicological studies.
The study aimed to identify the differentially expressed nigrostriatal proteins in cypermethrin-induced neurodegeneration and to investigate the role of microglial activation therein. Proteomic approaches were used to identify the differentially expressed proteins. Microglial activation, tyrosine hy
droxylase immunoreactivity (TH-IR), dopamine content, and neurobehavioral changes were measured according to the standard procedures. The expressions of α-internexin intermediate filament (α-IIF), ATP synthase D chain (ATP-SD), heat shock protein (Hsp)-70, truncated connexin-47, Hsp-60, mitogen-activated protein kinase-activated kinase-5, nicotinamide adenine dinucleotide dehydrogenase 24k chain precursor, platelet-activating factor acetyl hydrolase 1b-α2 (PAF-AH 1b-α2), and synaptosomal-associated protein-25 (SNAP-25) were altered in the substantia nigra and nicotinamide adenine dinucleotide- specific isocitrate dehydrogenase, phosphatidylethanolamine-binding protein-1, prohibitin, protein disulfide isomerase-endoplasmic reticulum 60 protease, stathmin, and ubiquitin-conjugating enzyme in the striatum along with motor impairment, decreased dopamine and TH-IR, and increased microglial activation after cypermethrin exposure. Minocycline restored α-IIF, ATP-SD chain, truncated connexin-47, Hsp-60, PAF-AH 1b-α2, stathmin and SNAP-25 expressions, motor impairment, dopamine, TH-IR, and microglial activation. The results suggest that cypermethrin produces microglial activation-dependent and -independent changes in the expression patterns of the nigrostriatal proteins leading to dopaminergic neurodegeneration.
Nitric oxide (NO) has biphasic effects on regulating osteoblast survival and death. This study was aimed to evaluate the effects of NO pretreatment on hydrogen peroxide (HP)-induced insults of rat osteoblasts and the possible mechanisms. Exposure of osteoblasts prepared from rat calvarias to HP sign
ificantly increased intracellular reactive oxygen species levels, decreased alkaline phosphatase activity and cell survival, and ultimately induced cell apoptosis. However, NO pretreatment lowered HP-induced oxidative stress and apoptotic insults. In parallel, HP increased Bax levels and its translocation from the cytoplasm to mitochondria. NO pretreatment caused significant attenuations in HP-induced modulations in Bax synthesis and translocation. In contrast, pretreatment with NO enhanced levels and translocation of antiapoptotic Bcl-XL protein in rat osteoblasts. RNA analyses further revealed that HP inhibited Bcl-XL mRNA expression without affecting Bax mRNA levels. In comparison, NO induced Bcl-XL mRNA production and alleviated HP-caused inhibition of this mRNA expression. As to the mechanism, HP suppressed RNA and protein levels of transcription factor GATA-5 in rat osteoblasts. Pretreatment with NO induced GATA-5 mRNA and protein expressions and simultaneously attenuated HP-induced inhibition of this gene's expression. Consequently, GATA-5 knockdown using RNA interference inhibited Bcl-XL mRNA expression and concurrently lowered NO's protection against HP-induced apoptotic insults. Therefore, this study showed that NO can protect rat osteoblasts from HP-induced apoptotic insults. The protective mechanisms are mediated by GATA-5-mediated transcriptional induction of Bcl-X L gene, and translocational modulation of Bcl-XL and Bax proteins.
The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here,
we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.
Koriem KM, etal., Toxicol Mech Methods. 2013 May;23(4):263-72. doi: 10.3109/15376516.2012.748857. Epub 2013 Jan 22.
Cadmium has been classified as an environmental pollutant and human carcinogen. Pectin is a family of complex polysaccharides that function as hydrating agents and cementing materials for the cellulosic network. The aim of this study was to evaluate the protective role of pectin against cadmium-ind
uced testicular toxicity and oxidative stress in rats. Forty male Wistar rats were divided into five equal groups. Groups 1 and 2 were injected intraperitoneally (i.p.) saline (1 mg/kg) and pectin (50 mg/kg), respectively, two days/weeks over three weeks period. Groups 3-5 were injected i.p. with 1 mg/kg cadmium two days/week while groups 4 and 5 co-administrated i.p. with 25 and 50 mg/kg pectin, respectively, three days/week over three weeks period. The results of the present work revealed that cadmium-exposed rats showed decrease in serum testosterone, dehydroepiandrosterone sulfate and lactate dehydrogenase. Testicular cholesterol, total protein, glucose-6-phosphate dehydrogenase, 3beta-hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, catalase, glutathione S-transferase and reduced glutathione levels were also decreased while testicular malondialdehyde level was increased after cadmium injection. On the other hand, serum luteinizing hormone, follicle stimulating hormone, sex hormone binding globulin and gamma-glutamyl transpeptidase were increased after cadmium exposure. Cadmium also induced sperms loss. Co-administration of pectin with cadmium restores all the above parameters and sperms to the normal levels where pectin at higher dose was more effective than lower one. These results were supported by histochemical investigations. In conclusion, pectin can counteract the testicular toxicity and oxidative stress induced by cadmium and the effect was dose-dependent.
Pyrazinamide (PZA) causes serious hepatotoxicity, but little is known about the exact mechanism by which PZA induced liver injury. The peroxisome proliferator-activated receptors alpha (PPARα) is highly expressed in the liver and modulates the intracellula
Li X, etal., Toxicol Lett. 2016 Nov 2;261:1-12. doi: 10.1016/j.toxlet.2016.09.002. Epub 2016 Sep 4.
This study aimed to investigate the effects of quercetin on liver fibrogenesis in mice and to elucidate the underlying molecular mechanisms. Mice were administered with carbon tetrachloride (CCl4) for eight weeks to induce liver fibrosis and concomitantly orally treated with quercetin (50mgkg-1day-1
). Here, we demonstrated that quercetin dramatically ameliorated liver injury, inflammation, and hepatic fibrogenesis induced by CCl4. Quercetin also inhibited the activation of hepatic stellate cells (HSC) in vivo and in vitro, as evaluated by α-smooth muscle actin (α-SMA) expression, which is a specific marker of HSC activation. Moreover, reduced fibrosis was associated with decreased high-mobility group box 1 (HMGB1), toll like receptor (TLR) 2 and TLR4 genes, and protein expression. Quercetin also inhibited the cytoplasmic translocation of HMGB1 in hepatocytes of fibrotic livers. Further investigation demonstrated that quercetin treatment significantly attenuated CCl4-induced nuclear translocation of the nuclear factor-κB (NF-κB) p65 and inhibited degradation of IκBα (an inhibitor of NF-κB) expression in the liver compared with vehicle-treated fibrotic mice. Considered together, our data indicate that quercetin has hepatoprotective and anti-fibrotic effects in animal models of liver fibrosis, the mechanism of which may be involved in modulating the HMGB1-TLR2/4-NF-κB signaling pathways.
Struzynska L and Sulkowski G, J Inorg Biochem. 2004 Jun;98(6):951-8.
Glutamine (Gln), glutamate (Glu) and gamma-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocytic-derived glutamine is the precursor of the two most important neurotransmitters: glutamate, an excitatory neurotransmitter, and GABA, an inhibitory neurotransmi
tter. In addition to their roles in neurotransmission these neurotransmitters act as alternative metabolic substrates that enable metabolic coupling between astrocytes and neurons. The relationships between Gln, Glu and GABA were studied under lead (Pb) toxicity conditions using synaptosomal fractions obtained from adult rat brains to investigate the cause of Pb neurotoxicity-induced seizures. We have found that diminished transport of [(14)C]GABA occurs after Pb treatment. Both uptake and depolarization-evoked release decrease by 40% and 30%, respectively, relative to controls. Lower expression of glutamate decarboxylase (GAD), the GABA synthesizing enzyme, is also observed. In contrast to impaired synaptosomal GABA function, the GABA transporter GAT-1 protein is overexpressed (possibly as a compensative mechanism). Furthermore, similar decreases in synaptosomal uptake of radioactive glutamine and glutamate are observed. However, the K(+)-evoked release of Glu increases by 20% over control values and the quantity of neuronal EAAC1 transporter for glutamate reaches remarkably higher levels after Pb treatment. In addition, Pb induces decreased activity of phosphate-activated glutaminase (PAG), which plays a role in glutamate metabolism. Most noteworthy is that the overexpression and reversed action of the EAAC1 transporter may be the cause of the elevated extracellular glutamate levels. In addition to the impairment of synaptosomal processes of glutamatergic and GABAergic transport, the results indicate perturbed relationships between Gln, Glu and GABA that may be the cause of altered neuronal-astrocytic interactions under conditions of Pb neurotoxicity.
The objective of this study was to evaluate the potential role of TNF-alpha in the onset of acute hepatitis in the Long-Evans Cinnamon (LEC) rat, an animal model for inherited copper (Cu) toxicosis. In LEC rats, Cu is accumulated in the liver with age, and clini
cal signs of acute hepatitis were observed as, icterus, reduced body weight, nasal bleeding, dehydration, and reduced food intake at 12 weeks of age. Cellular changes such as apoptosis in the liver were evident in these rats with increasing age. Positive TNF-alpha and TNFR1 immunostainings were observed in hepatocytes and Kupffer cells in LEC rats. Hepatic levels of caspase-3 activity, TNF-alpha mRNA, and protein were also increased in LEC rats from 6 to 12 weeks of age as compared with control Long-Evans (LE) rats. The neutralization of TNF-alpha by passive immunization or the inhibition of caspase activity can block the apoptotic process initiated by TNF-alpha. In this study, we evaluated the effects of passive immunization of LEC rats with weekly administration of anti-rat TNF-alpha on Cu-induced acute hepatitis. This treatment resulted in a reduction of the percentage of apoptotic cells in the liver, decreased activity of caspase-3, and also in down-regulation of the TNF-alpha gene expression. Thus, these results suggest a major role for TNF-alpha on the pathogenesis of Cu-induced acute hepatitis in LEC rats.
BACKGROUND: Several investigators have coupled toxins to neuropeptides for the purpose of lesioning specific neurons in the central nervous system. By producing deficits in function these toxin conjugates have yielded valuab
le information about the role of these cells. In an effort to specifically stimulate cells rather than kill them we have conjugated the neuropeptide substance P to the catalytic subunit of cholera toxin (SP-CTA). This conjugate should be taken up selectively by neurokinin receptor expressing neurons resulting in enhanced adenylate cyclase activity and neuronal firing. RESULTS: The conjugate SP-CTA stimulates adenylate cyclase in cultured cells that are transfected with either the NK1 or NK2 receptor, but not the NK3 receptor. We further demonstrate that intrathecal injection of SP-CTA in rats induces the phosphorylation of the transcription factor cyclic AMP response element binding protein (CREB) and also enhances the expression of the immediate early gene c-Fos. Behaviorally, low doses of SP-CTA (1 microg) injected intrathecally produce thermal hyperalgesia. At higher doses (10 microg) peripheral sensitivity is suppressed suggesting that descending inhibitory pathways may be activated by the SP-CTA induced sensitization of spinal cord neurons. CONCLUSION: The finding that stimulation of adenylate cyclase in neurokinin receptor expressing neurons in the spinal cord produces thermal hyperalgesia is consistent with the known actions of these neurons. These data demonstrate that cholera toxin can be targeted to specific cell types by coupling the catalytic subunit to a peptide agonist for a g-protein coupled receptor. Furthermore, these results demonstrate that SP-CTA can be used as a tool to study sensitization of central neurons in vivo in the absence of an injury.
Chronic alcoholism is one of the most common causes of liver diseases worldwide. Nitric oxide (NO) has been proposed to have potential for clinical application against chronic hepatocellular injuries. However, mechanisms underlying hepatoprotective functions of NO in ethanol-induced apoptosis are l
argely unknown. Sprauge-Dawley rats were exposed to ethanol for 8 weeks. Half of the ethanol-fed animals received 14-deoxyandrographolide (14-DAG) treatment for the last 4 weeks of study. Preventive effect of 14-DAG against ethanol-induced hepatotoxicity involved constitutive nitric oxide synthase (cNOS) activation followed by up-regulation of gamma-glutamylcysteine synthetase activity and reduced oxidative stress. Enhanced interaction of cNOS with caveolin-1 caused down-regulation of enzyme activity and led to depletion of NO in the hepatocytes of ethanol-fed animals. 14-DAG acted as activator of adenylate cyclase and modulated cyclic AMP (cAMP) mediated expression of caveolin-1 and calmodulin. This eventually favored activation of cNOS through inhibition of cNOS-caveolin-1 interaction. Our results suggest that, protective effect of 14-DAG against ethanol-induced hepatic injury is based on its ability to reduce oxidative stress through cNOS dependent improvement of redox status. 14-DAG mediated activation of adenylate cyclase-cAMP signaling leading to up-regulation of cNOS may provide a promising approach in the prevention of liver diseases during chronic alcoholism.
Ning Y, etal., Arch Toxicol. 2013 May;87(5):871-81. doi: 10.1007/s00204-012-1008-y. Epub 2013 Feb 20.
Airway smooth muscle (ASM) cell phenotypic switching played an important role in airway remodeling in asthma. In vitro platelet-derived growth factor (PDGF) induced ASM cell phenotypic switching from a mature to pro-remodeling phenotype, but the mechanism remained incompletely understood. This stu
dy was to explore the effect of DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (Aza-CdR) on PDGF-induced rat ASM cell phenotypic switching and biological behaviors. Rat airway smooth muscle (RASM) cells were obtained by primary explant techniques. Western blot, 3-dimensional gel contraction, transwell and wound healing assay, and MTT were applied to detect cell phenotypic switching, contractility, migration and proliferation, respectively. Cytoskeleton rearrangement was observed by immunofluorescence. Results showed Aza-CdR inhibited PDGF-induced down-regulation of contractile markers in RASM cells and increased cell contractility. Aza-CdR inhibited PDGF-induced RASM cell migration by abrogating cell morphology change and cytoskeletal reorganization and attenuated the effect of PDGF on proliferating cell nuclear antigen expression and cell cycle progression, ultimately cell proliferation. PDGF-induced DNA methyltransferase 1 (DNMT1) expression was mediated by activation of PI3K/Akt and ERK signaling in RASM cells. Selective depletion of DNMT1 protein by Aza-CdR inhibited PDGF-induced RASM cell phenotypic switching, revealing DNMT1-mediated DNA methylation was implicated in asthmatic ASM remodeling. We proposed for the first time that DNMT1 played a key role in PDGF-induced RASM cell phenotypic switching and Aza-CdR is promising in intervening ASM remodeling in asthma. Although study of abnormal DNA methylation in PDGF-stimulated ASM cells is in its infancy, this work contributes to providing new insights into the mechanism of ASM remodeling and may be helpful for developing effective treatments for airway remodeling in asthma.
Ganesan S, etal., Toxicol Appl Pharmacol. 2013 Nov 1;272(3):690-6. doi: 10.1016/j.taap.2013.08.013. Epub 2013 Aug 19.
7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles at all stages of development. This study investigated DMBA-induced DNA double strand break (DSB) formation with subsequent activation of the ovarian DNA repair response in models of pre-antral or pre-ovulatory follicle loss. Postnatal
day (PND) 4 Fisher 344 (F344) rat ovaries were cultured for 4 days followed by single exposures of vehicle control (1% DMSO) or DMBA (12.5 nM or 75 nM) and maintained in culture for 4 or 8 days. Alternately, PND4 F344 rat ovaries were exposed to 1 muM DMBA at the start of culture for 2 days. Total RNA or protein was isolated, followed by qPCR or Western blotting to quantify mRNA or protein level, respectively. gammaH2AX and phosphorylated ATM were localized and quantified using immunofluorescence staining. DMBA exposure increased caspase 3 and gammaH2AX protein. Additionally, DMBA (12.5 nM and 1 muM) increased levels of mRNA encoding Atm, Xrcc6, Brca1 and Rad51. In contrast, Parp1 mRNA was decreased on d4 and increased on d8 of DMBA exposure, while PARP1 protein increased after 8 days of DMBA exposure. Total ATM increased in a concentration-dependent temporal pattern (75 nM d4; 12.5 nM d8), while pATM was localized in large primary and secondary follicles and increased after 8 days of 75 nM DMBA exposure compared to both control and 12.5 nM DMBA. These findings support that, despite some concentration effects, DMBA induces ovarian DNA damage and that DNA repair mechanisms are induced as a potential mechanism to prevent follicle loss.
Marin-Kuan M, etal., Toxicol Sci. 2006 Jan;89(1):120-34. doi: 10.1093/toxsci/kfj017. Epub 2005 Oct 26.
Ochratoxin A (OTA) is a mycotoxin occurring naturally in a wide range of food commodities. In animals, it has been shown to cause a variety of adverse effects, nephrocarcinogenicity being the most prominent. Because of its h
igh toxic potency and the continuous exposure of the human population, OTA has raised public health concerns. There is significant debate on how to use the rat carcinogenicity data to assess the potential risk to humans. In this context, the question of the mechanism of action of OTA appears of key importance and was studied through the application of a toxicogenomics approach. Male Fischer rats were fed OTA for up to 2 years. Renal tumors were discovered during the last 6 months of the study. The total tumor incidence reached 25% at the end of the study. Gene expression profile was analyzed in groups of animals taken in intervals from 7 days to 12 months. Tissue-specific responses were observed in kidney versus liver. For selected genes, microarray data were confirmed at both mRNA and protein levels. In kidney, several genes known as markers of kidney injury and cell regeneration were significantly modulated by OTA. The expression of genes known to be involved in DNA synthesis and repair, or genes induced as a result of DNA damage, was only marginally modulated. Very little or no effect was found amongst genes associated with apoptosis. Alterations of gene expression indicating effects on calcium homeostasis and a disruption of pathways regulated by the transcription factors hepatocyte nuclear factor 4 alpha (HNF4alpha) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were observed in the kidney but not in the liver. Previous data have suggested that a reduction in HNF4alpha may be associated with nephrocarcinogenicity. Many Nrf2-regulated genes are involved in chemical detoxication and antioxidant defense. The depletion of these genes is likely to impair the defense potential of the cells, resulting in chronic elevation of oxidative stress in the kidney. The inhibition of defense mechanism appears as a highly plausible new mechanism, which could contribute to OTA carcinogenicity.
Liu WB, etal., Toxicol Appl Pharmacol. 2011 Feb 15;251(1):70-8. doi: 10.1016/j.taap.2010.12.002. Epub 2010 Dec 14.
To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-i
nduced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. The prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.
In this study, alterations in lipid metabolism associated with acute aflatoxin B1 (AFB1) induced hepatotoxicity and gene expression changes underlying these effects were investigated. Rats were orally administered three dose
s (0.25 mg/kg, 0.5 mg/kg and 1.0 mg/kg) of AFB1 for seven days; after which blood was collected and liver excised. Lipid profiles of plasma and liver were determined spectrophotometrically while the expression of genes associated with lipid and lipoprotein metabolism was assayed by reverse transcriptase polymerase chain reaction. Acute exposure to AFB1 increased the levels of plasma and liver cholesterol, triglycerides and phospholipids. AFB1 at 0.5 mg/kg and 1.0 mg/kg resulted in a dose-dependent (1.2 and 1.5 fold, respectively) downregulation of hepatic Cpt1a with a concomitant 1.2 and 1.5 fold increase in the level of plasma FFA, respectively. A similar observation of 1.2 and 1.3 fold increase was also observed in plasma triglyceride concentration, at both respective doses. AFB1 also decreased the relative expression of Ahr, Lipc and Lcat whereas, it upregulated Scarb1 in a dose dependent manner. AFB1-induced dysregulation of the expression of lipid and lipoprotein metabolizing genes may be one mechanism linking AFB1 to altered lipid metabolism and ultimately risk for coronary heart disease.
AICAR (5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, Acadesine, AICA riboside) is an activator of AMP-activated protein kinase (AMPK). The results of recent studies suggest that AICAR, in addition to its application for treating metabolic disorders, may also have therapeutic potential for
treating neuroinflammatory diseases where reactive microglia play an etiological role. However, the molecular mechanisms of action by which AICAR exerts its anti-inflammatory effects still remain unclear or controversial. In this paper we attempt to evaluate the effects of AICAR on non-stimulated and LPS-activated rat primary microglial cell cultures. The presented evidence supports the conclusion that AMPK activated by AICAR is involved in regulation of ROS and cytokine production (IL-1 beta, TNF-alpha (6h), IL-10 and TGF-beta) as well as arginase I and PGC-1alpha expression. Furthermore, we found that the effects of AICAR on IL-6 and TNF-alpha (12, 24h) release and on the expression of iNOS and NF-kappaB p65 are not AMPK-dependent because the pre-treatment of LPS-activated microglia with compound C (a pharmacological inhibitor of AMPK) did not reverse the effect of AICAR. The results of the presented study provide additional data about AMPK-dependent and -independent mechanisms whereby AICAR may modulate inflammatory response of microglia.
Wang YG, etal., Toxicol Lett. 2014 Jan 13;224(2):282-9. doi: 10.1016/j.toxlet.2013.06.220. Epub 2013 Jun 27.
Despite frequently well-established role of all-trans-retinoid acid (ATRA) in congenital limb deformities, its mechanism of action, thus far, is still ambiguous. Pitx1, which is expressed in the hindlimb bud mesenchyme, or its pathways may be etiologically responsible for the increased incidence of
clubfoot. Here, we sought to investigate the mechanisms whereby Pitx1 regulated chondrogenesis of hindlimb bud mesenchymal cells in vitro. E12.5 embryonic rat hind limb bud mesenchymal cells were treated with ATRA at appropriate concentrations. Cell Counting Kit-8 (CCK-8) assay was performed to evaluate cell proliferation. Hematoxylin-safranin-O-fast-green staining assays were used to observe cartilage nodules, and Pitx1 expression was examined by immunofluorescent microscopy. Real-time quantitative PCR and immunoblotting assays were applied to determine the mRNA expressions of Pitx1, Sox9 and type II collagen (Col2al), respectively. The results showed that ATRA inhibited the proliferation of hind limb bud cells dose-dependently. ATRA also induced a dose-dependent reduction in the number of cartilage nodules and the area of cartilage nodules compared with controls. Our real-time quantitative RT-PCR assays revealed that the mRNA expression of Pitx1, Sox9 and Col2al were significantly downregulated by ATRA. Furthermore, our immunofluorescent microscopy and Western blotting assays indicated that Pitx1 was mainly expressed in the cartilage nodules and the levels of Pitx1, Sox9 and Col2al were also downregulated by ATRA dose-dependently. The results indicated that ATRA may decrease chondrogenesis of hind limb bud mesenchymal cells by inhibiting cartilage-specific molecules, such as Sox9 and Col2al, via downregulating Pitx1 expression.
We investigated the signaling pathway of the arylhydrocarbon receptor (AhR) on HO23 cells (immortalized human granulosa cells (hGC)) mediated by benzyl butyl-phthalate (BBP). BBP (1 muM) significantly increased the mRNA and protein levels of AhR, aryl hydrocarbon receptor nuclear translocator (ARNT)
and cytochrome-P450 (CYP)1B1 in HO23 cells. Treatment with 3',4'-dimethoxyflavone (3',4'-DMF) or AhR siRNA significantly reduced AhR and CYP1B1, but CYP1A1 was not affected by 3',4'-DMF or AhR siRNA, suggesting that increases in CYP1A1 may not regulated by AhR. BBP induced the AhR fusion protein to localize and accumulate around the nucleus, and AhR heterodimerization with ARNT was observed in the nucleus by immunoprecipitation. Chromatin immunoprecipitation and reporter assays revealed the effect of BBP on CYP1B1, but not CYP1A1. Necrosis was significantly increased in HO23 cells after BBP treatment, and 3',4'-DMF, AhR siRNA or CYP1B1 siRNA knockdown blocked this phenomenon. These data suggest that BBP-induced HO23 cell necrosis is AhR and CYP1B1 dependent.
Tan Y, etal., Toxicol Lett. 2012 Nov 15;214(3):279-87. doi: 10.1016/j.toxlet.2012.09.007. Epub 2012 Sep 17.
Several epidemiological investigations, including previous work by our laboratory, indicate that maternal caffeine consumption is associated with intrauterine growth retardation and impaired fetal length growth. Skeletal development is critical for length growth. In the present study, our goals were
to determine the effects of prenatal caffeine exposures on fetal skeletal growth and to investigate the mechanisms associated with such effects. Pregnant Wistar rats were injected intragastrically with 120mg/kg of caffeine intragastrically each day from gestational days 11-20. Maternal prenatal caffeine exposure was associated with decreased fetal femur lengths and inhibited of synthesis of extracellular matrices in fetal growth plates Moreover, caffeine exposure significantly increased the levels of fetal blood corticosterone and decreased IGF-1mRNA expression levels in the liver and growth plate. The expression levels of IGF-1 signaling pathway components (IGF-1R, IRS-1, AKT1/2 and Col2A1) were also reduced. In addition, the results of chromatin immunoprecipitation assays indicated that caffeine exposure down-regulated histone methylation of fetal IGF-1 in the liver. These results suggest that prenatal caffeine exposure may inhibit fetal skeletal growth through a mechanism that is associated with increased fetal exposure to maternal glucocorticoids and results in lower IGF-1 signaling pathway activity. Taken together, these results raise important concerns regarding the skeletal growth toxicity of caffeine and potentially indicate the intrauterine origins of adult osteoporosis and osteoarthritis.
Arumugam S, etal., Toxicology. 2012 Jan 27;291(1-3):139-45. doi: 10.1016/j.tox.2011.11.008. Epub 2011 Nov 23.
Candesartan cilexetil, an angiotensin (Ang) II receptor 1 blocker was reported to suppress the myocardial damage in various cardiovascular complications but the mode by which it is effective in preventing the progression of dilated cardiomyopathy (DCM) is unknown. Emerging evidences suggest that, at
least, part of the benefits observed with the use of AT1 receptor blockers could be attributed to the increased Ang (1-7) levels observed during administration of these agents. Identification of the novel components of the RAS, ACE2 and Ang (1-7) receptor mas, provided essential elements for considering the existence of a vasodilator arm of the RAS, represented by the ACE2-Ang (1-7)-mas axis. In this study, rat model of DCM was prepared by injection with porcine cardiac myosin. Twenty-eight days after immunization, candesartan cilexetil was administered intraperitoneally at 1 or 10mg/kg/day to rats for four weeks. Myocardial expression of Ang receptors and markers of calcium homeostasis, endoplasmic reticulum (ER) stress and apoptosis were measured by Western blotting and histopathological staining techniques. Candesartan improved the functional markers in a dose-dependent manner and also upregulated Ang (1-7), ACE2 and mas1 in the myocardium of DCM rats. Various ER stress and apoptosis markers were attenuated and the number apoptotic cells were significantly lower in the candesartan treated rats compared with those of the vehicle group. These findings suggest that candesartan treatment prevented the progression of DCM by activation of the counter regulatory arm of the RAS and possibly through modulation of ER stress and subsequently, cardiac apoptosis.
Mice of the C57BL/6 strain develop acute ileal inflammation after infection with the protozoan parasite Toxoplasma gondii. This pathology resembles many key features of human Crohn's disease, including a Th1 cytokine profile with high levels of interferon gamma
(IFN-gamma), interleukin 12 (IL)-12, and tumor necrosis factor alpha (TNF)-alpha, presence of pathogenic CD4(+) T cells, and infiltration of gut flora into inflammed tissue. Using CCR2(-/-) mice, we identify a role for this chemokine receptor in the pathogenesis of inflammatory pathology during T. gondii infection. Lack of chemokine (C-C motif) receptor 2 (CCR2) was associated with low levels of CD103(+) T lymphocytes in the intraepithelial compartment, Peyer's patch, and lamina propria relative to wild-type animals. Adoptive transfer of wild-type, but not IFN-gamma(-/-), intraepithelial T lymphocytes converted CCR2 knockout mice from a resistant to susceptible phenotype with respect to parasite-triggered inflammatory gut pathology. These results for the first time show a role for intraepithelial T lymphocytes in pathogenesis of ileitis triggered by a microbial pathogen.
Haines C, etal., Toxicology. 2018 May 1;400-401:20-27. doi: 10.1016/j.tox.2018.03.002. Epub 2018 Mar 13.
A number of chemicals produce liver and thyroid gland tumours in rodents by nongenotoxic modes of action (MOAs). In this study the hepatic and thyroid gland effects of the constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) were examined
in male Sprague-Dawley wild type (WT) rats and in CAR knockout (CAR KO) rats and the effects of the pregnane X receptor (PXR) activator pregnenolone-16α-carbonitrile (PCN) were examined in WT and PXR knockout (PXR KO) rats. Rats were either fed diets containing 0 (control) or 500 ppm NaPB or were dosed with 0 (control) or 100 mg/kg/day PCN orally for 7 days. The treatment of WT rats with NaPB and PCN for 7 days resulted in increased relative liver weight, increased hepatocyte replicative DNA synthesis (RDS) and the induction of cytochrome P450 CYP2B and CYP3A subfamily enzyme, mRNA and protein levels. In marked contrast, the treatment of CAR KO rats with NaPB and PXR KO rats with PCN did not result in any increases in liver weight and induction of CYP2B and CYP3A enzymes. The treatment of CAR KO rats with NaPB had no effect on hepatocyte RDS, while PCN produced only a small increase in hepatocyte RDS in PXR KO rats. Treatment with NaPB had no effect on thyroid gland weight in WT and CAR KO rats, whereas treatment with PCN resulted in an increase in relative thyroid gland weight in WT, but not in PXR KO, rats. Thyroid gland follicular cell RDS was increased by the treatment of WT rats with NaPB and PCN, with NaPB also producing a small increase in thyroid gland follicular cell RDS in CAR KO rats. Overall, the present study with CAR KO rats demonstrates that a functional CAR is required for NaPB-mediated increases in liver weight, stimulation of hepatocyte RDS and induction of hepatic CYP enzymes. The studies with PXR KO rats demonstrate that a functional PXR is required for PCN-mediated increases in liver weight and induction of hepatic CYP enzymes; with induction of hepatocyte RDS also being largely mediated through PXR. The hepatic effects of NaPB in CAR KO rats and of PCN in PXR KO rats are in agreement with those observed in other recent literature studies. These results suggest that CAR KO and PXR KO rats are useful experimental models for liver MOA studies with rodent CAR and PXR activators and may also be useful for thyroid gland MOA studies.
Read-across based on only structural similarity is considered to have a risk of error in chemical risk assessment. Under these circumstances, considering biological similarity based on adverse outcome pathways using in vitro omics technologies is expected to enhance the accuracy and robustness of co
nclusions in read-across. However, due to a lack of practical case studies, key considerations and use of these technologies for data gap filling are not well discussed. Here we extracted and compared the potential mechanisms for hepatotoxicity for structural analogs of p-dialkoxy chlorobenzenes including 1,4-dichloro-2,5-dimethoxybenzene (DDMB), 2,5-dichloro-1,4-diethoxybenzene (DDEB), 2-chloro-1,4-dimethoxybenzene (CDMB), and 1-chloro-2,5-diethoxybenzene (CDEB) using in vitro omics technologies for read-across. To reveal the potential mechanisms for hepatotoxicity, we conducted microarray analysis with rat primary hepatocytes. The results showed that three (DDMB, DDEB, CDEB) of the four chemicals affected similar biological pathways such as peroxisome proliferation, oxidative stress, and mitochondrial dysfunction. Furthermore, these biological pathways are consistent with in vivo hepatotoxicity in the source chemical, DDMB. In contrast, CDMB did not affect a specific toxicological pathway. Taken together, these data show the potential mechanisms for hepatotoxicity for three chemicals (DDMB, DDEB, CDEB) and provide novel insights into grouping chemicals using in vitro toxicogenomics for read-across.
Denoyer A, etal., Mucosal Immunol. 2012 Nov;5(6):702-11. doi: 10.1038/mi.2012.43. Epub 2012 Jun 13.
Inappropriate expression of the chemokine CX3CL1 is reportedly known to act on inflammatory conditions in extraocular immune diseases. We studied the expression and effects of CX3CL1 in human patients, cultured human conjunctival cells, and transgenic mice exposed to benzalkonium chloride (BAC), a c
ommonly used preservative in ophthalmic medications despite its proinflammatory properties, to determine whether CX3CL1 is involved in conjunctival inflammation. We report that CX3CL1 expression is increased in the conjunctiva of patients receiving BAC-containing medication, and correlates with clinical inflammation. BAC enhances the production of CX3CL1 in a conjunctival epithelial cell line, through the tumor-necrosis factor-alpha pathway, which attracts specific leukocyte subsets. In vivo, BAC-induced macrophage infiltration and subsequent inflammation of the conjunctiva is decreased in CX3CR1-deficient mice as compared with CX3CR1(+/+) controls. This translational study opens new avenue to investigate ocular surface disorders by focusing on chemokine-related inflammation and immune cell trafficking in the ocular conjunctival mucosa.
Usuki F and Fujimura M, Arch Toxicol. 2016 Apr;90(4):917-26. doi: 10.1007/s00204-015-1528-3. Epub 2015 May 16.
Manifestation of methylmercury (MeHg) toxicity depends on individual susceptibility to MeHg, as well as MeHg burden level. Therefore, biomarkers that reflect the protective capacity against MeHg are needed. The critical role of oxidative stress in the pathogenes
is of MeHg cytotoxicity has been demonstrated. Because MeHg has high affinity for selenohydryl groups, sulfhydryl groups, and selenides, and causes posttranscriptional defects in selenoenzymes, proteins with selenohydryl and sulfhydryl groups should play a critical role in mediating MeHg-induced oxidative stress. Here, plasma oxidative stress markers and selenoproteins were investigated in MeHg-intoxicated rats showing neuropathological changes after 4 weeks of MeHg exposure. The thiol antioxidant barrier (-SHp) level significantly decreased 2 weeks after MeHg exposure, which is an early stage at which no systemic oxidative stress, histopathological changes, or clinical signs were detected. Diacron reactive oxidant metabolite (d-ROM) levels significantly increased 3 weeks after MeHg exposure, indicating the occurrence of systemic oxidative stress. Rats treated with lead acetate or cadmium chloride showed no changes in levels of -SHp and d-ROM. Selenoprotein P1 abundance significantly decreased in MeHg-treated rats, whereas it significantly increased in rats treated with Pb or Cd. Plasma selenium-dependent glutathione peroxidase (GPx3) activity also significantly decreased after MeHg exposure, whereas plasma non-selenoenzyme glutathione reductase activity significantly increased in MeHg-treated rats. The results suggest that decreased capacity of -SHp and selenoproteins (GPx3 and selenoprotein P) can be useful biomarkers of ongoing MeHg cytotoxicity and the individual protective capacity against the MeHg body burden.
Molina-Jijón E, etal., Toxicology. 2012 Jan 27;291(1-3):93-101. doi: 10.1016/j.tox.2011.11.003. Epub 2011 Nov 15.
Deferoxamine (DFO) is a recognized iron chelator which has been shown to exert nephroprotection in models of toxic nephropathies. In the present work the potential protective effects of DFO against Cr(VI)-induced nephrotoxic
ity and oxidant stress were evaluated. Rats were injected with a single injection (15mg/kg, s.c.) of potassium dichromate (K(2)Cr(2)O(7)). DFO was given as a single i.p. injection 30min before K(2)Cr(2)O(7) administration at three different doses (100, 200 and 400mg/kg). It was found that DFO pretreatment attenuated, in a dose-dependent way, K(2)Cr(2)O(7)-induced renal dysfunction and structural alterations evaluated by serum creatinine, blood urea nitrogen, creatinine clearance, proteinuria, plasma glutathione peroxidase activity, urinary excretion of N-acetyl-β-d-glucosaminidase and histological analyses. Furthermore, DFO prevented the K(2)Cr(2)O(7)-induced renal oxidant stress and the decrease in the activity of the antioxidant enzymes superoxide dismutase, glutathione reductase, glutathione peroxidase, glutathione-S-transferase and catalase. Finally it was found that DFO, at 400mg/kg, decreases renal Cr(VI) content which prompted us to evaluate the potential Cr(VI) chelating properties of this compound. Indeed was found in an in vitro assay that DFO was an effective Cr(VI) chelator with an IC(50) of 800μg. In additional groups of rats was found that DFO posttreatment was ineffective to attenuate K(2)Cr(2)O(7)-induced nephrotoxicity and renal oxidant stress. Furthermore, DFO was unable to modify urinary excretion of total chromium. The nephroprotective effect of DFO against Cr(VI)-induced nephrotoxicity and oxidant stress may be explained, at least partially, by the ability of DFO to chelate Cr(VI) and to attenuate renal Cr(VI) content. However, it cannot be excluded that the ability of DFO to chelate iron may also be involved in the protection observed in our study.
Wei M, etal., Toxicol Appl Pharmacol. 2013 Nov 15;273(1):1-9. doi: 10.1016/j.taap.2013.08.022. Epub 2013 Aug 30.
Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic m
etabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies.
Najimi M, etal., FEBS Lett. 2002 Feb 13;512(1-3):329-33.
The functional coupling of C-terminally truncated mutants of the high affinity rat neurotensin (NT) receptor (NTS1) was characterized in transfected Chinese hamster ovary cells. On cells expressing NTRDelta372 (truncated NTS1 lacking the entire 52 amino acid C-terminus), NT failed to promote [(35)S
]guanosine 5'-[gamma-(35)S]triphosphate binding whereas a robust pertussis toxin (PTx) sensitive response was observed in cells expressing a partially truncated receptor (NTRDelta401 lacking the last 23 residues). Similar results were obtained when measuring the ability of NT to induce the production of arachidonic acid. Since neither deletions impaired the NT-induced phosphoinositide hydrolysis, these results indicate that the membrane proximal region of the C-terminus is specifically involved in the functional coupling of the receptor with PTx sensitive G-proteins. This region was also found to be involved in the control of receptor internalization. However, PTx failed to impair internalization, indicating that these two properties are not directly related.
Toxicogenomics has great potential for enhancing our understanding of environmental chemical toxicity, hopefully leading to better informed human health risk assessments. This study employed tox
xicogenomic technology to reveal species differences in response to two prototypical aryl hydrocarbon receptor (AHR) agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin and the polychlorinated biphenyl (PCB) congener PCB 126. Dose-responses of primary cultures of rat and human hepatocytes were determined using species-specific microarrays sharing over 4000 gene orthologs. Forty-seven human and 79 rat genes satisfied dose-response criteria for both chemicals and were subjected to further analysis including the calculation of the 50% effective concentration and the relative potency (REP) of PCB 126 for each gene. Only five responsive orthologous genes were shared between the two species; yet, the geometric mean of the REPs for all rat and human modeled responsive genes were 0.06 (95% confidence interval [CI]; 0.03-0.1) and 0.002 (95% CI; 0.001-0.005), respectively, suggesting broad species differences in the initial events that follow AHR activation but precede toxicity. This indicates that there are species differences in both the specific genes that responded and the agonist potency and REP for those genes. This observed insensitivity of human cells to PCB 126 is consistent with more traditional measurements of AHR activation (i.e., cytochrome P450 1A1 enzyme activity) and suggests that the species difference in PCB 126 sensitivity is likely due to certain aspects of AHR function. That a species divergence also exists in this expanded AHR-regulated gene repertoire is a novel finding and should help when extrapolating animal data to humans.
Hepatic expression of the transcription factor early growth response-1 (Egr-1) is increased in livers of patients with cholestatic liver disease. Bile acid induction of inflammatory genes in hepatocytes is Egr-1 dependent, and Egr-1 expression is increased in livers of mice after bile duct ligation.
Of importance, Egr-1 deficiency reduces liver inflammation and injury in that model. However, it is not known whether Egr-1 promotes inflammation in other models of cholestasis. We tested the hypothesis that Egr-1 contributes to liver inflammation in mice exposed chronically to the bile duct epithelial cell (BDEC) toxicant alpha-naphthylisothiocyanate (ANIT). Egr-1-knockout (Egr-1(-/-)) mice and wild-type mice were fed a diet containing 0.025% ANIT for 2 weeks. Expression of Egr-1 mRNA and protein was significantly increased in livers of mice fed ANIT diet. Egr-1 deficiency did not significantly affect ANIT diet-induced hepatocellular injury, inflammatory gene induction, BDEC hyperplasia, or hepatic neutrophil accumulation. In contrast, the deposition of Type 1 collagen was significantly increased in livers of Egr-1(-/-) mice fed ANIT diet compared with wild-type mice fed ANIT diet. Interestingly, this increase in liver fibrosis occurred in association with elevated expression of the beta6 integrin (Itgb6) gene, suggesting the potential for increased local activation of transforming growth factor beta. Taken together, the results indicate that Egr-1 does not contribute to liver injury or inflammation in mice fed a diet containing ANIT. Rather, these studies indicate that Egr-1 deficiency worsens liver fibrosis in conjunction with enhanced expression of the profibrogenic Itgb6 gene.
Olmedo I, etal., Toxicol Appl Pharmacol. 2013 Oct 15;272(2):414-22. doi: 10.1016/j.taap.2013.06.022. Epub 2013 Jul 8.
In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the mai
n cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor beta1 (TGF-beta1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. METHOD: Rat neonatal CF and CMF were treated with TGF-beta1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. RESULTS: TGF-beta1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. CONCLUSION: TGF-beta1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling.
Ni H, etal., Toxicol Lett. 2013 Feb 27;217(2):162-9. doi: 10.1016/j.toxlet.2012.12.010. Epub 2012 Dec 21.
E-64d (a calpain and autophagy inhibitor) has previously been shown safe for the treatment of Alzheimer's disease in humans. In the present study, the potential protective mechanism of E-64d on hippocampal aberrant mossy fiber sprouting was examined in a developmental rat model of penicillin-induce
d recurrent epilepticus. A seizure was induced by penicillin every other day in Sprague-Dawley rats from postnatal day 21 (P21). The rats were randomly assigned into the control group (CONT1), the control plus E-64d (CONT2), the seizure group (EXP1) and the seizure plus E-64d (EXP2). On P51, mossy fiber sprouting and related gene expression in hippocampus were assessed by Timm staining and real-time RT-PCR methods, respectively. To validate the RT-PCR results, western blot analysis was performed on selected genes. E-64d obviously suppressed the aberrant mossy fiber sprouting in the supragranular region of dentate gyrus and CA3 subfield of hippocampus. Among the total twelve genes, six genes were strongly up- (MT-3, ACAT1, clusterin and ApoE) or down- (ZnT-1 and PRG-3) regulated by developmental seizures (EXP1) compared with that in the CONT1. Up-regulation of ApoE and Clusterin was blocked by pretreatment with E-64d both in mRNA and protein levels. Further, E-64d-pretreated seizure rats (EXP2) showed a significant downregulation of mRNA expression of PRG-1, PRG-3 and PRG-5, cathepsin B and ApoE, as well as up-regulated nSMase and ANX7 in hippocampus when compared with EXP1 rats. The results of the present study suggest that E-64d, an elective inhibitor of calpain and autophagy, is potentially useful in the treatment of developmental seizure-induced brain damage both by regulating abnormal zinc signal transduction and through the modulation of altered lipid metabolism via ApoE/clusterin pathway in hippocampus.
Jamieson SE, etal., PLoS One. 2008 Jun 4;3(6):e2285. doi: 10.1371/journal.pone.0002285.
BACKGROUND: Primary Toxoplasma gondii infection during pregnancy can be transmitted to the fetus. At birth, infected infants may have intracranial calcification, hydrocephalus, and retinochoroiditis, and new ocular lesions can occur at any age after birth. Not a
ll children who acquire infection in utero develop these clinical signs of disease. Whilst severity of disease is influenced by trimester in which infection is acquired by the mother, other factors including genetic predisposition may contribute. METHODS AND FINDINGS: In 457 mother-child pairs from Europe, and 149 child/parent trios from North America, we show that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4. Polymorphisms at COL2A1 encoding type II collagen associate only with ocular disease. Both loci showed unusual inheritance patterns for the disease allele when comparing outcomes in heterozygous affected children with outcomes in affected children of heterozygous mothers. Modeling suggested either an effect of mother's genotype, or parent-of-origin effects. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting. CONCLUSIONS: These associations between clinical outcomes of congenital toxoplasmosis and polymorphisms at ABCA4 and COL2A1 provide novel insight into the molecular pathways that can be affected by congenital infection with this parasite.
Multidrug resistance-associated protein 2 (Mrp2, ABCC2) and P-glycoprotein (P-gp, ABCB1) constitute essential components of the intestinal biochemical barrier that prevent incorporation of food contaminants, drugs or toxic metabolites into the blood stream. Endo
toxemia induced in rats by administration of bacterial lipopolysaccharide (LPS) results in elevated intestinal permeability and toxicity of xenobiotics in part associated with down-regulation of expression and activity of Mrp2 and P-gp. We evaluated the protective effect of glucagon-like peptide 2 (GLP-2), a peptide hormone with enterotrophic properties, on Mrp2 and P-gp alterations induced by single i.p. injection of LPS (5mg/kg b.wt.) to rats. Two different protocols of GLP-2 administration, namely prevention and reversion, were examined. The prevention protocol consisted of 7s.c. injections of GLP-2 (125µg/kg b.wt.) administered every 12h, starting 60h before LPS administration. The reversion protocol consisted of 2 doses of GLP-2, starting 3h after LPS injection. Intestinal samples were collected 24h after LPS administration and expression (protein and mRNA) and activity of Mrp2 were evaluated in proximal jejunum whereas those of P-gp were studied in ileum. GLP-2 completely neutralized down-regulation of expression of Mrp2 and P-gp and loss of their respective activities induced by LPS under prevention protocol. GLP-2 was also able to prevent internalization of both transporters from the apical membrane of the enterocyte to intracellular compartments, as detected by confocal microscopy. LPS induced an increase in IL-1ß and oxidized glutathione tissue levels, which were also counterbalanced by GLP-2 administration. In contrast, the reversion protocol failed to attenuate Mrp2 and P-gp down-regulation induced by LPS. We conclude that GLP-2 can prevent down-regulation of intestinal expression and activity of Mrp2 and P-gp in endotoxemic rats and that IL-1ß and oxidative stress constitute potential targets of GLP-2 protective effects.
Yin HQ, et al., Toxicol Appl Pharmacol. 2009 Apr 1;236(1):124-30. doi: 10.1016/j.taap.2008.12.030. Epub 2009 Jan 24.
Ethanol induces hepatic steatosis via a complex mechanism that is not well understood. Among the variety of molecules that have been proposed to participate in this mechanism, the sterol regulatory element (SRE)-binding proteins (SREBPs) have been identified as attractive targets for therapeutic in
tervention. In the present study, we evaluated the effects of honokiol on alcoholic steatosis and investigated its possible effect on the inhibition of SREBP-1c maturation. In in vitro studies, H4IIEC3 rat hepatoma cells developed increased lipid droplets when exposed to ethanol, but co-treatment with honokiol reversed this effect. Honokiol inhibited the maturation of SREBP-1c and its translocation to the nucleus, the binding of nSREBP-1c to SRE or SRE-related sequences of its lipogenic target genes, and the expression of genes for fatty acid synthesis. In contrast, magnolol, a structural isomer of honokiol, had no effect on nSREBP-1c levels. Male Wistar rats fed with a standard Lieber-DeCarli ethanol diet for 4 weeks exhibited increased hepatic triglyceride and decreased hepatic glutathione levels, with concomitantly increased serum alanine aminotransferase and TNF-alpha levels. Daily administration of honokiol (10 mg/kg body weight) by gavage during the final 2 weeks of ethanol treatment completely reversed these effects on hepatotoxicity markers, including hepatic triglyceride, hepatic glutathione, and serum TNF-alpha, with efficacious abrogation of fat accumulation in the liver. Inhibition of SREBP-1c protein maturation and of the expression of Srebf1c and its target genes for hepatic lipogenesis were also observed in vivo. A chromatin immunoprecipitation assay demonstrated inhibition of specific binding of SREBP-1c to the Fas promoter by honokiol in vivo. These results demonstrate that honokiol has the potential to ameliorate alcoholic steatosis by blocking fatty acid synthesis regulated by SREBP-1c.
The use of C(60) fullerenes is expected to increase in various industrial fields. Little is known about the potential toxicological mechanism of action of water-soluble C(60) fullerenes. In our previous research, gene expression profiling of the rat lung was per
formed after whole-body inhalation exposure to C(60) fullerenes to gain insights into the molecular events. These DNA microarray-based data closely matched the pathological findings that C(60) fullerenes caused no serious adverse pulmonary effects under the inhalation exposure condition. Taking advantage of this, we attempted to characterize time-dependent changes in the gene expression profiles after intratracheal instillation with C(60) fullerenes at different dosages and to identify the candidate expressed genes as potential biomarkers. The hierarchical cluster analysis revealed that the up- or downregulation of genes after intratracheal instillation with 1.0 mg C(60) fullerene particles in rat lung tissue was significantly over-represented in the "response to stimulus" and "response to chemical stimulus" categories of biological processes and in the "extracellular space" category of the cellular component. These results were remarkable for 1 week after the instillation with C(60) fullerenes. In the lung tissues instilled with 1.0 mg C(60) fullerene particles, many representative genes involved in "inflammatory response," such as the Cxcl2, Cxcl6, Orm1, and Spp1 genes, and in "matrix metalloproteinase activity," such as the Mmp7 and Mmp12 genes, were upregulated for over 6 months. The expression levels of 89 and 21 genes were positively correlated with the C(60) fullerene dose at 1 week and 6 months after the instillation, respectively. Most of them were involved in "inflammatory response", and the Ccl17, Ctsk, Cxcl2, Cxcl6, Lcn6, Orm1, Rnase9, Slc26a4, Spp1, Mmp7, and Mmp12 genes were overlapped. Meanwhile, the expression levels of 16 and 4 genes were negatively correlated with the C(60) fullerene dose at 1 week and 6 months after the instillation, respectively. Microarray-based gene expression profiling suggested that the expression of some genes is correlated with the dose of intratracheally instilled C(60) fullerenes. We propose that these genes are useful for identifying potential biomarkers in acute-phase or persistent responses to C(60) fullerenes in the lung tissue.
Sauer A, etal., J Infect Dis. 2012 Oct;206(8):1319-29. Epub 2012 Aug 22.
BACKGROUND: Toxoplasmosis is the most common cause of posterior uveitis in immunocompetent subjects. The requirement of limiting both parasite multiplication and tissue destruction suggests that the balance between T-helper (Th) 17 and T-regulatory cells is an
important factor in toxoplasmosis-induced retinal damage. METHODS: In a prospective clinical study of acute ocular toxoplasmosis, we assessed the cytokine pattern in aqueous humors of 10 affected patients. To determine the immunological mechanisms, we evaluated intraocular inflammation, parasite load, and immunological responses using messenger RNA and protein levels in a mouse model. Anti-interleukin 17A (IL-17A) monoclonal antibodies (mAbs) were administered with the parasite to evaluate the role of IL-17A. RESULTS: Severe ocular inflammation and cytokine patterns comparable to human cases were observed, including IL-17A production. Neutralizing IL-17A decreased intraocular inflammation and parasite load in mice. Detailed studies revealed up-regulation of T-regulatory and Th1 pathways. When interferon gamma (IFN-gamma) was neutralized concomitantly, the parasite multiplication rate was partially restored. CONCLUSIONS: Local IL-17A production by resident cells plays a central role in the pathology of ocular toxoplasmosis. The balance between Th17 and Th1 responses (especially IFN-gamma) is crucial for the outcome of infection. This data reveals new in vivo therapeutic approaches by repressing inflammatory pathways using intravitreal injection of IL-17A mAbs.
Kimura M, etal., Exp Toxicol Pathol. 2013 Nov;65(7-8):979-88. doi: 10.1016/j.etp.2013.01.012. Epub 2013 Mar 7.
Thioacetamide (TAA) induces oxidative stress and hepatocarcinogenicity in rats. We previously reported that TAA promotion caused various disruptions in cell cycle protein expression in rats, including downregulation of p16(Ink4a), which is associated with intraexonic hypermethylation in hepatocellul
ar proliferative lesions. This study further investigated the contribution of cell cycle aberrations associated with early hepatocarcinogenic processes induced by TAA using antioxidants, enzymatically modified isoquercitrin (EMIQ) and alpha-lipoic acid (ALA), in a two-stage rat hepatocarcinogenesis model. TAA-promotion after initiation with N-diethylnitrosamine increased the number and area of hepatocellular foci immunoreactive for glutathione S-transferase placental form (GST-P) and the numbers of proliferating and apoptotic cells. Co-treatment with EMIQ and ALA suppressed these increases. TAA-induced formation of p16(Ink4a-) foci in concordance with GST-P(+) foci was not suppressed by co-treatment with EMIQ or ALA. TAA-promotion increased cellular distributions of cell proliferation marker Ki-67, G2/M and spindle checkpoint proteins (phosphorylated checkpoint kinase 1 and Mad2), the DNA damage-related protein phosphorylated histone H2AX, and G2-M phase-related proteins (topoisomerase IIalpha, phosphorylated histone H3 and Cdc2) within GST-P(+) foci, and co-treatment with EMIQ or ALA suppressed these increases. These results suggest that downregulation of p16(Ink4a) may allow selective proliferation of preneoplastic cells by TAA promotion. However, antioxidants did not counteract this gene control. Moreover, effective suppression of TAA-induced cellular population changes within preneoplastic lesions by antioxidants may reflect facilitation of cell cycling and accumulation of DNA damage causing the activation of cell cycle checkpoints, leading to G2 and M phase arrest at the early stages of hepatocarcinogenesis promoted by TAA.
Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in v
ivo is not known. In this investigation, we hypothesized that Cyp1a1(-/-) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(-/-) mice were exposed to hyperoxia (>95% O2) or room air for 24-72 h. The Cyp1a1(-/-) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24-48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(-/-) mice showed higher levels after 48-72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury.
Li Y, etal., Toxicol Lett. 2014 Aug 17;229(1):319-26. doi: 10.1016/j.toxlet.2014.06.033. Epub 2014 Jun 25.
To understand the regulation of genetic damage by epigenetics at the early stage of carcinogenesis after hexavalent chromium (Cr(VI)) and assessed genetic damage to explore their association with DNA repair genes mediated by differently expressed miRNA. Genetic damages were evaluated using cytokin
esis-block micronucleus assay (CBMN) and serum 8-hydroxyguanine (8-OHdG) ELISA assay. Blood Cr level showed significant association with plasma miR-3940-5p level (r=-0.33, P=0.001) and non-linear relationship with micronuclei frequency in CBMN and serum 8-OHdG level (beta(std)=0.29, P=0.039; beta(std)=0.35, P=0.001), with micronuclei frequency not increasing apparently under high Cr exposure. In contrast, no significant association was found between plasma miR-3940-5p level and the two genetic indicators. However, plasma miR-3940-5p level was linked to micronuclei frequency under high blood Cr level (beta(std)=0.18, P=0.015). To explore the effect of miR-3940-5p on genetic damage under high Cr exposure, the protein expression levels of miR-3940-5p-mediated DNA repair genes in leukocytes were quantified using enzyme-linked immunosorbent assay for subjects with high blood Cr level. The results showed that XRCC2 and BRCC3 protein levels were statistically associated with miR-3940-5p level respectively (beta(std)=-0.31, P=0.010; beta(std)=-0.24, P=0.037). Meanwhile, a weak but statistically negative association between XRCC2 level and micronuclei frequency was found (beta(std)=-0.15, P=0.027). These data suggests that high Cr(VI) does not always aggravate genetic damage after reaching a high Cr(VI) exposure in real situation, which may be due to the regulation of miRNA on DNA repair genes responsive to high Cr(VI) exposure.
Kv3 potassium channels, with their ultra-rapid gating and high activation threshold, are essential for high-frequency firing in many CNS neurons. Significantly, the Kv3.4 subunit has been implicated in the major CNS disorders Parkinson's and Alzheimer's diseases, and it is claimed that selectively t
argeting this subunit will have therapeutic utility. Previous work suggested that BDS toxins ("blood depressing substance," from the sea anemone Anemonia sulcata) were specific blockers for rapidly inactivating Kv3.4 channels, and consequently these toxins are increasingly used as diagnostic agents for Kv3.4 subunits in central neurons. However, precisely how selective are these toxins for this important CNS protein? We show that BDS is not selective for Kv3.4 but markedly inhibits current through Kv3.1 and Kv3.2 channels. Inhibition comes about not by "pore block" but by striking modification of Kv3 gating kinetics and voltage dependence. Activation and inactivation kinetics are slowed by BDS-I and BDS-II, and V(1/2) for activation is shifted to more positive voltages. Alanine substitution mutagenesis around the S3b and S4 segments of Kv3.2 reveals that BDS acts via voltage-sensing domains, and, consistent with this, ON gating currents from nonconducting Kv3.2 are markedly inhibited. The altered kinetics and gating properties, combined with lack of subunit selectivity with Kv3 subunits, seriously affects the usefulness of BDS toxins in CNS studies. Furthermore, our results do not easily fit with the voltage sensor "paddle" structure proposed recently for Kv channels. Our data will be informative for experiments designed to dissect out the roles of Kv3 subunits in CNS function and dysfunction.
Skibinski G, etal., J Neurosci. 2014 Jan 8;34(2):418-33. doi: 10.1523/JNEUROSCI.2712-13.2014.
By combining experimental neuron models and mathematical tools, we developed a "systems" approach to deconvolve cellular mechanisms of neurodegeneration underlying the most common known cause of Parkinson's disease (PD), mutations in leucine-rich repeat kinase 2 (LRRK2). Neurons ectopically express
ing mutant LRRK2 formed inclusion bodies (IBs), retracted neurites, accumulated synuclein, and died prematurely, recapitulating key features of PD. Degeneration was predicted from the levels of diffuse mutant LRRK2 that each neuron contained, but IB formation was neither necessary nor sufficient for death. Genetic or pharmacological blockade of its kinase activity destabilized LRRK2 and lowered its levels enough to account for the moderate reduction in LRRK2 toxicity that ensued. By contrast, targeting synuclein, including neurons made from PD patient-derived induced pluripotent cells, dramatically reduced LRRK2-dependent neurodegeneration and LRRK2 levels. These findings suggest that LRRK2 levels are more important than kinase activity per se in predicting toxicity and implicate synuclein as a major mediator of LRRK2-induced neurodegeneration.
Flaherty MM, etal., Toxicol Sci. 2012 Jan;125(1):299-309. doi: 10.1093/toxsci/kfr278. Epub 2011 Oct 24.
Fc receptors are a critical component of the innate immune system responsible for the recognition of cross-linked antibodies and the subsequent clearance of pathogens. However, in autoimmune diseases, these receptors play a role in the deleterious action of self-directed antibodies and as such are c
andidate targets for treatment. GMA161 is an aglycosyl, humanized version of the murine antibody 3G8 that targets the human low-affinity Fcgamma receptor III (CD16). As CD16 expression and sequence have high species specificity, preclinical assessments were conducted in mice transgenic for both isoforms of human CD16, CD16A, and CD16B. This transgenic mouse model was useful in transitioning into phase I clinical trials, as it generated positive efficacy data in a relevant disease model and an acceptable single-dose safety profile. However, when GMA161 or its murine parent 3G8 were dosed repeatedly in transgenic mice having both human CD16 isoforms, severe reactions were observed that were not associated with significant cytokine release, nor were they alleviated by antihistamine administration. Prophylactic dosing with an inhibitor of platelet-activating factor (PAF), however, completely eliminated all signs of hypersensitivity. These findings suggest that (1) GMA161 elicits a reaction that is target dependent, (2) immunogenicity and similar adverse reactions were observed with a murine version of the antibody, and (3) the reaction is driven by the atypical hypersensitivity pathway mediated by PAF.
De Miranda BR, etal., Toxicol Sci. 2015 Feb;143(2):360-73. doi: 10.1093/toxsci/kfu236. Epub 2014 Nov 17.
The orphan nuclear receptor NR4A2 (Nurr1) constitutively regulates inflammatory gene expression in glial cells by suppressing DNA binding activity of NF-kappaB. We recently reported that novel 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds that activate NR4A family nuclear rec
eptors in cancer lines also suppress inflammatory gene expression in primary astrocytes and prevent loss of dopaminergic neurons in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp). In this study, we postulated that the basis for this neuroprotection involves blockade of glial activation and subsequent expression of NF-kappaB-regulated inflammatory genes. To examine this mechanism, we treated transgenic NF-kappaB/EGFP reporter mice with MPTPp for 7 days (MPTPp7d) followed by daily oral gavage with either vehicle (corn oil; MPTPp14d) or C-DIMs containing p-methoxyphenyl (C-DIM5), p-hydroxyphenyl (C-DIM8), or p-chlorophenyl (C-DIM12) groups. Each compound conferred significant protection against progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), even when given after 7 days of dosing with MPTPp. C-DIM12 had the greatest neuroprotective activity in MPTPp-treated mice, and was also the most potent compound in suppressing activation of microglia and astrocytes, expression of cytokines and chemokines in quantitative polymerase chain reaction (qPCR) array studies, and in reducing expression of NF-kappaB/EGFP in the SN. C-DIM12 prevented nuclear export of Nurr1 in dopaminergic neurons and enhanced expression of the Nurr1-regulated proteins tyrosine hydroxylase and the dopamine transporter. These data indicate that NR4A-active C-DIM compounds protect against loss of dopamine neurons in the MPTPp model of PD by preventing glial-mediated neuronal injury and by supporting a dopaminergic phenotype in TH-positive neurons in the SNpc.
Padhi BK and Pelletier G, Toxicol Lett. 2012 Sep 18;213(3):374-80. doi: 10.1016/j.toxlet.2012.07.011. Epub 2012 Jul 24.
Myelin sheaths surrounding axons are essential for saltatory conduction of nerve impulse in the central nervous system. A major protein constituent of myelin sheaths is produced by the myelin basic protein (Mbp) gene, whose expression in oligodendrocytes is conserved across vertebrates. In rat, fiv
e Mbp splice variants resulting from alternative splicing of exons 2, 5 and/or 6 are characterized. We developed a PCR-based strategy to quantify individual Mbp splice variants and characterized a sixth Mbp splice variant lacking only exon 5. This newly identified splice variant is predominantly expressed in developing rat brain and has orthologs in mouse and human. Many neurotoxic chemicals can perturb myelination and Mbp gene expression. Regulation of Mbp gene expression at the post-transcriptional level was assessed following perinatal exposure to neurotoxic methylmercury (2 mg/kg b.w./day). Similar reductions in total and individual Mbp splice variant mRNA levels suggest that methylmercury-induced perturbation in Mbp gene expression occurred as a consequence of decreased oligodendrocyte cell population in absence of a significant impact on its post-transcriptional regulation.
Schug M, etal., Arch Toxicol. 2013 Feb;87(2):337-45. doi: 10.1007/s00204-012-0999-8. Epub 2012 Dec 29.
Cultivated hepatocytes represent a well-established in vitro system. However, the applicability of hepatocytes in toxicogenomics is still controversially discussed. Recently, an in vivo/in vitro discrepancy has been described, whereby the non-genotox
ont-weight:700;'>toxic rat liver carcinogen methapyrilene alters the expression of the metabolizing genes SULT1A1 and ABAT, as well as the DNA damage response gene GADD34 in vitro, but not in vivo. If the collagen sandwich cultures of hepatocytes really produce false-positive data, this would compromise its application in toxicogenomics. To revisit the putative in vivo/in vitro discrepancy, we first analyzed and modeled methapyrilene concentrations in the portal vein of rats. The relatively short half-life of 2.8 h implies a rapid decrease in orally administered methapyrilene in vivo below concentrations that can cause gene expression alterations. This corresponded to the time-dependent alteration levels of GADD34, ABAT and SULT1A1 RNA in the liver: RNA levels are altered 1, 6 and 12 h after methapyrilene administration, but return to control levels after 24 and 72 h. In contrast, methapyrilene concentrations in the culture medium supernatant of primary rat hepatocyte cultures decreased slowly. This explains why GADD34, ABAT and SULT1A1 were still deregulated after 24 h exposure in vitro, but not in vivo. It should also be considered that the earliest analyzed time point in the previous in vivo studies was 24 h after methapyrilene administration. In conclusion, previously observed in vitro/in vivo discrepancy can be explained by different pharmacokinetics present in vitro and in vivo. When the in vivo half-life is short, levels of some initially altered genes may have returned to control levels already 24 h after administration.
Methylmercury is a prevalent environmental toxicant that can have deleterious effects on a developing fetus. Previous studies indicate that the multidrug resistance-associated protein 2 (Mrp2) is involved in renal and hepatic export of mercuric ions. Therefore,
we hypothesize that Mrp2 is also involved in export of mercuric ions from placental trophoblasts and fetal tissues. To test this hypothesis, we assessed the disposition of mercuric ions in pregnant Wistar and TR(-) (Mrp2-deficient) rats exposed to a single dose of methylmercury. The amount of mercury in renal tissues (cortex and outer stripe of outer medulla), liver, blood, amniotic fluid, uterus, placentas and fetuses was significantly greater in TR(-) rats than in Wistar rats. Urinary and fecal elimination of mercury was greater in Wistar dams than in TR(-) dams. Thus, our findings suggest that Mrp2 may be involved in the export of mercuric ions from maternal and fetal organs following exposure to methylmercury.
Jones SR and Cyr DG, Toxicol Sci. 2011 Feb;119(2):369-79. doi: 10.1093/toxsci/kfq318. Epub 2010 Oct 20.
It has been reported that following administration, alkylphenols, such as octylphenol, reach the testis and epididymis but fail to accumulate in these tissues, suggesting the rapid expulsion of these chemicals by transporters. Specialized transporters that function to restrict compounds that enter t
arget cells have been identified. ABCB1 is a member of the ATP-binding cassette family of proteins capable of transporting a broad range of drugs and xenobiotics out of tissues. The objective of this study was to characterize the expression profile and functional role of ABCB1a and ABCB1b along the different regions (initial segment, caput, corpus [CS], and cauda [CA]) of the adult rat epididymis. ABCB1a and ABCB1b transcripts were detected in all four regions of the epididymis. Immunolocalization revealed minimal ABCB1 staining in epithelial cells or spermatozoa of proximal regions of the epididymis; however, this progressively increased in the CS and CA epididymis. This expression gradient was confirmed by Western blot, suggesting that spermatozoa acquire ABCB1 during epididymal maturation. Multidrug resistance (MDR) assays revealed that rat epididymal cells and epididymal spermatozoa display an MDR phenotype that can be inhibited under control conditions. To assess whether or not the system was inducible by alkylphenols, cells from an immortalized epididymal cell line (RCE) were exposed to different concentrations of nonylphenol. Results revealed a significant induction of both ABCB1a and ABCB1b messenger RNA and ABCB1 protein in RCE cells. Our findings demonstrate a role for ABCB1 in protecting both epididymal principal cells and spermatozoa from xenobiotics.
Bian EB, etal., Toxicol Lett. 2014 Jan 13;224(2):175-85. doi: 10.1016/j.toxlet.2013.10.038. Epub 2013 Nov 6.
Conversion of hepatic stellate cells (HSCs) into hepatic myofibroblasts is a necessary event during the development of liver fibrosis. DNA methyltransferase 1 (DNMT1), which catalyzes DNA methylation and subsequently leads to the transcriptional repression of profibrotic genes, is selectively induce
d in myofibroblasts from diseased livers. Treatment of HSC with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-azadC), prevented TGF-beta1-induced proliferation and alpha-smooth muscle actin (alpha-SMA) and collagen expression. 5-AzadC also rescued TGF-beta1-induced suppression of Smad7 expression which occurs during HSC activation. Similarly, silencing the expression of the DNMT1 gene ameliorated the suppression of Smad7 expression by TGF-beta1. In addition, DNMT1 inhibition, by 5-azadC or DNMT1 silencing, prevented the phosphorylation of Smad2 and Smad3. These studies suggest that epigenetic repression of Smad7 promotes the phosphorylation of Smad2 and Smad3 that may be an important molecular mechanism for perpetuated HSC activation and liver fibrosis.
Ko JC, etal., Basic Clin Pharmacol Toxicol. 2015 Dec;117(6):383-91. doi: 10.1111/bcpt.12425. Epub 2015 Jun 30.
Etoposide (VP-16), a topoisomerase II inhibitor, is an effective anti-cancer drug used for the treatment of non-small-cell lung cancer (NSCLC). Resveratrol is a naturally occurring polyphenolic compound that has been proved to have anti-cancer activity. XRCC1 is an important scaffold protein involve
d in base excision repair that is regulated by ERK1/2 and AKT signals and plays an important role in the development of lung cancer. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in etoposide treatment alone or combined with resveratrol-induced cytotoxicity in NSCLC cells has not been identified. In this study, etoposide treatment increased XRCC1 mRNA and protein expression through AKT and ERK1/2 activation in two NSCLC cells, H1703 and H1975. Knockdown of XRCC1 in NSCLC cells by transfection of XRCC1 siRNA or inactivation of ERK1/2 and AKT resulted in enhancing cytotoxicity and cell growth inhibition induced by etoposide. Resveratrol inhibited the expression of XRCC1 and enhanced the etoposide-induced cell death and anti-proliferation effect in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors could rescue the XRCC1 protein level and also the cell survival suppressed by co-treatment with etoposide and resveratrol. These findings suggested that down-regulation of XRCC1 expression by resveratrol can enhance the chemosensitivity of etoposide in NSCLC cells.
Dalaklioglu S, etal., Toxicol Lett. 2010 Feb 1;192(2):91-6. doi: 10.1016/j.toxlet.2009.10.002. Epub 2009 Oct 13.
The aim of the present study was to investigate the role of poly(ADP-ribose)polymerase (PARP) activity in vancomycin (VCM)-induced renal injury and to determine whether 1,5-isoquinelinediol (ISO), a PARP inhibitor agent, could be offered as an alternative therapy in VCM-induced renal impairment. Rat
s were divided into four groups as follows: (i) control (Group 1); (ii) VCM-treated (Group 2); (iii) VCM plus ISO-treated (Group 3); and (iv) ISO-treated (Group 4). VCM (200mg/kg, i.p., twice daily) was administered to Groups 2 and 3 for 7 days. ISO (3mg/kg/day, i.p.) treatment was started 24h before the first administration of VCM and continued for 8 days. After the 14th VCM injection, the animals were placed in metabolic cages to collect urine samples. All the rats were sacrificed by decapitation, blood samples were taken in tubes and kidneys were excised immediately. Blood urea nitrogen (BUN) and plasma creatinine, and urinary N-acetyl-beta-d-glucosaminidase (NAG, a marker of renal tubular injury) were used as markers of VCM-induced renal injury in rats. Light microscopy was used to evaluate semi-quantitative analysis of the kidney sections. Poly(ADP-ribose) (PAR, the product of activated PARP) and PARP-1 expressions in renal tissues were demonstrated by immunohistochemistry and Western blot. VCM administration increased BUN levels from 8.07+/-0.75 mg/dL to 53.87+/-10.11 mg/dL. The plasma creatinine levels were 0.8+/-0.04 mg/dL and 3.38+/-0.51 mg/dL for the control and VCM-treated groups, respectively. Also, urinary excretion of NAG was increased after VCM injection. Besides, there was a significant dilatation of the renal tubules, eosinophilic casts within some tubules, desquamation and vacuolization of renal tubule epithelium, and interstitial tissue inflammation in VCM-treated rats. In VCM-treated rats, both PAR and PARP-1 expressions were increased in renal tubular cells. ISO treatment attenuated VCM-induced renal injury, as indicated by BUN and plasma creatinine levels, urinary NAG excretion, and renal histology. PARP inhibitor treatment also decreased PAR and PARP-1 protein expressions similar to that of controls. Herewith, the overactivation of the PARP pathway may have a role in VCM-induced renal impairment and pharmacological inhibition of this pathway might be an effective intervention to prevent VCM-induced acute renal injury.
Johnson KJ, etal., Toxicol Sci. 2011 Apr;120(2):460-74. doi: 10.1093/toxsci/kfr020. Epub 2011 Jan 25.
Fetal rat phthalate exposure produces a spectrum of male reproductive tract malformations downstream of reduced Leydig cell testosterone production, but the molecular mechanism of phthalate perturbation of Leydig cell function is not well understood. By bioinformatically examining fetal testis expre
ssion microarray data sets from susceptible (rat) and resistant (mouse) species after dibutyl phthalate (DBP) exposure, we identified decreased expression of several metabolic pathways in both species. However, lipid metabolism pathways transcriptionally regulated by sterol regulatory element-binding protein (SREBP) were inhibited in the rat but induced in the mouse, and this differential species response corresponded with repression of the steroidogenic pathway. In rats exposed to 100 or 500 mg/kg DBP from gestational days (GD) 16 to 20, a correlation was observed between GD20 testis steroidogenic inhibition and reductions of testis cholesterol synthesis endpoints including testis total cholesterol levels, Srebf2 gene expression, and cholesterol synthesis pathway gene expression. SREBP2 expression was detected in all fetal rat testis cells but was highest in Leydig cells. Quantification of SREBP2 immunostaining showed that 500 mg/kg DBP exposure significantly reduced SREBP2 expression in rat fetal Leydig cells but not in seminiferous cords. By Western analysis, total rat testis SREBP2 levels were not altered by DBP exposure. Together, these data suggest that phthalate-induced inhibition of fetal testis steroidogenesis is closely associated with reduced activity of several lipid metabolism pathways and SREBP2-dependent cholesterologenesis in Leydig cells.
Stapleton AR and Chan VT, Arch Toxicol. 2009 Apr;83(4):319-33. doi: 10.1007/s00204-008-0346-2. Epub 2008 Jul 31.
Chlorpyrifos (CPF), a commonly used organophosphorus insecticide, induces acetylcholinesterase inhibition and cholinergic toxicity. Subtoxic exposure to CPF has long-term adverse effects on synaptic function/development and
behavioral performance. To gain insight into the possible mechanism(s) of these observations, this study aims to investigate gene expression changes in the forebrain of rats treated with subtoxic CPF doses using DNA microarrays. Statistical analysis revealed that CPF treatment resulted in differential expression of 277 genes. Gene ontology and pathway analyses revealed that these genes have important roles in nervous system development and functions including axon guidance, dorso-ventral axis formation, long-term potentiation, synaptic transmission, and insulin signaling. The results of biological associated network analysis showed that Gsk3b is highly connected in several of these networks suggesting its potential role in cellular response to CPF exposure/neurotoxicity. These findings might serve as the basis for future mechanistic analysis of the long-term adverse effects of subtoxic CPF exposure.
Sen M, etal., Mol Med. 2014 Mar 18;20:46-56. doi: 10.2119/molmed.2013.00104.
Hyperactivation of signal transducer and activator of transcription 3 (STAT3) has been linked to tumorigenesis in most malignancies, including head and neck squamous cell carcinoma. Intravenous delivery of a chemically modified cyclic STAT3 decoy oligonucleotide with improved serum and thermal stabi
lity demonstrated antitumor efficacy in conjunction with downmodulation of STAT3 target gene expression such as cyclin D1 and Bcl-X(L) in a mouse model of head and neck squamous cell carcinoma. The purpose of the present study was to determine the toxicity and dose-dependent antitumor efficacy of the cyclic STAT3 decoy after multiple intravenous doses in Foxn1 nu mice in anticipation of clinical translation. The two doses (5 and 10 mg/kg) of cyclic STAT3 decoy demonstrated a significant decrease in tumor volume compared with the control groups (mutant cyclic STAT3 decoy or saline) in conjunction with downmodulation of STAT3 target gene expression. There was no dose-dependent effect of cyclic STAT3 decoy on tumor volume or STAT3 target gene expression. There were no significant changes in body weights between the groups during the dosing period, after the dosing interval or on the day of euthanasia. No hematology or clinical chemistry parameters suggested toxicity of the cyclic STAT3 decoy compared with saline control. No gross or histological pathological abnormalities were noted at necropsy in any of the animals. These findings suggest a lack of toxicity of intravenous administration of a cyclic STAT3 decoy oligonucleotide. In addition, comparable antitumor effects indicate a lack of dose response at the two dose levels investigated.
Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3'Igh regulatory region (3'IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcri
ptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-kappaB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3'IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-kappaB/Rel binding site suggesting a potential reciprocal modulation of the 3'IghRR by AhR and NF-kappaB/Rel. The objective of the current study was to evaluate the role of NF-kappaB/Rel and the AhR on the 3'IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3'IghRR-regulated transgene reporter or an inducible IkappaBalpha (inhibitor kappa B-alpha protein) superrepressor (IkappaBalphaAA), we demonstrate an AhR- and NF-kappaB/Rel-dependent modulation of 3'IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-kappaB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-kappaB/Rel protein binding profile within the 3'IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels.
Wang Z, etal., Toxicol Appl Pharmacol. 2006 Aug 1;214(3):263-9. doi: 10.1016/j.taap.2005.12.014. Epub 2006 Feb 13.
To explore the molecular mechanism of brain tissue injury induced by lipopolysaccharide (LPS), we studied the effects of endotoxic shock on rat brain cortex NF-kappaB and the effects of dexamethasone on these changes. Rats were randomly divided into LPS, LPS + d
examethasone, and control groups. The DNA-binding activity of NF-kappaB was observed using electrophoretic mobility shift assay (EMSA). Protein expression in nuclear extracts was studied using Western blots, and nuclear translocation was observed using immunohistochemistry. These indices were assayed at 1 h and 4 h after intravenous injection of LPS (4 mg x kg(-1)). EMSA showed significantly increased NF-kappaB DNA-binding activity in nuclear extracts from the LPS group at both 1 h and 4 h after LPS injection, compared with the control group (P < 0.01). For the LPS group, the NF-kappaB DNA-binding activity was greater at 1 h than at 4 h (P < 0.05). The expression of p65 and p50 protein in the nuclear extracts was also increased, as compared with the control group. However, the expression of p65 and p50 protein from cytosolic extracts did not show any significant change. Dexamethasone down-regulated not only NF-kappaB DNA-binding activity but also the expression of p65 protein in the nuclear extracts. From these data, we have concluded that NF-kappaB activation and nuclear translocation of NF-kappaB play a key role in the molecular mechanism of brain tissue injury in endotoxic shock. Dexamethasone may alleviate brain injury by inhibiting NF-kappaB activation.
Zemlyak I, etal., J Neurochem. 2009 Dec;111(5):1252-63. doi: 10.1111/j.1471-4159.2009.06415.x. Epub 2009 Oct 3.
NAP (NAPVSIPQ, generic name, davunetide), a neuroprotective peptide in clinical development for neuroprotection against Alzheimer's disease and other neurodegenerative indications, has been recently shown to provide protection against kainic acid excitotoxicity
in hippocampal neuronal cultures. In vivo, kainic acid toxicity models status epilepticus that is associated with hippocampal cell death. Kainic acid toxicity has been previously suggested to involve the microtubule cytoskeleton and NAP is a microtubule-interacting drug candidate. In the current study, kainic acid-treated rats showed epileptic seizures and neuronal death. Injection of NAP into the dentate gyrus partially protected against kainic acid-induced CA3 neuron death. Microarray analysis (composed of > 31 000 probe sets, analyzing over 30 000 transcripts and variants from over 25 000 well-substantiated rat genes) in the kainic acid-injured rat brain revealed multiple changes in gene expression, which were prevented, in part, by NAP treatment. Selected transcripts were further verified by reverse transcription coupled with quantitative real-time polymerase chain reaction. Importantly, among the transcripts regulated by NAP were key genes associated with proconvulsant properties and with long-lasting changes that underlie the epileptic state, including activin A receptor (associated with apoptosis), neurotensin (associated with proper neurotransmission) and the Wolfram syndrome 1 homolog (human, associated with neurodegeneration). These data suggest that NAP may provide neuroprotection in one of the most serious neurological conditions, epilepsy.
Cadmium is a hazardous metal whose chronic exposure induces renal failure due to fibrosis, but the mechanisms are not well known. In this study we analyzed the molecular species of lysophosphatidic acid (LPA) and related phospholipids, together with their metabolic enzyme activity, in plasma from W
istar rats exposed up to 300ppm Cd(2+) in drinking water for 114days. Exposure of 300ppm Cd(2+) for 114days enhanced autotoxin (ATX)/lysophospholipase D activity, but significantly lowered the total levels of LPA and lysophosphatidylethanolamine. Interestingly, the total level of sphingosine-1-phosphate (S1P) was elevated dose-dependently by Cd(2+). Cultured rat kidney-derived interstitial fibroblast cells, NRK49F cells and proximal epithelial cells, NRK52E cells, were both responsive to the protective action of LPA or S1P against Cd(2+) toxicity. The former cell expresses ATX RNA. In conclusion, the elevation of LPA-producing enzyme activity and S1P concentrations in plasma after exposure of rats to Cd(2+) would protect from the renal toxicity of Cd(2+).
Drygin D, etal., Annu Rev Pharmacol Toxicol. 2010;50:131-56. doi: 10.1146/annurev.pharmtox.010909.105844.
The RNA polymerase I (Pol I) transcription machinery in the nucleolus is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production that in turn guides cell growth and proliferation. Cancer cells commonly harbo
r mutations that inactivate tumor suppressors, hyperactivate oncogenes, and upregulate protein kinases, all of which promote Pol I transcription and drive cell proliferation. The intimate balance between Pol I transcription and growth-factor signaling is perturbed in cancer cells, indicating that upregulation of rRNA synthesis is mandatory for all tumors. Though the emerging picture of transcriptional regulation reveals an unexpected level of complexity, we are beginning to understand the multiple links between rRNA biogenesis and cancer. In this review, we discuss experimental data and potential strategies to downregulate rRNA synthesis and induce an antiproliferative response in cancer cells.
To investigate the protective effect of bilberry extracts (BBE) and enzymatically modified isoquercitrin (EMIQ) on the hepatocarcinogenic process involving oxidative stress responses, we used a two-stage hepatocarcinogenesis model in N-diethylnitrosamine-initiated and piperonyl butox
eight:700;'>toxide (PBO)-promoted rats. We examined the modifying effect of co-administration with BBE or EMIQ on the liver tissue environment including oxidative stress responses, cell proliferation and apoptosis, and phosphatase and tensin homolog (PTEN)/Akt and transforming growth factor (TGF)-ß/Smad signalings on the induction mechanism of preneoplastic lesions during early stages of hepatocellular tumor promotion. PBO increased the numbers and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of Ki-67(+) proliferating cells within GST-P(+) foci. Co-administration of BBE or EMIQ suppressed these effects with the reductions of GST-P(+) foci (area) to 48.9-49.4% and Ki-67(+) cells to 55.5-61.4% of the PBO-promoted cases. Neither BBE nor EMIQ decreased microsomal reactive oxygen species induced by PBO. However, only EMIQ suppressed the level of thiobarbituric acid-reactive substances to 78.4% of the PBO-promoted cases. PBO increased the incidences of phospho-PTEN(-) foci, phospho-Akt substrate(+) foci, phospho-Smad3(-) foci and Smad4(-) foci in GST-P(+) foci. Both BBE and EMIQ decreased the incidences of phospho-PTEN(-) foci in GST-P(+) foci to 59.8-72.2% and Smad4(-) foci to 62.4-71.5% of the PBO-promoted cases, and BBE also suppressed the incidence of phospho-Akt substrate(+) foci in GST-P(+) foci to 75.2-75.7% of the PBO-promoted cases. These results suggest that PBO-induced tumor promotion involves facilitation of PTEN/Akt and disruptive TGF-ß/Smad signalings without relation to oxidative stress responses, but this promotion was suppressed by co-treatment with BBE or EMIQ through suppression of cell proliferation activity of preneoplastic liver cells.
Chung JW, etal., Environ Toxicol Pharmacol. 2011 Jan;31(1):153-9. doi: 10.1016/j.etap.2010.10.002. Epub 2010 Oct 16.
Since hypoxia-inducible factor-1alpha (HIF-1alpha) is the key transcription factor that enables cells to survive in hypoxia, we have investigated whether an upregulation of HIF-1alpha prevents the noise-induced hearing loss in BALB/c hybrid mice, which were intraperitoneally injected with CoCl(2) (
a HIF-1alpha inducer) and exposed to white band noise with 120 dB peak equivalent sound pressure level for 3h once daily for 3 days. In the CoCl(2) treatment group, HIF-1alpha was found to be up-regulated in the cochlear tissues and the hearing loss was largely prevented. Histologically, the loss of sensory hair cells was also significantly lower in the CoCl(2) treatment group than the Control group. However, YC-1 (a HIF-1alpha inhibitor) attenuated the preventive effect of CoCl(2) on the noise-induced hearing loss. These results suggest that HIF-1alpha plays a crucial role in the prevention against noise trauma in the inner ear.
Togashi Y, etal., Exp Toxicol Pathol. 2013 Nov;65(7-8):1137-43. doi: 10.1016/j.etp.2013.05.005. Epub 2013 Jun 21.
The usefulness of urinary cystatin C for the early detection of renal damage in anti-glomerular basement membrane (GBM) glomerulonephritis rats was investigated and compared to other biomarkers (beta2-microglobulin, calbindin, clusterin, epidermal growth factor (EGF), alpha-glutathione S-transferas
e (GST-alpha), mu-glutathione S-transferase (GST-mu), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin, tissue inhibitor of metalloprotease-1 (TIMP-1), and vascular endothelial growth factor (VEGF)). Urinary levels of cystatin C increased in anti-GBM glomerulonephritis rats, whereas the conventional markers, plasma creatinine and UN did not, demonstrating its usefulness for the early detection of renal damage associated with anti-GBM glomerulonephritis. As well as cystatin C, urinary beta2-microglobulin, clusterin, GST-alpha, GST-mu, KIM-1, and NGAL also had the potential to detect renal damage associated with anti-GBM glomerulonephritis. Furthermore, the immunohistochemical localization of cystatin C in the kidney was examined. Cystatin C expression was mainly observed in the proximal renal tubules in anti-GBM glomerulonephritis rats, and its expression barely changed with the progression of glomerulonephritis. Cystatin C expression was also observed in the tubular lumen of the cortex and medulla when glomerulonephritis was marked, which was considered to be characteristic of renal damage. In conclusion, urinary cystatin C, beta2-microglobulin, clusterin, GST-alpha, GST-mu, KIM-1, and NGAL could be useful biomarkers of renal damage in anti-GBM glomerulonephritis rats. Immunohistochemical cystatin C expression in the proximal renal tubules was barely changed by the progression of glomerulonephritis, but it was newly observed in the tubular lumen when renal damage was apparent.