Lim K, etal., Biochem Biophys Res Commun. 2015 Dec 4-11;468(1-2):349-53. doi: 10.1016/j.bbrc.2015.10.096. Epub 2015 Oct 22.
Glycolysis, the primary pathway metabolizing glucose for energy production, is connected to the hexosamine biosynthetic pathway (HBP) which produces UDP-N-acetylglucosamine (UDP-GlcNAc), a GlcNAc donor for O-linked GlcNAc modification (O-GlcNAc), as well as for traditional elongated glycosylation. T
hus, glycolysis and O-GlcNAc are intimately associated. The present study reports the transcriptional activation of glycolytic genes by the transcription factor Sp1 and the O-GlcNAc-mediated suppression of Sp1-dependent activation of glycolytic genes. O-GlcNAc-deficient mutant Sp1 stimulated the transcription of nine glycolytic genes and cellular production of pyruvate, the final product of glycolysis, to a greater extent than wild-type Sp1. Consistently, this mutant Sp1 increased the protein levels of the two key glycolytic enzymes, phosphofructokinase (PFK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), to a greater extent than wild-type Sp1. Finally, the mutant Sp1 occupied GC-rich elements on PFK and GAPDH promoters more efficiently than wild-type Sp1. These results suggest that O-GlcNAcylation of Sp1 suppresses Sp1-mediated activation of glycolytic gene transcription.
Takahara T, etal., Biochem Biophys Res Commun 2002 Oct 18;298(1):156-62.
trans-Splicing is the biological reaction that generates a mature mRNA from separate strands of pre-mRNAs. Previously, we reported that the trans-splicing between the two Sp1 pre-mRNA strands produced an mRNA with the exon 3-2-3 alignment in human HepG2 cells. H
ere we describe the rat counterpart as well as a newly identified variant with the exon 3-3 alignment in cultured rat cells. A qualitative evaluation of such alignments in poly(A)(+) RNA-rich preparation showed that both alignments arose from trans-splicing rather than circularization of a single strand. The identification of the trans-spliced products in both rat and human raises the possibility that trans-splicing on Sp1 pre-mRNA is rather common to mammals. It was observed that the level of the trans-spliced variants varies in different rat organs.
Wang R, etal., J Mol Neurosci. 2012 Jun;47(2):311-21. doi: 10.1007/s12031-012-9739-z. Epub 2012 Mar 8.
Huntington's disease (HD) is a hereditary neurodegenerative disorder resulting from the expansion of a polyglutamine tract in the huntingtin protein. The expansion of cytosine-adenine-guanine repeats results in neuronal loss in the striatum and cortex. Mutant huntingtin (HTT) may cause toxicity via
a range of different mechanisms. Recent studies indicate that impairment of wild-type HTT function may also contribute to HD pathogenesis. However, the mechanisms regulating HTT expression have not been well defined. In this study, we cloned 1,795 bp of the 5' flanking region of the human huntingtin gene (htt) and identified a 106-bp fragment containing the transcription start site as the minimal region necessary for promoter activity. Sequence analysis reveals several putative regulatory elements including Sp1, NF-κB, HIF, CREB, NRSF, P53, YY1, AP1, and STAT in the huntingtin promoter. We found functional Sp1 response elements in the huntingtin promoter region. The expression of Sp1 enhanced huntingtin gene transcription and the inhibition of Sp1-mediated transcriptional activation reduced huntingtin gene expression. These results suggest that Sp1 plays an important role in the regulation of the human huntingtin gene expression at the mRNA and protein levels. Our study suggests that the dysregulation of Sp1-mediated huntingtin transcription, combining with mutant huntingtin's detrimental effect on other Sp1-mediated downstream gene function, may contribute to the pathogenesis of HD.
Teunissen BE, etal., Biochem Biophys Res Commun 2002 Mar 22;292(1):71-8.
The rat gap junction protein connexin40 (rCx40) has a characteristic developmental and regional expression pattern, for which the exact regulatory mechanisms are not known. To identify the molecular factors controlling Cx40 expression, its proximal promoter was characterized. The proximal rCx40 prom
oter is the most conserved noncoding region within the Cx40-gene known thus far and contains five potential binding sites for Sp-family transcription factors. The binding of both Sp1 and Sp3 to each of these DNA elements was demonstrated by EMSA. Luciferase assays of the natural rCx40 proximal promoter or mutated derivatives in Cx40-expressing (NCM, primary rat neonatal cardiomyocytes and A7r5, rat smooth muscle embryonic thoracic aorta cells) and -nonexpressing cells (N2A, mouse neuroblastoma cells) revealed that all sites are contributing to basal promoter activity. Trans-activation assays in Drosophila Schneider line 2 cells demonstrated that Sp1 and Sp3 activate the rCx40 proximal promoter in a dose-dependent and additive manner.
Wang J and Song W, Mol Brain. 2016 Mar 22;9:33. doi: 10.1186/s13041-016-0215-5.
BACKGROUND: The dopaminergic neurodegeneration in the nigrostriatal pathway is a prominent neuropathological feature of Parkinson's disease (PD). Mutations in various genes have been linked to familial PD, and leucine-rich repeat kinase 2 (LRRK2) gene is one of them. LRRK2 is a large complex protei
n, belonging to the ROCO family of proteins. Recent studies suggest that the level of LRRK2 protein is one of the contributing factors to PD pathogenesis. However, it remains elusive how LRRK2 is regulated at the transcriptional and translational level. RESULTS: In this study, we cloned a 1738 bp 5'-flanking region of the human LRRK2 gene. The transcriptional start site (TSS) was located to 135 bp upstream of translational start site and the fragment -118 to +133 bp had the minimum promoter activity required for transcription. There were two functional Sp1- responsive elements on the human LRRK2 gene promoter revealed by electrophoretic mobility shift assay (EMSA). Sp1 overexpression promoted LRRK2 transcription and translation in the cellular model. On the contrary, application of mithramycin A inhibited LRRK2 transcriptional and translational activities. CONCLUSION: This is the first study indicating that Sp1 signaling plays an important role in the regulation of human LRRK2 gene expression. It suggests that controlling LRRK2 level by manipulating Sp1 signaling may be beneficial to attenuate PD-related neuropathology.
Lei N and Heckert LL, Biol Reprod 2002 Mar;66(3):675-84.
Dmrt1 is a recently described gene that is specifically expressed in the gonads and is required for postnatal testis differentiation. Here, we describe the transcriptional mechanisms regulating the Dmrt1 proximal promoter in testicular Sertoli cells. A genomic clone containing exon 1 of the rat Dmrt
1 gene and more than 9 kilobases of 5' flanking sequence was isolated and characterized. Several prominent transcriptional start sites were identified, with the major site located 102 bases from the translational start. The Dmrt1 5' flanking region from -5000 to +74 was transcriptionally active in primary Sertoli cells, and deletion analysis of this fragment identified 2 major regions needed for full Dmrt1 promoter function. These regions were located between -3200 and -2000 base pairs (bp) and downstream of -150 bp relative to the major transcriptional start site. DNase I footprint analysis of the region downstream of -150 bp revealed 3 regions that are bound by proteins from Sertoli cell nuclear extracts. Site-directed mutagenesis of these regions identified 2 elements that activate the Dmrt1 promoter and 2 that repress it. The positive elements bind the transcription factors Sp1, Sp3, and Egr1, suggesting that these transcription factors play a critical role in Dmrt1 regulation in the testis.
Cheng F, etal., Brain. 2022 Nov 21;145(11):3968-3984. doi: 10.1093/brain/awac001.
DYT6 dystonia is caused by mutations in the transcription factor THAP1. THAP1 knock-out or knock-in mouse models revealed complex gene expression changes, which are potentially responsible for the pathogenesis of DYT6 dystonia. However, how THAP1 mutations lead to these gene expression alterations a
nd whether the gene expression changes are also reflected in the brain of THAP1 patients are still unclear. In this study we used epigenetic and transcriptomic approaches combined with multiple model systems [THAP1 patients' frontal cortex, THAP1 patients' induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic neurons, THAP1 heterozygous knock-out rat model, and THAP1 heterozygous knock-out SH-SY5Y cell lines] to uncover a novel function of THAP1 and the potential pathogenesis of DYT6 dystonia. We observed that THAP1 targeted only a minority of differentially expressed genes caused by its mutation. THAP1 mutations lead to dysregulation of genes mainly through regulation of SP1 family members, SP1 and SP4, in a cell type dependent manner. Comparing global differentially expressed genes detected in THAP1 patients' iPSC-derived midbrain dopaminergic neurons and THAP1 heterozygous knock-out rat striatum, we observed many common dysregulated genes and 61 of them were involved in dystonic syndrome-related pathways, like synaptic transmission, nervous system development, and locomotor behaviour. Further behavioural and electrophysiological studies confirmed the involvement of these pathways in THAP1 knock-out rats. Taken together, our study characterized the function of THAP1 and contributes to the understanding of the pathogenesis of primary dystonia in humans and rats. As SP1 family members were dysregulated in some neurodegenerative diseases, our data may link THAP1 dystonia to multiple neurological diseases and may thus provide common treatment targets.
Promyelocytic leukemia nuclear bodies (PML NBs) are comprised of PML and a striking variety of its associated proteins. Various cellular functions have been attributed to PML NBs, including the regulation of gene expression. We report here that induced expression of PML recruits Sp1
ight:700;'>Sp1 into PML NBs, leading to the reduction of Sp1 transactivation function. Specifically, Chromatin immunoprecipitation (ChIP) assay demonstrated that induced expression of PML significantly diminishes the amount of Sp1 binding to its target gene promoter, immunofluorescence staining showed dramatic increase in the co-localization between PML and Sp1 upon induction of PML expression, moreover, PML and Sp1 co-fractionated in the core nuclear matrix. Our study further showed that PML promotes SUMOylation of Sp1 in a RING-motif-dependent manner, SUMOylation of Sp1 facilitates physical interaction between Sp1 and PML and recruitment of Sp1 into the PML NBs, the SUMO binding motif of PML was also important for its interaction with Sp1. The results of this study demonstrate a novel mechanism by which PML regulates gene expression through sequestration of the transcription factor into PML NBs.
CD147 is a novel cancer biomarker that has been confirmed to be overexpressed in ovarian carcinoma, which is significantly associated with poor prognosis. Although the Sp1 protein regulates the expression level of CD147, it remains unclear whether Sp1
font-weight:700;'>Sp1 phosphorylation plays a role in this regulation. A dual-luciferase assay revealed that T453 and T739 mutations decreased the activity of Sp1 binding to the promoter of CD147, followed by a decrease in CD147 mRNA and protein expression. Western blot analysis showed that CD147 promoted Sp1 phosphorylation at T453 and T739 through the PI3K/AKT and MAPK/ERK pathways. In addition, blocking the Sp1-CD147 positive feedback loop reduced the invasion ability of HO-8910pm cells. Immunohistochemical staining showed that the components of the feedback loop were overexpressed in ovarian cancer tissues. The correlation analysis revealed a significant correlation between phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels, with correlation coefficients of r=0.477 and r=0.461, respectively. Collectively, our results suggest that a Sp1-CD147 positive feedback loop plays a critical role in the invasion ability of ovarian cancer cells.
Li S, etal., J Cancer Res Clin Oncol. 2015 Nov;141(11):1909-20. doi: 10.1007/s00432-015-1951-0. Epub 2015 Mar 16.
BACKGROUND: MALAT1 was discovered as a prognostic marker for lung cancer metastasis and has been found upregulated in many types of tumor, but its transcriptional regulation mechanism in tumors remains unclear. METHODS: A deletion analysis of MALAT1 promoter region was performed to find the cis elem
ents that were critical for the transcriptional activation of MALAT1 gene. Reporter gene assays were employed to analyze the effect of Sp1 on the promoter activity of MALAT1 gene. The binding activity of Sp1 with the promoter of MALAT1 gene was examined by EMSA and ChIP assay. Effects of Sp1 on regulation of MALAT1 were analyzed by RNA interference in vitro and in vivo mouse model. RESULTS: By means of luciferase assay, Sp1 was found to activate the promoter of the human MALAT1 gene. The binding of Sp1 to this region was also detected by electrophoretic mobility shift and chromatin immunoprecipitation assays. Sp1 knockdown also decreased the MALAT1 and inhibited A549 lung cancer cells' growth and invasion in vitro. Furthermore, knockdown of Sp1 also mimicked the inhibition of MALAT1 in A549 lung cancer cells' growth and metastasis in vivo. CONCLUSIONS: Taken together, our data suggest that upregulation of MALAT1 was mediated by the transcription factor Sp1 in A549 lung cancer cells, and Sp1 could be therapeutic target for cancer.
Tan Y, etal., Oncotarget. 2015 Jul 10;6(19):17391-403.
Cancer treatment alters microRNA (miRNA) expression, revealing potential therapeutic targets (oncotarget). Here we treated pancreatic cancer (ASPC-1) cells with either recombinant human endostatin (rh-endostatin) or gemcitabine. Then high-throughput sequencing assay was performed to screen for alter
ed miRNAs. Both treatments decreased levels of MiR-19a. We found that miR-19a stimulated cell proliferation, migration, invasion in vitro and tumor growth in vivo. High levels of miR-19a correlated with poor prognosis in patients. Ras homolog family member B (RHOB) was identified as a direct target of miR-19a. Furthermore, RHOB was down-regulated in human pancreatic cancer samples. Restoration of RHOB induced apoptosis, inhibited proliferation and migration of ASPC-1 cells. SP-1 was identified as an upstream transcription factor of miR-19a gene, promoting miR-19a transcription. Rh-endostatin decreased miR-19a expression by down-regulating SP-1. These findings suggest that miR-19a is a potential therapeutic target in pancreatic cancer.
Satomi S, etal., Biochem Biophys Res Commun 2001 Oct 5;287(4):995-1002.
Membrane type-serine protease 1 (MT-SP1) plays potential roles in the process of invasion and metastasis of carcinomas. In the present study, we cloned a rat MT-SP1 cDNA and investigated the intestinal distribution and prote
olytic properties of the enzyme. By in situ hybridization we found the prominent expression of the mRNA in the epithelial layer of the small intestinal upper villi and of the colon, where cells are loosely attached to the basement membrane. When MT-SP1 was expressed in Caco-2, a colonic carcinoma cell line, the protein was localized exclusively on the basolateral side. A secreted form of the enzyme produced in COS-1 cells digested fibronectin and laminin. These findings suggest that MT-SP1 participates in the control of intestinal epithelial turnover by regulating the cell-substratum adhesion.
Fulciniti M, etal., Blood Cancer J. 2016 Jan 15;6:e380. doi: 10.1038/bcj.2015.106.
Deregulated microRNA (miR)/transcription factor (TF)-based networks represent a hallmark of cancer. We report here a novel c-Myc/miR-23b/Sp1 feed-forward loop with a critical role in multiple myeloma (MM) and Waldenstrom's macroglobulinemia (WM) cell growth and
survival. We have found miR-23b to be downregulated in MM and WM cells especially in the presence of components of the tumor bone marrow milieu. Promoter methylation is one mechanism of miR-23b suppression in myeloma. In gain-of-function studies using miR-23b mimics-transfected or in miR-23b-stably expressing MM and WM cell lines, we observed a significant decrease in cell proliferation and survival, along with induction of caspase-3/7 activity over time, thus supporting a tumor suppressor role for miR-23b. At the molecular level, miR-23b targeted Sp1 3'UTR and significantly reduced Sp1-driven nuclear factor-kappaB activity. Finally, c-Myc, an important oncogenic transcription factor known to stimulate MM cell proliferation, transcriptionally repressed miR-23b. Thus MYC-dependent miR-23b repression in myeloma cells may promote activation of oncogenic Sp1-mediated signaling, representing the first feed-forward loop with critical growth and survival role in myeloma.
Beketaev I, etal., Dev Dyn. 2016 Mar;245(3):379-87. doi: 10.1002/dvdy.24349. Epub 2015 Nov 3.
BACKGROUND: Mesp1 is critical for early cardiomyocyte differentiation and heart development. We previously observed down-regulation of Mesp1 expression in YY1-ablated mouse embryonic hearts. However, how Mesp1
weight:700;'>sp1 expression is mediated by YY1 is not well understood. RESULTS: We excised YY1 in the murine embryos using Sox2-cre and found that Mesp1 was down-regulated in the embryonic day (E) 7.5 mutant embryos. Also, YY1 activated the 6 kb Mesp1 regulatory element fused to a luciferase reporter. We identified two putative YY1 binding sites in the proximal promoter region of Mesp1 gene, and found that mutation of these sites significantly reduced YY1-induced activation of the Mesp1 promoter. We also uncovered one cognitive site for SP1, one of the earliest binding partners of YY1 identified. Mutation of this SP1 site repressed SP1-induced activation of the Mesp1 promoter. Moreover, YY1 and SP1 synergistically activated the Mesp1 promoter. Consistently, while Lacz expression driven by the wild-type 6 kb regulatory element of Mesp1 gene was robust in E7.5 mouse embryos, the mutation of these binding sites in the context of this 6 kb sequence substantially reduced the LacZ expression during embryogenesis. CONCLUSIONS: YY1 and SP1 independently and cooperatively govern the Mesp1 expression during embryogenesis. Developmental Dynamics 245:379-387, 2016. (c) 2015 Wiley Periodicals, Inc.
The regulation of the rat fatty acid synthase gene by mediators such as diet, hormones, cAMP, sterols or retinoic acid is controlled by three NF-Y binding sites. All three sites have a neighbouring Sp1-binding GC-box. This NF-Y/Sp1
motif is conserved in the FAS promoters of rat, human, goose and chicken. We have previously shown cooperative binding of NF-Y and Sp1 to the promoter region at -500 coincident with a diet-induced DNAse I-hypersensitive site. Here, we show an in-vivo interaction of NF-YA with Sp1 using the yeast two-hybrid system. The interacting domains are located between amino acids 55 and 139 of the NF-Y subunit NF-YA and between amino acids 139 and 344 of Sp1. In addition, we show by co-immunoprecipitation direct interaction of NF-Y subunit NF-YA with Sp1 in extracts of rat hepatoma cells H4IIE. Furthermore, we demonstrate by the GST pull-down assay that NF-YA interacts physically with Sp1 in-vitro in the absence of DNA. Therefore, NF-Y can be added to the list of transcription factors interacting with Sp1.
Han B, etal., J Biol Chem 2001 Mar 16;276(11):7937-42.
MRG1 (melanocyte-specific gene 1 (MSG1)-related gene), a ubiquitously expressed transcription factor that interacts with p300/CBP, TATA-binding protein and Lhx2, is the founding member of a new family of transcription factors. Initial characterization of this newly discovered transcription factor ha
s underscored its potential involvement in many important cellular processes through transcriptional modulation. We previously demonstrated that MRG1 can be induced by various biological stimuli (Sun, H. B., Zhu, Y. X., Yin, T., Sledge, G., and Yang, Y. C. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13555-13560). As a first step in understanding its role in different biological processes, we investigated mechanisms that regulate transcription of the mouse MRG1 gene in fibroblasts. Transient transfection of Rat1 fibroblast cells with sequential 5'-deletions of mouse MRG1 promoter-luciferase fusion constructs indicated that the -104 to +121 region contains the full promoter activity. Deletion and site-directed mutations within this region revealed that the Ets-1 site at -97 to -94 and the Sp1 site at -51 to -46 are critical for MRG1 expression in fibroblasts. Gel mobility shift and supershift assays performed with Rat1 nuclear extracts identified nucleoprotein complexes binding to the Ets-1 site and the Sp1 site. In Drosophila SL2 cells, which lack the Sp and Ets family of transcription factors, expression of Sp1, Sp3, and Ets-1 or Elf-1 functionally stimulated MRG1 promoter activity in a synergistic manner. These results suggest that multiple transcription factors acting in synergy are responsible for MRG1 expression and the responsiveness of cells to different biological stimuli.
The pattern of factors binding to either the Sp1-consensus sequence or to the octamer sequence during in vitro rat lens fibre cell differentiation has been examined by electrophoretic mobility shift assays. With the Sp1-cons
ensus sequence as probe, two major and four minor bands were seen. Three bands were present at all stages of differentiation, two are lost during terminal differentiation and one is present only in late differentiating cells. The octamer probe yielded three bands, which co-migrate with Oct2, Oct3 and Oct7. The exact identity of these factors has not been established. The Oct3-like band was detected only in epithelial cell extracts, the other two bands were also found in fibre cell extracts, whereby the intensity of the Oct2-like band decreased relative to that of the Oct7-like band during differentiation. In transfection studies, a rat gamma D-crystallin promoter in which the proximal activator has been replaced by a dimer of the Sp1-consensus sequence showed a gradual increase in activity with differentiation, in contrast, a similar construct with an octamer dimer was active only during late differentiation and mimicked the pattern of activation of the parental gamma D-crystallin promoter.
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), also known as nuclear-enriched transcript 2 (NEAT2), is highly conserved among mammals and highly expressed in the nucleus. It was first identified in lung cancer as a prognostic marker for metastasis but i
s also associated with several other solid tumors. In hepatocellular carcinoma (HCC), MALAT1 is a novel biomarker for predicting tumor recurrence after liver transplantation. The mechanism of overexpression in tumor progression remains unclear. In the present study, we investigated the role of specificity protein 1/3 (Sp1/3) in regulation of MALAT1 transcription in HCC cells. The results showed a high expression of Sp1, Sp3 and MALAT1 in HCC vs. paired non-tumor liver tissues, which was associated with the AFP level (Sp1, r=7.44, P=0.0064; MALAT1, r=12.37, P=0.0004). Co-silencing of Sp1 and Sp3 synergistically repressed MALAT1 expression. Sp1 binding inhibitor, mithramycin A (MIT), also inhibited MALAT1 expression in HCC cells. In conclusion, the upstream of MALAT1 contains five Sp1/3 binding sites, which may be responsible for MALAT1 transcription. Inhibitors, such as MIT, provide a potential therapeutic strategy for HCC patients with MALAT1 overexpression.
Guzeloglu-Kayisli O, etal., Pediatr Int. 2008 Aug;50(4):474-6. doi: 10.1111/j.1442-200X.2008.02609.x.
BACKGROUND: beta-Thalassemia is an autosomal recessive disease characterized by defective beta-globin chain production. Osteoporosis is an important cause of morbidity in patients with beta-thalassemia major. The pathogenesis of reduced bone mineral density (BMD) is multifactorial. A range of geneti
cs factors have been implicated in other populations of patients with osteoporosis. Polymorphism at the Sp1 binding site of the collagen type I A1 (COLIA1) gene is thought to be an important factor in the development of osteoporosis. METHODS: Alleles S and s, detected by presence of a G or T nucleotide, respectively in a regulatory site of the COLIA1 gene were investigated in 37 beta-thalassemia major patients with osteoporosis and 92 controls without osteoporosis or osteopenia using polymerase chain reaction-restriction fragment length polymorphism. RESULTS: Fifteen and nine beta-thalassemia major patients displayed SS and Ss genotypes, respectively, whereas 13 were found to have an ss genotype. The mean BMD of the beta-thalassemia major patients with ss genotype was similar to those with the Ss and SS genotypes. In the control group, 77 and 15 subjects had SS and Ss genotypes, respectively, with no ss genotype. Allelic and genotypic distribution in patients were significantly different from controls. CONCLUSION: Determining base substitutions at the Sp1 binding site on the COLIA1 gene in early years may be important in preventing osteoporosis in children with beta-thalassemia major.
Hsu YA, etal., Cancer Lett. 2016 Jun 1;375(2):303-12. doi: 10.1016/j.canlet.2016.02.047. Epub 2016 Mar 2.
Type I IFN-induced STAT6 has been shown to have anti-proliferative effects in Daudi and B cells. IFN-sensitive (DS) and IFN-resistant (DR) subclones of Daudi cells were used to study the role of STAT6 in the anti-proliferative activities. Type I IFN significantly increased STAT6 mRNA and protein ex
pression in DS but not DR cells. STAT6 knockdown significantly reduced the sensitivity to IFN in both cell lines. The molecular targets and functional importance of IFN-activated STAT6 were performed by chromatin immunoprecipitation-on-chip (ChIP-on-chip) experiments in type I IFN-treated Daudi cells. Two target genes (Sp1 and BCL6) were selected from the ChIP-on-chip data. IFN-induced STAT6 activation led to Sp1 upregulation and BCL6 downregulation in DS cells, with only minimal effects in DR cells. siRNA inhibition of STAT6 expression resulted in decreased Sp1 and BCL6 mRNA and protein levels in both DS and DR cells. IFN treatment did not increase Sp1 and BCL6 expression in a STAT2-deficient RST2 cell line, and this effect was mitigated by plasmid overexpression of STAT2, indicating that STAT2 is important for STAT6 activation. These results suggest that STAT6 plays an important role in regulating Sp1 and BCL6 through STAT2 to exert the anti-proliferative effects of type I IFN.
Ebert SN and Wong DL, J Biol Chem 1995 Jul 21;270(29):17299-305.
The rat phenylethanolamine N-methyltransferase (PNMT) gene contains overlapping consensus elements for the Sp1 and Egr-1 transcription factors located at -45 bp and -165 bp in the PNMT promoter. In the present study, we show that Sp1
p1 and Egr-1 can specifically bind to these overlapping elements, that this binding appears to be mutually exclusive, and that binding site occupancy is dependent upon the concentration of each factor and its binding affinity for each site. Egr-1 binds to the -165 bp site with relatively high affinity (IC50 = 14 nM) and to the -45 bp site with relatively low affinity (IC50 = 1360 nM), whereas Sp1 binds to both sites with intermediate affinities (IC50 = 210 and 140 nM, respectively). Consistent with the DNA-binding data, Egr-1 stimulates PNMT promoter activity primarily through interaction with the -165 bp site, while Sp1 stimulates PNMT promoter activity by interacting with both the -45 bp and the -165 bp sites. These results show that Sp1 and Egr-1 are capable of differentially activating PNMT gene expression, thereby suggesting that different stimuli may control the activity of the PNMT gene by selectively regulating Sp1 and/or Egr-1.
Turrini F, etal., Retrovirology. 2015 Dec 18;12:104. doi: 10.1186/s12977-015-0230-0.
BACKGROUND: Intracellular defense proteins, also referred to as restriction factors, are capable of interfering with different steps of the viral life cycle. Among these, we have shown that Tripartite motif 22 (TRIM22) suppresses basal as well as phorbol ester-induced HIV-1 long terminal repeat (LT
R)-mediated transcription, independently of its E3 ubiquitin ligase activity, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) binding to the U3 region and Tat interaction with the TAR region of the HIV-1 LTR. As basal HIV-1 transcription is driven by the transcription factor specificity protein 1 (Sp1), we have investigated whether TRIM22 could interfere with Sp1-driven transcriptional activation of the HIV-1 LTR. FINDINGS: 293T cells, devoid of endogenous TRIM22 expression, were transfected with a TRIM22-expressing plasmid together with reporter plasmids driven by the HIV-1 LTR promoter either containing or lacking Sp1 binding sites or with reporter plasmids driven by non-viral promoter sequences either containing or lacking the three Sp1 binding sites from the HIV-1 LTR. These reporter assays showed that TRIM22 efficiently inhibited Sp1-driven transcription. Knocking down TRIM22 expression in the CD4(+) SupT1 T cell line increased the replication of Sp1-dependent HIV-1 variants. TRIM22 did not interact with Sp1, but prevented binding of Sp1 to the HIV-1 promoter, as demonstrated in protein-DNA pull down and chromatin immunoprecipitation assays. CONCLUSION: TRIM22 acts as a suppressor of basal HIV-1 LTR-driven transcription by preventing Sp1 binding to the HIV-1 promoter.
The aim of this study was to investigate co-expression of HER-2 and Sp1 in gastric cancer (GC) so as to determine whether these two proteins may be correlated with poor prognosis of GC patients. We examined the HER-2 overexpression and amplification and expressi
on levels of Sp1 in 227 GC patients using immune-histochemical staining and fluorescence in situ hybridization. Data on clinicopathological features and relevant prognostic factors in these patients were analyzed. Of the 227 gastric cancer samples, 11.89% were positive for HER-2 overexpression/amplification under the new scoring system, and the frequency of negative, weak positive and strong positive expression of Sp1 was 14.98%, 48.01% and 37.0% respectively. No statistically positive correlation was observed between the expression levels of HER-2 and Sp1 in GC tissues. HER-2 overexpression was closely correlated to the Lauren type, degree of differentiation, tumor size and lymph node metastasis, and Sp1 as well (P < 0.05). Overexpression of HER-2 and Sp1 predicted poor survival in univariate analysis as well as in a Cox proportional hazards model.
Wang G, etal., Endocrinology 2004 Feb;145(2):659-66. Epub 2003 Oct 30.
Studies in rodents demonstrate that the mitogen, IGF-I, stimulates intestinal peptide YY (PYY) expression. To investigate whether the stimulatory influence of IGF-I is exerted at the level of gene transcription, rat PYY 5'-upstream sequences (-2800/+37 bp, -770/+37 bp, -127/+37 bp) fused to the fire
fly luciferase (luc) reporter gene were transfected into rat pheochromocytoma cells (PC12) and luc activity measured after IGF-I treatment. IGF-I increased transcriptional activity of all constructs similarly; the PYY (-127/+37 bp)-luc construct was used in subsequent experiments. IGF-I increased PYY (-127/+37 bp)-luc activity in a time- and dose-dependent fashion. Sequence analysis detected five putative Sp1 binding sites in the -127/+37-bp sequence. EMSA and supershift experiments using two oligonucleotide fragments of the -127/+37 region showed that Sp1 and Sp3 proteins bound to putative Sp1 sites. Overexpression of Sp1 greatly increased PYY (-127/+37 bp)-luc activity and site-directed mutagenesis of putative Sp1 binding sites decreased basal and IGF-I-induced elevations in PYY (-127/+37 bp)-luc activity. IGF-I treatment also increased Sp1 protein levels and binding activity. Blockade of the IGF-I receptor (IGF-IR) with an IGF-IR antibody decreased the stimulatory influence of IGF-I on Sp1 protein levels and PYY (-127/+37 bp)-luc activity. Together, these findings indicate that IGF-I functions as a positive regulator of PYY gene expression and that the stimulatory effect may be mediated by Sp1 proteins that bind to the proximal PYY promoter region.
One mechanism by which normal cells become converted to tumor cells involves the aberrant transcriptional activation of genes that are normally silent. We characterize a promoter that normally exhibits highly tissue- and stage-specific expression but displays ubiquitous expression when cells become
immortalized or malignant, regardless of their lineage or tissue origin. This promoter normally drives the expression of the Pem homeobox gene in specific cell types in ovary and placenta but is aberrantly expressed in lymphomas, neuroblastomas, retinoblastomas, carcinomas, and sarcomas. By deletion analysis we identified a region between nucleotides -80 and -104 that was absolutely critical for the expression from this distal Pem promoter (Pem Pd). Site-specific mutagenesis and transfection studies revealed that this region contains two consensus Ets sites and a single Sp1 site that were necessary for Pem Pd expression. Gel shift analysis showed that Ets and Sp1 family members bound to these sites. Transfection studies demonstrated that the Ets family members Elf1 and Gabp and the Sp1 family members Sp1 and Sp3 transactivated the Pem Pd. Surprisingly, we found that Sp3 was a more potent activator of the Pem Pd than was Sp1; this is unusual, because Sp3 is either a weak activator or a repressor of most other promoters. Activation by either Elf1 or Gabp required an intact Sp1 family member binding site, suggesting that Ets and Sp1 family members cooperate to activate Pem Pd transcription. Expression from the Pem Pd (either transiently transfected or endogenous) depended on the Ras pathway, which could explain both its Ets- and Sp1-dependent expression in normal cells and its aberrant expression in tumor cells, in which ras protooncogenes are frequently mutated. We suggest that the Pem Pd may be a useful model system to understand the molecular mechanism by which a tissue-specific promoter can be corrupted in tumor cells.
Neuropeptide cholecystokinin (CCK) and the CCK receptors in the central nervous system mediate actions on increasing firings, anxiety, and nociceptions. Furthermore, CCK modulates the release of dopamine and dopamine-related behaviors in the mesolimbic pathway. In our study, genetic variation in the
promoter and coding regions of the prepro-CCK gene were analyzed among 66 Japanese, 66 American Whites, 54 Chinese, and 41 Colombian natives. Two nucleotide sequence variants were found: a frequent mutation at nucleotide position -45 C to T involved in core sequence of Sp1 binding cis-element of the promoter region, and a C to T substitution at the 1662 position in intron 2. Analysis for the segregation study in 10 families of twins confirmed codominant heredity of two alleles. Distribution of genotypes and gene frequencies of 66 controls and 108 alcoholics in Japan presented that allelic variant T type in alcoholics was found in higher frequencies than that of controls, and distribution of these genotypes was significantly different between the both groups.
Bei T, etal., Hormones (Athens). 2008 Jul-Sep;7(3):251-4.
OBJECTIVE: We recently reported the association of the Sp1 site polymorphism of the COL1A1 gene with lumbar disk disease (LDD). In the present study we searched for a different polymorphism of the COL1A1 gene (which is usually not in linkage disequilibrium wit
h the Sp1 site) in subjects with LDD. DESIGN: Blood was collected from 24 Greek army recruits, aged 29+/-7.6 years, with LDD, and 66 healthy men, aged 26+/-4.38 years, matched for body mass index (BMI) and age, with normal BMD and with no history of trauma or fractures, who served as controls. DNA was extracted and the COL1A1 gene was sequenced. Of the control subjects, 12 were army recruits and 54 were selected from the general population. RESULTS: The four base-pair insertion polymorphism in the COL1A1 gene analyzed by polymerase chain reaction amplification of DNA produces two different fragments (alleles A1 and A2): 14 patients (58.3%) were homozygous for A2A2, versus 35 controls (53%), while 3 patients (12.5%) were A1A1, and 8 of the control subjects (12%) had this genotype. There were no statistically significant differences in the presence of the two alleles of this polymorphism between patients with LDD and control subjects. CONCLUSIONS: A four base-pair insertion polymorphism of the COL1A1 gene is not associated with the presence of LDD in young males, unlike the Sp1 site polymorphism of the same gene. These data reinforce the association between LDD and the functional polymorphisms of the Sp1 site by showing that other polymorphic sites of the of the COL1A1 gene in the same population of patients are not linked to the disease.
Koivisto UM, etal., Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10526-30.
We have identified a Finnish family with a typical phenotype of heterozygous familial hypercholesterolemia (FH) due to a single-base substitution in the proximal Sp1 binding site of the low density lipoprotein (LDL) receptor gene promoter. The mutation, a C-->T
substitution at nucleotide -43, cosegregated with the FH phenotype in six available family members and abolished binding of Sp1 transcription factor to this site. As a consequence, transcriptional activity of the mutated LDL receptor promoter was only about 1/20th of that of the wild-type promoter, as judged by transfection studies in HeLa cells. Studies of primary fibroblast cultures established from a family member revealed a markedly reduced LDL receptor mRNA concentration as well as reduction of binding, internalization, and degradation of 125I-labeled LDL to values < 50% of those in normal fibroblasts. This DNA alteration is thus a naturally occurring promoter mutation causing a severe disorder of human lipoprotein metabolism.
Lan S, etal., Virus Res. 2015 Dec 2;210:133-40. doi: 10.1016/j.virusres.2015.07.026. Epub 2015 Aug 3.
Transcription from the adenovirus major late promoter (MLP) requires binding of late phase-specific factors to the so-called DE element located approximately 100 base pairs downstream of the MLP transcriptional start site. The adenovirus L4-22K protein binds to the DE element and stimulates transcri
ption from the MLP via a DE sequence-dependent mechanism. Here we use a transient expression approach to show that L4-22K binds to an additional site downstream of the MLP start site, the so-called R1 region, which includes the major late first leader 5' splice site. Binding of L4-22K to R1 has a suppressive effect on MLP transcription. L4-22K binds to the distal part of R1 and stimulates the recruitment of Sp1 and other cellular factors to a site overlapping the first leader 5' splice site. Binding of Sp1 to the 5' splice site region had an inhibitory effect on L4-22K-activated MLP transcription.
Wang X, etal., Sci Rep. 2015 Sep 15;5:13542. doi: 10.1038/srep13542.
Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified
the T allele of AHR -129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that -129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with -129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-alpha concentration and diminished serum levels of IL-10 and TGF-beta1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than -129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo.
BACKGROUND: The molecular processes leading to mucosal atrophy, regrowth, and functional changes with starvation and refeeding are largely unknown. There are many transcriptional factors that might be related to mucosal atrophy and proliferation. In contrast, we previously reported that H+/peptide t
ransporter and aminopeptidase N messenger RNA in the intestinal mucosa were upregulated during starvation. Therefore, we selected and studied three transcriptional factors: activator protein (AP)-1, Sp1, and hepatocyte nuclear factor (HNF)-1, which not only play important roles for enterocytes proliferation, but also exist in promoter lesions of the brush border enzymes and peptide transporter. METHODS: In the present study, we performed electrophoretic mobility shift assays employing AP-1, Sp1, and HNF-1, and evaluated the changes in the DNA binding activities in rat jejunum during starvation and refeeding. RESULTS: Two days after starvation, the Sp1 binding activity was significantly decreased to 61.8% as compared with the control level, whereas AP-1 was 121.4% and HNF-1 was 77.5%. Two hours after refeeding, the AP-1 activity was significantly increased to 175.0% as compared with the control level, and the HNF-1 activity was significantly increased to 180.2%. In contrast, the decreased SP1 level did not recover until 24 h after refeeding. CONCLUSIONS: The DNA binding activities of these three transcriptional factors were significantly changed in the rat jejunum during starvation and refeeding. Our results provide insight into the molecular mechanisms of the transcriptional regulations associated with mucosal atrophy, regrowth, and functional changes of the jejunal epithelium in response to starvation and refeeding.
Hay CW, etal., PLoS One. 2015 Oct 8;10(10):e0139990. doi: 10.1371/journal.pone.0139990. eCollection 2015.
Androgen receptor (AR) mediated signalling is necessary for normal development of the prostate gland and also drives prostate cancer (PCa) cell growth and survival, with many studies showing a correlation between increased receptor levels and therapy resistance with progression to fatal castrate rec
urrent PCa (CRPC). Although it has been held for some time that the transcription factor Sp1 is the main stimulator of AR gene transcription, comprehensive knowledge of the regulation of the AR gene remains incomplete. Here we describe and characterise in detail two novel active regulatory elements in the 5'UTR of the human AR gene. Both of these elements contain overlapping binding sites for the positive transcription factor Sp1 and the repressor protein pur-alpha. Aberrant cell signalling is characteristic of PCa and the transcriptional activity of the AR promoter in PCa cells is dependent upon the relative amounts of the two transcription factors. Together with our corroboration of the dominant role of Sp1, the findings support the rationale of targeting this transcription factor to inhibit tumour progression. This should be of particular therapeutic relevance in CRPC where the levels of the repressor pur-alpha are reduced.
Tan NY, etal., Circ Res. 2008 Feb 29;102(4):e38-51. doi: 10.1161/CIRCRESAHA.107.167395. Epub 2008 Feb 7.
Sp1, the first identified and cloned transcription factor, regulates gene expression via multiple mechanisms including direct protein-DNA interactions, protein-protein interactions, chromatin remodeling, and maintenance of methylation-free CpG islands. Sp1
le='font-weight:700;'>Sp1 is itself regulated at different levels, for example, by glycosylation, acetylation, and phosphorylation by kinases such as the atypical protein kinase C-zeta. Although Sp1 controls the basal and inducible regulation of many genes, the posttranslational processes regulating its function and their relevance to pathology are not well understood. Here we have used a variety of approaches to identify 3 amino acids (Thr668, Ser670, and Thr681) in the zinc finger domain of Sp1 that are modified by PKC-zeta and have generated novel anti-peptide antibodies recognizing the PKC-zeta-phosphorylated form of Sp1. Angiotensin II, which activates PKC-zeta phosphorylation (at Thr410) via the angiotensin II type 1 receptor, stimulates Sp1 phosphorylation and increases Sp1 binding to the platelet-derived growth factor-D promoter. All 3 residues in Sp1 (Thr668, Ser670, and Thr681) are required for Sp1-dependent platelet-derived growth factor-D activation in response to angiotensin II. Immunohistochemical analysis revealed that phosphorylated Sp1 is expressed in smooth muscle cells of human atherosclerotic plaques and is dynamically expressed together with platelet-derived growth factor-D in smooth muscle cells of the injured rat carotid artery wall. This study provides new insights into the regulatory mechanisms controlling the PKC-zeta-phospho-Sp1 axis and angiotensin II-inducible gene expression.
Jung YA, etal., Exp Mol Med. 2014 Jan 24;46(1):e73. doi: 10.1038/emm.2013.143.
Hepatic steatosis is common in obese individuals with hyperinsulinemia and is an important hepatic manifestation of metabolic syndrome. Sterol regulatory binding protein-1c (SREBP-1c) is a master regulator of lipogenic gene expression in the liver. Hyperinsulinemia induces transcription of SREBP-1c
via activation of liver X receptor (LXR) and specificity protein 1 (Sp1). Cilostazol is an antiplatelet agent that prevents atherosclerosis and decreases serum triglyceride levels. However, little is known about the effects of cilostazol on hepatic lipogenesis. Here, we examined the role of cilostazol in the regulation of SREBP-1c transcription in the liver. The effects of cilostazol on the expression of SREBP-1c and its target genes in response to insulin or an LXR agonist (T0901317) were examined using real-time RT-PCR and western blot analysis on cultured hepatocytes. To investigate the effect of cilostazol on SREBP-1c at the transcriptional level, transient transfection reporter assays and electrophoretic mobility shift assays (EMSAs) were performed. Cilostazol inhibited insulin-induced and LXR-agonist-induced expression of SREBP-1c and its downstream targets, acetyl-CoA carboxylase and fatty acid synthase, in cultured hepatocytes. Cilostazol also inhibited activation of the SREBP-1c promoter by insulin, T0901317 and Sp1 in a luciferase reporter assay. EMSA analysis showed that cilostazol inhibits SREBP-1c expression by repressing the binding of LXR and Sp1 to the promoter region. These results indicate that cilostazol inhibits insulin-induced hepatic SREBP-1c expression via the inhibition of LXR and Sp1 activity and that cilostazol is a negative regulator of hepatic lipogenesis.
Chi PL, etal., Mol Neurobiol. 2015 Aug;52(1):277-92. doi: 10.1007/s12035-014-8869-4. Epub 2014 Aug 23.
Upregulation of heme oxygenase 1 (HO-1) by carbon monoxide (CO) delivered by CO-releasing molecules (CORMs) may be utilized as a therapeutic intervention for neurodegenerative diseases. This study was to delineate the two putative anti-oxidant response elements (AREs) in modulating HO-1 gene by par
ticipating with its promoter elements in rat brain astrocytes (RBA-1). CORM-2-induced HO-1 expression was mediated through superoxide, p38 mitogen-activated protein kinase(MAPK), extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), protein tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), and phosphatidylinositol 3'-kinase (PI3K/Akt), revealed by the pharmacological inhibitors or knockdown of these signaling molecules. CORM-2-enhanced HO-1 promoter activity was inhibited by co-transfection with small interfering RNA (siRNA) of c-Jun, specificity protein 1 (Sp1), or nuclear factor-erythroid 2-related factor 2 (Nrf2). Immunoprecipitation assay showed that CORM-2 increased the association of nuclear Nrf2 with Sp1 and c-Jun. Furthermore, chromatin immunoprecipitation (ChIP) assay confirmed that Nrf2, Sp1, and c-Jun are associated with the proximal ARE binding site on HO-1 promoter, suggesting that Nrf2/Sp1/c-Jun cooperations are key transcription factors modulating HO-1 expression. Mechanistically, CORM-2-induced ARE promoter activity was reduced by the inhibitors of reactive oxygen species (ROS), p38 MAPK, Pyk2, MAPK/ERK kinases 1 and 2 (MEK1/2), PDGFR, and PI3K/Akt or the siRNAs of c-Jun, SP1, and Nrf2. These findings suggested that CORM-2 increases formation of c-Jun, Sp1, and Nrf2 complex and binding with ARE1 binding site, which is mediated through both ROS/p38 MAPK and Pyk2-dependent PDGFR/PI3K/Akt/Erk1/2 pathways, resulting in HO-1 expression in RBA-1 cells.
Alfonso-Jaume MA, etal., Biochem J. 2004 Jun 15;380(Pt 3):735-47.
The transition of normally quiescent glomerular MCs (mesangial cells) to a highly proliferative phenotype with characteristics of myofibroblasts is a process commonly observed in inflammatory diseases affecting the renal glomerulus, the ultimate result of which is glomerulosclerosis. Generation of p
roteolytically active MMP (matrix metalloproteinase)-2 by the membrane-associated membrane type 1 (MT1)-MMP is responsible for the transition of mesangial cells to the myofibroblast phenotype [Turck, Pollock, Lee, Marti and Lovett (1996) J. Biol. Chem. 271, 15074-15083]. In the present study, we show that the expression of MT1-MMP within the context of MCs is mediated by three discrete cis -acting elements: a proximal non-canonical Sp1 site that preferentially binds Sp1; an overlapping Sp1/Egr-1-binding site that preferentially binds Egr-1; and a more distal binding site for the NFAT (nuclear factor of activated T cells) that binds the NFAT c1 isoform present in MC nuclear extracts. Transfection with an NFAT c1 expression plasmid, or activation of calcineurin with a calcium ionophore, yielded major increases in NFAT c1 nuclear DNA-binding activity, MT1-MMP transcription and protein synthesis, which were additive with the lower levels of transactivation provided by the proximal Sp1 and the overlapping Sp1/Egr-1 sites. Specific binding of NFAT c1 to the MT1-MMP promoter was confirmed by chromatin immunoprecipitation studies, while MT1-MMP expression was suppressed by treatment with the calcineurin inhibitor, cyclosporin A. These studies are the first demonstration that a specific NFAT isoform enhances transcription of an MMP (MT1-MMP) that plays a major role in the proteolytic events that are a dominant feature of acute glomerular inflammation. Suppression of MT1-MMP by commonly used calcineurin inhibitors may play a role in the development of renal fibrosis following renal transplantation.
Knofler M, etal., J Biol Chem 1996 Sep 6;271(36):21993-2002.
We have cloned and characterized the rat gene that encodes the p48 DNA-binding subunit of pancreas transcription factor 1 (Ptf1), a cell-specific basic region helix-loop-helix (bHLH) protein. The ptf1-p48 gene measures 1.8 kilobases in size and occurs as a single copy in the haploid genome. Run-on t
ranscription assays suggest that this gene is subject to transcriptional control since no activity of its promoter is detected in nonproducing cells. The gene specifies two mRNAs that encode the same protein and originate from transcription initiation at alternative sites. Expression analysis of hybrid genes bearing deletions of the gene's 5'-flanking region fused to a reporter gene defines a promoter region within the gene-proximal 260 base pairs of DNA. The cis-acting elements that control promoter activity include binding sites for transcription factors Sp1 and alphaCbf, a 60-kDa CCAAT box-binding protein. The gene promoter, however, functions not only in exocrine pancreatic cells but also in cells of other origin. No cell-specific transcriptional control element was detected in as much as 10 kilobases of 5'-flanking region. We discuss models of how the cell-specific expression of the endogenous ptf1-p48 gene might be established during development of the animal.
Billon N, etal., Oncogene. 1999 May 6;18(18):2872-82. doi: 10.1038/sj.onc.1202712.
Addition of nerve growth factor (NGF) to PC12 cells promotes neuronal differentiation while inhibiting cell proliferation. In order to understand how NGF exerts its antimitogenic effect during differentiation, we have studied the mechanism by which this factor activates the promoter of the CDK inhib
itor p21W4F1/CIP1. The minimal region of the p21 promoter required for the NGF-induction was mapped to a contiguous stretch of 10 bp located 83 bases upstream of the transcription initiation site. This GC-rich region was shown to interact specifically with the transcription factor Sp1 and the related protein Sp3, in either exponentially-growing or NGF-treated PC12 cells. The addition of NGF resulted in an accumulation of the transcriptional co-activator p300 in complexes associated with the NGF-responsive region. Transcriptional activity of Sp1, Sp3 and p300 was specifically induced by NGF in a Gal4-fusion assay, indicating that induction of p21 during neuronal differentiation may involve regulation of the activity of these factors by NGF. Furthermore, p300 was able to act as a co-activator for Sp1-mediated transcriptional activation in PC12 cells, suggesting that p300 and Sp1 may cooperate in activating p21 transcription during the withdrawal of neuronal precursors from the cell cycle. This hypothesis is supported by experiments showing that p300 and Sp1 form complexes in PC12 cells.
Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role o
f CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[alpha]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including beta-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/beta-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/beta-catenin signaling via Sp1 induction.
Schwarzenbach H, etal., BMC Cancer. 2014 Nov 3;14:796. doi: 10.1186/1471-2407-14-796.
BACKGROUND: As cancer-testis MAGE-A antigens are targets for tumor immunotherapy, it is important to study the regulation of their expression in cancers. This regulation appears to be rather complex and at the moment controversial. Although it is generally accepted that MAGE-A expression is controll
ed by epigenetics, the exact mechanisms of that control remain poorly understood. METHODS: We analyzed the interplay of another cancer-testis gene, BORIS, and the transcription factors Ets-1 and Sp1 in the regulation of MAGE-A1 gene expression performing luciferase assays, quantitative real-time PCR, sodium bisulfite sequencing, chromatin immunoprecipitation assays and pull down experiments. RESULTS: We detected that ectopically expressed BORIS could activate and demethylate both endogenous and methylated reporter MAGE-A1 promoter in MCF-7 and micrometastatic BCM1 cancer cell lines. Overexpression of Ets-1 could not further upregulate the promoter activity mediated by BORIS. Surprisingly, in co-transfection experiments we observed that Sp1 partly repressed the BORIS-mediated stimulation, while addition of Ets-1 expression plasmid abrogated the Sp1 mediated repression of MAGE-A1 promoter. Both BORIS and Sp1 interacted with the TATA binding protein (hTBP) suggesting the possibility of a competitive mechanism of action between BORIS and Sp1. CONCLUSIONS: Our findings show that BORIS and Sp1 have opposite effects on the regulation of MAGE-A1 gene expression. This differential regulation may be explained by direct protein-protein interaction of both factors or by interaction of MAGE-A1 promoter with BORIS alternatively spliced isoforms with different sequence specificity. We also show here that ectopic expression of BORIS can activate transcription from its own locus, inducing all its splice variants.
Li Z, etal., BMC Cancer. 2014 Apr 22;14:276. doi: 10.1186/1471-2407-14-276.
BACKGROUND: E2F1 transcription factor plays a vital role in the regulation of diverse cellular processes including cell proliferation, apoptosis, invasion and metastasis. E2F1 overexpression has been demonstrated in small cell lung cancer (SCLC), and extensive metastasis in early phase is
the most important feature of SCLC. In this study, we investigated the involvement of E2F1 in the process of invasion and metastasis in SCLC by regulating the expression of matrix metalloproteinases (MMPs). METHODS: Immunohistochemistry was performed to evaluate the expression of E2F1 and MMPs in SCLC samples in a Chinese Han population. The impact of E2F1 on invasion and metastasis was observed by transwell and wound healing experiments with depletion of E2F1 by specific siRNA. The target genes regulated by E2F1 were identified by chromatin immunoprecipitation (ChIP)-to-sequence, and the expressions of target genes were detected by real time PCR and western blotting. The dual luciferase reporter system was performed to analyze the regulatory relationship between E2F1 and MMPs. RESULTS: E2F1 is an independent and adverse prognosis factor that is highly expressed in SCLC in a Chinese Han population. Knockdown of E2F1 by specific siRNA resulted in the downregulation of migration and invasion in SCLC. The expressions of MMP-9 and -16 in SCLC were higher than other MMPs, and their expressions were most significantly reduced after silencing E2F1. ChIP-to-sequence and promoter-based luciferase analysis demonstrated that E2F1 directly controlled MMP-16 expression via an E2F1 binding motif in the promoter. Although one E2F1 binding site was predicted in the MMP-9 promoter, luciferase analysis indicated that this binding site was not functionally required. Further study demonstrated that E2F1 transcriptionally controlled the expression of Sp1 and p65, which in turn enhanced the MMP-9 promoter activity in SCLC cells. The associations between E2F1, Sp1, p65, and MMP-9 were validated by immunohistochemistry staining in SCLC tumors. CONCLUSIONS: E2F1 acts as a transcriptional activator for MMPs and directly enhances MMP transcription by binding to E2F1 binding sequences in the promoter, or indirectly activates MMPs through enhanced Sp1 and NF-kappa B as a consequence of E2F1 activation in SCLC.
Russell DL, etal., Mol Endocrinol. 2003 Apr;17(4):520-33. Epub 2003 Jan 23.
Early growth response factor (Egr-1) is an inducible zinc finger transcription factor that binds specific GC-rich enhancer elements and impacts female reproduction. These studies document for the first time that FSH rapidly induces Egr-1 expression in granulosa cells of small growing follicles. This
response is transient but is reinitiated in preovulatory follicles exposed to the LH analog, human chorionic gonadotropin. Immunohistochemical analysis also showed gonadotropin induced Egr-1 in theca cells. The Egr-1 gene regulatory region responsive to gonadotropin signaling was localized within -164 bp of the transcription initiation site. Binding of Sp1/Sp3 to a proximal GC-box at -64/-46 bp was enhanced by FSH in immature granulosa cells but reduced after human chorionic gonadotropin stimulation of preovulatory follicles despite constant protein expression. This dynamic regulation of Sp1 binding was dependent on gonadotropin-regulated mechanisms that modulate Sp1/3-DNA binding activity. Serum response factor was active in granulosa cells and bound a consensus CArG-box/serum response element site, whereas two putative cAMP response elements within the -164-bp region bound cAMP regulatory element (CRE) binding protein (CREB) and a second cAMP-inducible protein immunologically related to CREB. Transient transfection analyses using Egr-1 promoter-luciferase constructs and site-specific mutations show that the serum response element, GC-box, and CRE-131 are involved in gonadotropin regulation of Egr-1 expression in granulosa cells. Specific kinase inhibitors of Erk or protein kinase A antagonized this induction while exogenously expressed Egr-1 enhanced reporter expression. These observations indicate that the Egr-1 gene is a target of both FSH and LH action that may mediate molecular programs of proliferation and/or differentiation during follicle growth, ovulation, and luteinization.
Kim TW, etal., Oncotarget. 2016 Jan 26;7(4):4195-209. doi: 10.18632/oncotarget.6549.
Toll-like receptor 4 (TLR4) is important in promoting the immune response in various cancers. Recently, TLR4 is highly expressed in a stage-dependent manner in gastric cancer, but the regulatory mechanism of TLR4 expression has been not elucidated it. Here, we investigated the mechanism underlying r
egulation of TLR4 expression through promoter methylation and histone modification between transcriptional regulation and silencing of the TLR4 gene in gastric cancer cells. Chromatin immunoprecipitation was carried out to screen for factors related to TLR4 methylation such as MeCP2, HDAC1, and Sp1 on the TLR4 promoter. Moreover, DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-dC) induced demethylation of the TLR4 promoter and increased H3K4 trimethylation and Sp1 binding to reactivate silenced TLR4. In contrast, although the silence of TLR4 activated H3K9 trimethylation and MeCP2 complex, combined treatment with TLR4 agonist and 5-aza-dC upregulated H3K4 trimethylation and activated with transcription factors as Sp1 and NF-kappaB. This study demonstrates that recruitment of the MeCP2/HDAC1 repressor complex increases the low levels of TLR4 expression through epigenetic modification of DNA and histones on the TLR4 promoter, but Sp1 activates TLR4 high expression by hypomethylation and NF-kappaB signaling in gastric cancer cells.
Santiago FS and Khachigian LM, Circ Res. 2004 Sep 3;95(5):479-87. Epub 2004 Aug 5.
The platelet-derived growth factor (PDGF) family of ligands (composed of A-, B-, C-, and D-chains), potent mitogens, and chemoattractants for cells of mesenchymal origin has been implicated in numerous vascular pathologies involving smooth muscle cell (SMC) hyperplasia. Understanding the molecular m
echanisms mediating PDGF transcription would provide new insights into strategies to control PDGF-dependent pathophysiologic processes. We demonstrated previously that PDGF-A expression is under the positive regulatory influence of Sp1, Sp3, and Egr-1 and is negatively controlled by GCF2, NF-1(X), and WT-1. In this article, we demonstrate that Ets-1 induces PDGF-A expression in primary rat aortic SMCs at the level of transcription and mRNA expression. Electrophoretic mobility shift, supershift, and mutational analyses revealed a functional role for the (-555)TTCC(-552) motif in the PDGF-A promoter that binds endogenous Ets-1. Chromatin immunoprecipitation analysis showed the interaction of endogenous and exogenous Ets-1 or glutathione S-transferase-tagged Ets-1, bearing only the DNA-binding domain with the authentic PDGF-A promoter. Conversely, dominant-negative mutant of Ets-1 blocked the promoter interaction of endogenous Ets-1. Overexpression of Ets-1 but not the mutant form of Ets-1 activates the PDGF-A promoter cooperatively with Sp1. Sp1, which interacts with Ets-1, failed to induce PDGF-A promoter-dependent expression if the promoter contained a site-specific mutation in this novel Ets-binding site. Small interfering RNA to Ets-1 and Sp1 blocked PDGF-BB- and serum-inducible PDGF-A expression. SMC growth was stimulated by Ets-1 and Sp1 separately and further increased by both factors together. Ets-1-inducible mitogenesis is blocked by antibodies neutralizing PDGF-A and involves activation of the PDGF alpha-receptor, which binds PDGF-A. These findings identify a functional cis-acting element for Ets-1 in the PDGF-A promoter and demonstrate that Sp1 and Ets-1 cooperatively activate PDGF-A transcription in vascular SMCs.
Yang SS, etal., J Cell Sci. 2015 Nov 1;128(21):3977-89. doi: 10.1242/jcs.174870. Epub 2015 Sep 22.
Eukaryotic initiation factor 6 (eIF6) is a pivotal regulator of ribosomal function, participating in translational control. Previously our data suggested that eIF6 acts as a key binding protein of P311 (a hypertrophic scar-related protein; also known as NREP). However, a comprehensive investigation
of its functional role and the underlying mechanisms in modulation of myofibroblast (a key effector of hypertrophic scar formation) differentiation remains unclear. Here, we identified that eIF6 is a novel regulator of transforming growth factor-beta1 (TGF-beta1) expression at transcription level, which plays a key role in myofibroblast differentiation. Mechanistically, this effect is associated with eIF6 altering the occupancy of the TGF-beta1 promoter by H2A.Z (Swiss-Prot P0C0S6) and Sp1. Accordingly, modulation of eIF6 expression in myofibroblasts signi fi cantly affects their differentiation via the TGF-beta/Smad signaling pathway, which was verified in vivo by the observation that heterozygote eIF6(+/-) mice exhibited enhanced TGF-beta1 production coupled with increased alpha-smooth muscle actin (alpha-SMA)(+) myofibroblasts after skin injury. Overall, our data reveal a novel transcriptional regulatory mechanism of eIF6 that acts on facilitating Sp1 recruitment to TGF-beta1 promoter via H2A.Z depletion and thus results in increased TGF-beta1 transcription, which contributes to myofibroblast differentiation.
Zhao N, etal., Biochim Biophys Acta. 2016 Jul;1859(7):933-42. doi: 10.1016/j.bbagrm.2016.05.006. Epub 2016 May 11.
MiR-195 expression is frequently reduced in various cancers, but its underlying mechanisms remain unknown. To explore whether abnormal transcription contributed to miR-195 downregulation in hepatocellular carcinoma (HCC), we characterized the -2165-bp site upstream of mature miR-195 as transcriptio
n start site and the -2.4 to -2.0-kb fragment as the promoter of miR-195 gene. Subsequent investigation showed that deletion of the predicted Sp1 binding site decreased the miR-195 promoter activity; Sp1 silencing significantly reduced the miR-195 promoter activity and the endogenous miR-195 level; Sp1 directly interacted with the miR-195 promoter in vitro and in vivo. These data suggest Sp1 as a transactivator for miR-195 transcription. Interestingly, miR-195 expression was also subjected to epigenetic regulation. Histone deacetylase 3 (HDAC3) could anchor to the miR-195 promoter via interacting with Sp1 and consequently repress the Sp1-mediated miR-195 transactivation by deacetylating histone in HCC cells. Consistently, substantial increase of HDAC3 protein was detected in human HCC tissues and HDAC3 upregulation was significantly correlated with miR-195 downregulation, suggesting that HDAC3 elevation may represent an important cause for miR-195 reduction in HCC. Our findings uncover the mechanisms underlying the transcriptional regulation and expression deregulation of miR-195 in HCC cells and provide new insight into microRNA biogenesis in cancer cells.
Bonello MR and Khachigian LM, J Biol Chem. 2004 Jan 23;279(4):2377-82. Epub 2003 Oct 30.
Platelet-derived growth factor (PDGF) is a potent mitogen and chemoattractant for vascular smooth muscle cells (SMCs) whose biological activity is mediated via its high affinity interaction with specific cell surface receptors. The molecular mechanisms governing the expression of PDGF receptor-alpha
(PDGFR-alpha) are poorly understood. Here we demonstrate that PDGFR-alpha protein and transcriptional regulation in SMCs is under the positive regulatory influence of the zinc finger nuclear protein, Sp1. Electrophoretic mobility shift, competition, and supershift analysis revealed the existence of an atypical G-rich Sp1-binding element located in the PDGFR-alpha promoter -61 to -52 bp upstream of the transcriptional start site. Mutation of this sequence ablated endogenous Sp1 binding and activation of the PDGFR-alpha promoter. PDGFR-alpha transcription, mRNA, and protein expression were repressed in SMCs exposed to fibroblast growth factor-2 (FGF-2). This inhibition was rescued by the blockade of extracellular signal-regulated kinase-1/2 (ERK1/2). FGF-2 repression of PDGFR-alpha transcription was abrogated upon mutation of this Sp1-response element. FGF-2 stimulated Sp1 phosphorylation in an ERK1/2- but not p38-dependent manner, the growth factor enhancing Sp1 interaction with the PDGFR-alpha promoter. Mutation of residues Thr(453) and Thr(739) in Sp1 (amino acids phosphorylated by ERK) blocked FGF-2 repression of PDGFR-alpha transcription. These findings, taken together, demonstrate that FGF-2 stimulates ERK1/2-dependent Sp1 phosphorylation, thereby repressing PDGFR-alpha transcription via the -61/-52 element in the PDGFR-alpha promoter. Phosphorylation triggered by FGF-2 switches Sp1 from an activator to a repressor of PDGFR-alpha transcription, a finding previously unreported in any Sp1-dependent gene.
Regenerative therapy based on mesenchymal stem cells (MSCs) has great promise to achieve functional recovery in cerebral infarction patients. However, the survival rate of transplanted MSCs is extremely low because of destructive autophagy caused by the harsh ischemic microenvironment in cerebral in
farct tissue. The mechanism by which fibronectin type III domain protein 5 (FNDC5) regulates autophagy of transplanted bone marrow-MSCs (BMSCs) following ischemic injury needs to be elucidated. In this study, we confirmed that FNDC5 promotes the survival of transplanted BMSCs in a rat cerebral infarction model. Furthermore, bioinformatic analysis and verification experiments revealed the transcription factor, Sp1, to be a key mediator of autophagy regulation by FNDC5. FNDC5 significantly inhibited BMSC autophagy by down-regulating Sp1 and the autophagy-related Sp1-target gene, ULK2. Transplanted BMSCs overexpressing FNDC5 (BMSCs-OE-FNDC5) promoted neurovascular proliferation and alleviated ischemic brain injury in cerebral infarct model rats. However, the increased survival and enhanced neuroprotective effect of transplanted BMSCs-OE-FNDC5 were reversed by simultaneous overexpression of Sp1. Our data indicate a role for FNDC5 in BMSC survival and reveal a novel mechanism of transcription regulation through Sp1 for the autophagy-related gene ULK2. Modulation of FNDC5 may promote survival capacity and improve the therapeutic effect of BMSCs in various tissues following ischemia.
Follicle stimulating hormone (FSH) plays a central role in growth and differentiation of ovarian follicles. A plethora of information exists on molecular aspects of FSH responses but little is known about the mechanisms involved in its cross-talk with insulin/IGF-1 pathways implicated in the coordin
ation of energy homeostasis in preovulatory granulosa cells (GCs). In this study, we hypothesized that FSH may regulate IRS-2 expression and thereby maintain the energy balance in GCs. We demonstrate here that FSH specifically increases IRS-2 expression in human and rat GCs. FSH-stimulated IRS-2 expression was inhibited by actinomycin D or cycloheximide. Furthermore, FSH decreases IRS-2 mRNA degradation indicating post-transcriptional stabilization. Herein, we demonstrate a role of cAMP pathway in the activation of IRS-2 expression by FSH. Scan and activity analysis of IRS-2 promoter demonstrated that FSH regulates IRS-2 expression through SP1 binding sites. FSH stimulates SP1 translocation into nucleus and its binding to IRS-2 promoter. These results are corroborated by the fact that siRNA mediated knockdown of IRS-2 decreased the FSH-stimulated PI3K activity, p-Akt levels, GLUT4 translocation and glucose uptake. However, FSH was not able to increase IRS-2 expression in GCs from PCOS women undergoing IVF. Interestingly, IRS-2 mRNA expression was downregulated in GCs from the PCOS rat model. Taken together, our findings establish that FSH induces IRS-2 expression and thereby activates PI3K, Akt and glucose uptake. Crucially, our data confirms a molecular defect in FSH action in PCOS GCs which may cause deceleration of metabolism and follicular growth leading to infertility. These results lend support for a therapeutic potential of IRS-2 in the management of PCOS.
Gp600/megalin is an endocytic receptor belonging to the low-density lipoprotein receptor family. Up or down regulation of this protein were observed in certain disease states. To understand the mechanisms that control gp600/megalin gene expression, we cloned and functionally characterized a 738-bp f
ragment of the 5'-flanking region of rat gp600/megalin gene. A transcription start site was mapped to 33 bp downstream of TAGAAA sequence (TATA-like box). Multiple transcription factor binding sites were identified. Serial 5' deletions and transient transfection assays showed that the deletion fragment containing the Sp1 site proximal to the TATA-like box and a JCV repeat retained 80% of the promoter activity. Individual mutations of the proximal Sp1 site and JCV repeat reduced the promoter activity by 60 and 34% respectively. Double mutations of the proximal Sp1 site and JCV repeat produced a dramatic 80% reduction in the promoter activity. However, deletions and mutations or double mutations of other transcription factor binding sites in the promoter region had a minor effect on the promoter activity. These results indicate that the combination of proximal Sp1 site and the JCV repeat are necessary for activation of gp600/megalin expression. Moreover, Sp1 and Sp3 proteins interacted with the proximal and the distal Sp1 sites in the nuclear extracts of gp600/megalin expressing cell lines. TCF site seems to be involved in negative regulation of this promoter but no nuclear protein(s) were found to bind to this site. In addition, Ap2 site responsible for 28% promoter activity is able to bind two dominant unknown nuclear proteins. This functional characterization of the regulation of gp600/megalin gene is likely to advance the knowledge of the regulation of this gene in health and disease.
Han SI, etal., Mol Cell Endocrinol. 2015 Aug 15;411:113-20. doi: 10.1016/j.mce.2015.04.018. Epub 2015 Apr 24.
Haploinsufficiency of the Gata3 gene, which encodes a zinc-finger transcription factor, is associated with the disorder hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome in humans. However, the roles of Gata3 in transcriptional regulation in the parathyroid glands are not well-underst
ood. In this study, we show that Gata3 activates transcription of parathyroid hormone (PTH), which is secreted from parathyroid glands and is critical for regulating serum calcium and phosphate homeostasis. Gata3 interacted with Gcm2 and MafB, two known transcriptional regulators of parathyroid development, and synergistically stimulated the PTH promoter. An SP1-binding element (GC box) located within the PTH-promoter proximal region was critical for activating transcription by Gata3. In addition, the ubiquitous transcription factor SP1 also interacted with Gata3 as well as MafB and Gcm2, and HDR syndrome-associated Gata3 mutants were defective in activating the PTH promoter. These results suggest that Gata3 is a critical regulator of PTH gene expression.
Aziz F, etal., Toxicol In Vitro. 2016 Mar;31:158-66. doi: 10.1016/j.tiv.2015.09.025. Epub 2015 Sep 30.
Helicobacter pylori (H. pylori) cytotoxin associated antigen A (CagA) plays a significant role in the development of gastric cancer. Ginsenoside Rg3 is a herbal medicine which inhibits cell proliferation and induces apoptosis in various cancer cells. Fucosylation plays important roles in cancer biol
ogy as increased fucosylation levels of glycoproteins and glycolipids have been reported in many cancers. Fucosyltransferase IV (FUT4) is an essential enzyme, catalyzes the synthesis of LewisY oligosaccharides and is regulated by specificity protein 1 (SP1) and heat shock factor protein 1 (HSF1) transcription factors. Herein, we studied the mechanism action of Rg3 apoptosis induction in gastric cancer cells. We treated the gastric cancer cells with CagA followed by Rg3, and analyzed their ability to induce apoptosis by evaluating the role of FUT4 as well as SP1 and HSF1 expressions by Western blot, flow cytometry and ELISA. We found that Rg3 significantly induced apoptosis in CagA treated gastric cancer cells, as evidenced by nuclear staining of 4-6-diamidino-2-phenylindole (DAPI) and Annexin-V/PI double-labeling. In addition, Rg3 significantly increased the expression of pro-apoptotic proteins and triggered the activation of caspase-3, -8, and -9 and PARP. Moreover, Rg3-induced apoptotic mechanisms indicated that Rg3 inhibited FUT4 expression through SP1 upregulation and HSF1 downregulation. Hence, Rg3 therapy is an effective strategy for gastric cancer treatment. Furthermore SP1 and HSF1 may serve as potential diagnostic and therapeutic targets for gastric cancer.
Cheng D, etal., J Biol Chem. 2015 Dec 11;290(50):30193-203. doi: 10.1074/jbc.M115.662221. Epub 2015 Oct 20.
The transcription of human telomerase gene hTERT is regulated by transcription factors (TFs), including Sp1 family proteins, and its chromatin environment. To understand its regulation in a relevant chromatin context, we employed bacterial artificial chromosome
reporters containing 160 kb of human genomic sequence containing the hTERT gene. Upon chromosomal integration, the bacterial artificial chromosomes recapitulated endogenous hTERT expression, contrary to transient reporters. Sp1/Sp3 expression did not correlate with hTERT promoter activity, and these TFs bound to the hTERT promoters in both telomerase-positive and telomerase-negative cells. Mutation of the proximal GC-box resulted in a dramatic decrease of hTERT promoter activity, and mutations of all five GC-boxes eliminated its transcriptional activity. Neither mutations of GC-boxes nor knockdown of endogenous Sp1 impacted promoter binding by other TFs, including E-box-binding proteins, and histone acetylation and trimethylation of histone H3K9 at the hTERT promoter in telomerase-positive and -negative cells. The result indicated that promoter binding by Sp1/Sp3 was essential, but not a limiting step, for hTERT transcription. hTERT transcription required a permissive chromatin environment. Importantly, our data also revealed different functions of GC-boxes and E-boxes in hTERT regulation; although GC-boxes were essential for promoter activity, factors bound to the E-boxes functioned to de-repress hTERT promoter.
Xiao K, etal., Int J Oncol. 2015 Aug;47(2):621-31. doi: 10.3892/ijo.2015.3032. Epub 2015 Jun 4.
BLU is a candidate tumor suppressor gene, which is epigenetically inactivated in many human malignancies. However, the expression and biological functions of BLU in gastric cancer has not yet been reported. In the present study, we identified a functional BLU promoter which was regulated by the t
ranscription activator Sp1. Bisulfite sequencing and qRT-PCR assays indicated that the silence of BLU expression in gastric cancer was significantly associated with DNA hypermethylation of BLU promoter including -39 CpG site located in the Sp1 transcription element. The expression of BLU was notably restored in AGS and SGC7901 cells following the demethylation-treatment with 5'-Aza-2'-deoxycytidine. Moreover, the results from ChIP, EMSA and luciferase reporter gene showed that -39 CpG methylation could prevent Sp1 from binding to the promoter of BLU and decreased transcription activity of the BLU gene by ~70%. In addition, knockdown of BLU significantly promoted cellular proliferation and colony formation in gastric cancer cells. In conclusion, we identified a novel functional BLU promoter and proved that BLU promoter activity was regulated by Sp1. Furthermore, we found that hypermethylated -39 CpG in BLU proximal promoter directly reduced its binding with Sp1, which may be one of the mechanisms accounting for the inactivation of BLU in gastric cancer.
Chen Y, etal., J Exp Clin Cancer Res. 2015 Dec 21;34:154. doi: 10.1186/s13046-015-0272-0.
BACKGROUND: Lung cancer is the most common cause of cancer-related deaths worldwide. Natural phytochemicals from traditional medicinal plants such as solamargine have been shown to have anticancer properties. The prostaglandin E2 receptor EP4 is highly expressed in human cancer, however, the functio
nal role of EP4 in the occurrence and progression of non small cell lung cancer (NSCLC) remained to be elucidated. METHODS: Cell viability was measured by MTT assays. Western blot was performed to measure the phosphorylation and protein expression of PI3-K downstream effector Akt, transcription factors SP1, p65, and EP4. Quantitative real-time PCR (qRT-PCR) was used to examine the mRNA levels of EP4 gene. Exogenous expression of SP1, p65, and EP4 genes was carried out by transient transfection assays. EP4 promoter activity was measured by Dual Luciferase Reporter Kit. RESULTS: We showed that solamargine inhibited the growth of lung cancer cells. Mechanistically, we found that solamargine decreased the phosphorylation of Akt, the protein, mRNA expression, and promoter activity of EP4. Moreover, solamargine inhibited protein expression of SP1 and NF-kappaB subunit p65, all of which were abrogated in cells transfected with exogenous expressed Akt. Intriguingly, exogenous expressed SP1 overcame the effect of solamargine on inhibition of p65 protein expression, and EP4 protein expression and promoter activity. Finally, exogenous expressed EP4 feedback reversed the effect of solamargine on phosphorylation of Akt and cell growth inhibition. CONCLUSION: Our results show that solamargine inhibits the growth of human lung cancer cells through inactivation of Akt signaling, followed by reduction of SP1 and p65 protein expression. This results in the inhibition of EP4 gene expression. The cross-talk between SP1 and p65, and the positive feedback regulatory loop of PI3-K/Akt signaling by EP4 contribute to the overall responses of solamargine in this process. This study unveils a novel mechanism by which solamargine inhibits growth of human lung cancer cells.
Zhao G, etal., Biochem Biophys Res Commun. 2017 Aug 19;490(2):371-377. doi: 10.1016/j.bbrc.2017.06.050. Epub 2017 Jun 13.
Accumulating evidence has suggested that microRNA-31-5p (miR-31-5p) is dysfunctional in hepatocellular carcinoma (HCC). However, the molecular mechanism of HCC remains unclear. In this study, we investigated the role of miR-31-5p in tumor formation and development of HCC. The expression of miR-31-5p
was detected in HCC tissues, corresponding adjacent tissues, normal liver tissues, and HCC cell lines. miR-31-5p mimics and an inhibitor were transfected into HepG2 cells to assess the effects of miR-31-5p on cell proliferation, apoptosis, cell cycle, migration, and invasion assays. Western blotting was used to detect the expression of Sp1 transcription factor (SP1), cyclin D1, and survivin in transfected HCC cells and control cells. The expression of miR-31-5p was significantly decreased in HCC cells and HCC tissues. Overexpression of miR-31-5p inhibited HCC cell growth, migration, and invasion. Overexpression of miR-31-5p reduced the expression of SP1 and cyclin D1, and knockdown of SP1 decreased cyclin D1 expression. The dual luciferase assay showed that miR-31-5p directly targeted SP1 in HepG2. Together, the results suggested that miR-31-5p acted as a tumor suppressor to regulate SP1, and that miR-31-5p could be used as a therapeutic target for the treatment of HCC.
Uncoupling protein-2 (UCP2) is a mitochondrial inner-membrane carrier protein that is involved in the control of fatty acid metabolism. To understand the mechanism of the transcriptional regulation of ucp2 in the pathogenesis of nonalcoholic steatohepatitis (NASH), we cloned 500 bp upstream of the u
cp2 exon 1 from a rat liver cDNA library and identified cis-acting regulatory elements. The transcriptional start site was identified as "C," -359 bp from the ATG codon. A reporter gene assay showed that deletion of the nucleotide sequence between -264 and -60 bp resulted in a significant decrease in promoter activity in HepG2 and H4IIE cells. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) revealed that the increase in promoter activity is related to an enhanced ability of Sp1 to bind to its motifs at -84 to -61 bp within the ucp2 proximal promoter. Overexpression of exogenous Sp1 in H4IIE cells also increased the promoter activity. We demonstrated that the expression of UCP2 mRNA and protein is markedly increased in rats with nonalcoholic steatohepatitis (NASH). Coincidently, levels of Sp1 binding to -84/-61 bp were also increased. Overall, our data indicate that the Sp1-binding site located at the proximal promoter is involved in the regulation of rat UCP2 expression.
Liu MY, etal., Blood. 2006 Mar 15;107(6):2322-9. Epub 2005 Sep 27.
Platelet-derived growth factor D-chain (PDGF-D) is the newest member of the PDGF family of mitogens and chemoattractants expressed in a wide variety of cell types, including vascular smooth muscle cells (SMCs). The molecular mechanisms regulating PDGF-D transcription are not known. Primer extension
analysis mapped a single transcriptional start site to the ccAGCGC motif with several potential Ets motifs located upstream. Ets-1, but not Ets-1 bearing only the DNA-binding domain, activates the PDGF-D promoter and mRNA expression in SMCs. Ets site D3 ((-470)GGAT(-467)) is singly required for basal and Ets-1-inducible PDGF-D promoter-dependent expression. D3 supports the interaction of endogenous and recombinant Ets-1 and Sp1. Sp1, like Ets-1, induces PDGF-D transcription and mRNA expression, which is blocked by mutant Ets-1. H2O2 stimulates Ets-1, but not Sp1, and activates D3-dependent PDGF-D transcription. Ets-1 and Sp1 siRNA block peroxide-inducible PDGF-D expression. Angiotensin II (ATII) induction of PDGF-D and Ets-1 was blocked by prior incubation of the cells with PEG-catalase, but not BSA, indicating that ATII-inducible Ets-1 and PDGF-D expression is mediated via H2O2. Thus, 2 separate trans-acting factors regulate PDGF-D transcription, alone and in response to oxidative stress.
Majumdar G, etal., J Biol Chem. 2006 Feb 10;281(6):3642-50. Epub 2005 Dec 6.
O-glycosylation and phosphorylation of Sp1 are thought to modulate the expression of a number of genes in normal and diabetic state. Sp1 is an obligatory transcription factor for constitutive and insulin-responsive expressio
n of the calmodulin gene (Majumdar, G., Harmon, A., Candelaria, R., Martinez-Hernandez, A., Raghow, R., and Solomon, S. S. (2003) Am. J. Physiol. 285, E584-E591). Here we report the temporal dynamics of accumulation of total, O-GlcNAc-modified, and phosphorylated Sp1 in H-411E hepatoma cells by immunohistochemistry with monospecific antibodies, confocal microscopy, and matrix-assisted laser desorption and ionization-time of flight mass spectrometry. Insulin elicited sequential and reciprocal post-translational modifications of Sp1. The O-glycosylation of Sp1 and its nuclear accumulation induced by insulin peaked early (approximately 30 min), followed by a steady decline of O-GlcNAc-modified Sp1 to negligible levels by 240 min. The accumulation of phosphorylated Sp1 in the nuclei of insulin-treated cells showed an opposite pattern, increasing steadily until reaching a maximum around 240 min after treatment. Analyses of the total, O-GlcNAc-modified, or phosphorylated Sp1 by Western blot and mass spectrometry corroborated the sequential and reciprocal control of post-translational modifications of Sp1 in response to insulin. Treatment of cells with streptozotocin (a potent inhibitor of O-GlcNAcase) led to hyperglycosylation of Sp1 that failed to be significantly phosphorylated. The mass spectrometry data indicated that a number of common serine residues of Sp1 undergo time-dependent, reciprocal O-glycosylation and phosphorylation, paralleling its rapid translocation from cytoplasm to the nucleus. Later, changes in the steady state levels of phosphorylated Sp1 mimicked the enhanced steady state levels of calmodulin mRNA seen after insulin treatment. Thus, O-glycosylation of Sp1 appears to be critical for its localization into the nucleus, where it undergoes obligatory phosphorylation that is needed for Sp1 to activate calmodulin gene expression.
Insulin stimulates both the biosynthesis of transcription factor Sp1 and its O-linked N-acetylglucosaminylation (O-GlcNAcylation), which promotes nuclear localization of Sp1 and its ability to transactivate calmodulin (CaM)
gene transcription. To investigate this further, we incubated H-411E liver cells with insulin (10,000 microU/ml) and quantified the subcellular distribution of O-GlcNAc transferase (OGT) and O-GlcNAc-modified Sp1. We also examined the phosphorylation of Sp1 using both Western blot and incorporation of 32P into Sp1. The results demonstrate that insulin, but not glucagon, stimulates OGT synthesis and enhances cytosolic staining of OGT (histochemical). Insulin increases O-GlcNAc-Sp1, which peaks at 30 min, followed by decline at 4 h. In contrast, insulin initiates phosphorylation of Sp1 early, followed by a continued increase in phosphorylated Sp1 (PO4-Sp1) at 4 h. A reciprocal relationship between O-GlcNAc-Sp1 and PO4-Sp1 was observed. To explore the pathophysiological relevance, we localized OGT in liver sections from streptozotocin (STZ)-induced diabetic rats. We observed that staining of OGT in STZ-induced diabetic rat liver is clearly diminished, but it was substantially restored after 6 days of insulin treatment. We conclude that insulin stimulates CaM gene transcription via a dynamic interplay between O-glycosylation and phosphorylation of Sp1 that modulates stability, mobility, subcellular compartmentalization, and activity.
The diabetes-induced decrease in insulin-like growth factor-I transcription appears to be mediated by footprint region V in exon 1. Since region V contains both an Sp1 site and an AT-rich element that recognizes an insulin-responsive binding protein (IRBP), we t
ested the hypothesis that Sp1 interactions are facilitated by an IRBP. Binding of nuclear extracts to region V probes was reduced by mutational or chemical interference with the AT-rich element. Blocking the AT site also reduced interactions of Sp1 with region V in vitro and blunted transactivation of region V reporter constructs by Sp1 in vivo. Sp1 binding was enhanced by small quantities of hepatic nuclear extracts, but enhancement was reduced by the AT mutation and abolished by a 5-base pair insertion between the AT-rich and GC-rich sites, and transactivation by Sp1 in vivo was diminished by inserting bases between the AT-rich and GC-rich elements. However, treating cells with insulin increased the ability of nuclear extracts to enhance Sp1 binding. These findings indicate that the presence of the AT-rich element is essential for the actions of Sp1 in vitro and in vivo, and the combination of both spacing requirements and insulin responsiveness suggests that IRBP may interact directly with Sp1.
D'Addario M, etal., J Biol Chem 2002 Dec 6;277(49):47541-50.
Connective tissue cells in mechanically active environments survive applied physical forces by modifying actin cytoskeletal structures that stabilize cell membranes. In fibroblasts, tensile forces induce the expression of filamin-A, a mechanoprotective actin-binding protein, but the mechanisms and p
rotein interactions by which force activates filamin-A transcription are not defined. We found that in fibroblasts, application of tensile forces through collagen-coated magnetite beads to cell surface beta(1) integrins induced filamin-A expression. This induction required actin filaments and selective activation of the p38 mitogen-activated protein kinase. Force promoted the redistribution of p38 to the integrin/bead locus and the nucleus as well as enhanced binding of the transcription factor Sp1 to proximal, regulatory domains of the filamin-A promoter. Force application increased association of Sp1 with p38 and phosphorylation of Sp1. Transcriptional activation of filamin-A in force-treated fibroblasts was subsequently mediated by Sp1-binding sites on the filamin-A promoter. These results provide evidence for a mechanically coupled transcriptional circuit that originates at the magnetite bead/integrin locus, activates p38, tethers p38 to actin filaments, promotes binding of p38 to Sp1 in the nucleus, and induces filamin-A expression.
Okamoto Y, etal., Biochem Biophys Res Commun 2001 Nov 9;288(4):940-8.
Glucose transporter-1 (GLUT1) is important in placental glucose transport. However, the mechanism of regulation of placental GLUT1 expression remains to be elucidated. We show here that the level of GLUT1 protein in rat choriocarcinoma cells (Rcho-1) decreased during differentiation. To analyze the
regulatory mechanism of rat GLUT1 (rGLUT1) gene expression, we transfected rGLUT1 promoter-chloramphenicol acetyltransferase constructs into Rcho-1 cells. Deletion analysis of the rGLUT1 promoter suggested that the region -76/-53 bp was essential for basal transcriptional activity. Electrophoretic mobility shift assays showed that transcription factors Sp1 and Sp3 bound two GC boxes in the region -99/-33 bp of the rGLUT1 promoter. Mutation analysis of the Sp1 binding sites revealed that the promoter-proximal site located between -76 and -53 bp was essential for basal rGLUT1 promoter activity. Furthermore, the decreased level of GLUT1 may result from a decreased level of Sp1 during differentiation. These findings suggest that Sp1 is involved in the regulation of rGLUT1 gene expression during rat trophoblast differentiation.
BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as important regulators of tumorigenesis and cancer progression. Recently, the lncRNA AGAP2-AS1 was identified as an oncogenic lncRNA in human non-small cell lung cancer (NSCLC) and its elevated expression was linked to NSCLC developm
ent and progression. However, the expression pattern and molecular mechanism of AGAP2-AS1 in gastric cancer (GC) have not been characterized. METHODS: Bioinformatic analysis was performed to determine AGAP2-AS1 expression levels in the GC and normal tissues using gene profiling data from the Gene Expression Omnibus. Quantitative real-time polymerase chain reaction was used to validate AGAP2-AS1 expression in the GC tissues/cell lines compared with that in the adjacent nontumorous tissues/normal epithelial cells. Loss- and gain-of-function approaches were performed to investigate the effect of AGAP2-AS1 on GC cell phenotypes. The effect of AGAP2-AS1 on cell proliferation was evaluated by MTT, colony formation, flow cytometry, and in vivo tumor formation assays. The effects of AGAP2-AS1 on cell migration and invasion were examined using Transwell assays. Chromatin immunoprecipitation, luciferase reporter assays, RNA pull-down, and RNA immunoprecipitation were used to investigate the factors involved in AGAP2-AS1 dysregulation and the mechanism of action of AGAP2-AS1 in the GC cells. RESULTS: AGAP2-AS1 was highly expressed in the GC tissues and cell lines, and patients with higher AGAP2-AS1 expression had a poorer prognosis and shorter overall survival. Furthermore, knockdown of AGAP2-AS1 significantly inhibited GC cell proliferation, migration, and invasion in vitro and tumor growth in vivo. AGAP2-AS1 overexpression promoted cell growth and invasion. In addition, the transcription factor SP1 activated AGAP2-AS1 expression in the GC cells. AGAP2-AS1 functions as an oncogenic lncRNA by interacting with LSD1 and EZH2 and suppressing CDKN1A (P21) and E-cadherin transcription. CONCLUSIONS: Taken together, these findings imply that AGAP2-AS1 upregulated by SP1 plays an important role in GC development and progression by suppressing P21 and E-cadherin, which suggests that AGAP2-AS1 is a potential diagnostic marker and therapeutic target for GC patients.
Yao Y, etal., J Cell Mol Med. 2015 Apr;19(4):760-9. doi: 10.1111/jcmm.12432. Epub 2015 Jan 30.
MicroRNAs (miRNAs) have been identified as important post-transcriptional regulators involved in various biological and pathological processes of cells. In the present study, we investigated the roles and mechanisms of miR-200b in human breast cancer (BC). MiR-200b expression was carried out by qRT
-PCR in human BC cell lines and clinical samples and the prognostic potential of miR-200b expression was further evaluated. In vitro, effects of miR-200b on BC cell proliferation, apoptosis and cell cycle distribution were tested by CCK-8 kit, flow cytometric analysis respectively. Luciferase assay and Western blot analysis were performed to validate the potential targets of miR-200b after the preliminary screening by employing open access software. We found that miR-200b was significantly down-regulated in both BC tissues and cell lines. The low expression of miR-200b was correlated with late TNM stage, negative oestrogen receptor and positive HER-2 status. Multivariate analysis showed that miR-200b expression was an independent prognostic predictor for BC patients. Integrated analysis identified Sp1 as a direct and functional target of miR-200b. Knockdown of Sp1 inhibited cell proliferation, induce apoptosis and act on cell cycle resembling that of miR-200b high expression. Our data demonstrates that miR-200b has potential to serve as prognostic biomarker and tumour suppressor for BC patients. As a direct and functional target of miR-200b, Sp1 and miR-200b both could be an exciting target for BC treatment strategy.
Hepatocellular carcinoma (HCC) is one of the common malignancies, which is highly metastatic and the third common cause of cancer deaths in the world. The invasion and metastasis of cancer cells is a multistep and complex process which is mainly initiated by extracellular matrix (ECM) degradation. A
berrant expression of microRNA has been investigated in HCC and shown to play essential roles during HCC progression. In the present study, we found that microRNA-324-5p (miR-324-5p) was downregulated in both HCC cell lines and tissues. Ectopic miR-324-5p led to the reduction of HCC cells invasive and metastatic capacity, whereas inhibition of miR-324-5p promoted the invasion of HCC cells. Matrix metalloproteinase 2 (MMP2) and MMP9, the major regulators of ECM degradation, were found to be downregulated by ectopic miR-324-5p, while upregulated by miR-324-5p inhibitor. E26 transformation-specific 1 (ETS1) and Specificity protein 1 (SP1), both of which could modulate MMP2 and MMP9 expression and activity, were presented as the direct targets of and downregulated by miR-324-5p. Downregulation of ETS1 and SP1 mediated the inhibitory function of miR-324-5p on HCC migration and invasion. Our study demonstrates that miR-324-5p suppresses hepatocellular carcinoma cell invasion and might provide new clues to invasive HCC therapy.
Li H, etal., Biochim Biophys Acta 2004 Aug 12;1679(2):141-55.
In this report we describe the genomic organization of the mouse glypican-4 (Gpc4), an analysis of its promoter and its transcriptional regulation in the 3T3-F442A adipocyte cell line. The Gpc4 gene consists of nine exons separated by eight introns. A series of deletion mutants and 4391 bp of the 5'
-flanking region were cloned into pGL3-BASIC upstream of the luciferase reporter gene and transfected into 3T3-F442A adipocytes. Analysis of a 4.3-kb DNA fragment at the 5'-flanking region of this gene revealed that the Gpc4 promoter is a TATA-less promoter with a large cluster of GC boxes. Competitive electrophoretic mobility shift and supershift assays identified a cluster of nine functional GC boxes binding Sp1 and Sp3 in this region. Transactivation experiments in insect cells showed that both Sp1 and Sp3 are major activators of the Gpc4 promoter. Gpc4 is expressed in adipocytes where its expression is highest in confluent 3T3-F442A adipoblasts and decreases dramatically as cells differentiate. Sp protein analyses demonstrated a major decrease in Sp3 protein in differentiated adipocytes as compared to undifferentiated adipoblasts. These experiments show that Gpc4 is developmentally regulated in 3T3-F442A adipocytes and suggest that Sp transcription factors play a significant role in the regulated expression of Gpc4.
Jin L and Datta PK, Cell Cycle. 2014;13(24):3909-20. doi: 10.4161/15384101.2014.973310.
We have previously reported the identification of a novel WD-domain protein, STRAP that plays a role in maintenance of mesenchymal morphology by regulating E-cadherin and that enhances tumorigenicity partly by downregulating CDK inhibitor p21(Cip1). However, the functional mechanism of regulation of
E-cadherin and p21(Cip1) by STRAP is unknown. Here, we have employed STRAP knock out and knockdown cell models (mouse embryonic fibroblast, human cancer cell lines) to show how STRAP downregulates E-cadherin and p21(Cip1) by abrogating the binding of Sp1 to its consensus binding sites. Moreover, ChIP assays suggest that STRAP recruits HDAC1 to Sp1 binding sites in p21(Cip1) promoter. Interestingly, loss of STRAP can stabilize Sp1 by repressing its ubiquitination in G1 phase, resulting in an enhanced expression of p21(Cip1) by >4.5-fold and cell cycle arrest. Using Bioinformatics and Microarray analyses, we have observed that 87% mouse genes downregulated by STRAP have conserved Sp1 binding sites. In NSCLC, the expression levels of STRAP inversely correlated with that of Sp1 (60%). These results suggest a novel mechanism of regulation of E-cadherin and p21(Cip1) by STRAP by modulating Sp1-dependent transcription, and higher expression of STRAP in lung cancer may contribute to downregulation of E-cadherin and p21(Cip1) and to tumor progression.
Gong FR, etal., Oncotarget. 2015 Jul 30;6(21):18469-83.
Protein phosphatase 2A (PP2A) plays an important role in the control of the cell cycle. We previously reported that the PP2A inhibitors, cantharidin and okadaic acid (OA), efficiently repressed the growth of cancer cells. In the present study, we found that PP2A inhibitors arrested the cell cycle a
t the G2 phase through a mechanism that was dependent on the JNK pathway. Microarrays further showed that PP2A inhibitors induced expression changes in multiple genes that participate in cell cycle transition. To verify whether these expression changes were executed in a PP2A-dependent manner, we targeted the PP2A catalytic subunit (PP2Ac) using siRNA and evaluated gene expression with a microarray. After the cross comparison of these microarray data, we identified that CDK1 was potentially the same target when treated with either PP2A inhibitors or PP2Ac siRNA. In addition, we found that the down-regulation of CDK1 occurred in a JNK-dependent manner. Luciferase reporter gene assays demonstrated that repression of the transcription of CDK1 was executed through the JNK-dependent activation of the Sp1 transcription factor. By constructing deletion mutants of the CDK1 promoter and by using ChIP assays, we identified an element in the CDK1 promoter that responded to the JNK/Sp1 pathway after stimulation with PP2A inhibitors. Cantharidin and OA also up-regulated the expression of p21, an inhibitor of CDK1, via autophagy rather than PP2A/JNK pathway. Thus, this present study found that the PP2A/JNK/Sp1/CDK1 pathway and the autophagy/p21 pathway participated in G2/M cell cycle arrest triggered by PP2A inhibitors.
SCOPE: The study was designed to identify the regulatory mechanisms underlying the effects of ethanol exposure on intestinal folate transport and to investigate the reversibility of such effects. METHODS AND RESULTS: Caco-2 cells were grown in control and ethanol containing medium for 96 h. Thereaft
er, one subgroup of cells was shifted on ethanol free medium and grown for next 72 h. For in vivo studies, rats were given 1g ethanol/kg body weight/day either for 3 or 5 months and after 3 months of ethanol treatment, one group of rats received no ethanol for 2 months. A significant decrease in folic acid transport as well as expression of folate transporters was observed on ethanol treatment and the effects were reversible upon removal of ethanol. Ethanol exposure had no impact on CpG island methylation of the folate transporters however, an increase in their mRNA half-life was observed that seems to be a homeostatic mechanism. Chromatin immunoprecipitation assay revealed a decrease in binding of SP1 transcription factor to the promoter regions of folate transporters. CONCLUSION: Reduced binding of SP1 to the promoter region of folate transporters may be a part of the regulatory mechanism resulting in decreased expression of folate transporters on ethanol exposure.
Gazzoli I and Kolodner RD, Mol Cell Biol. 2003 Nov;23(22):7992-8007.
Defects in human DNA mismatch repair have been reported to underlie a variety of hereditary and sporadic cancer cases. We characterized the structure of the MSH6 promoter region to examine the mechanisms of transcriptional regulation of the MSH6 gene. The 5'-flanking region of the MSH6 gene was fo
und to contain seven functional Sp1 transcription factor binding sites that each bind Sp1 and Sp3 and contribute to promoter activity. Transcription did not appear to require a TATA box and resulted in multiple start sites, including two major start sites and at least nine minor start sites. Three common polymorphisms were identified in the promoter region (-557 T-->G, -448 G-->A, and -159 C-->T): the latter two were always associated, and each of these functionally inactivated a different Sp1 site. The polymorphic allele -448 A -159 T was demonstrated to be a common Caucasian polymorphism found in 16% of Caucasians and resulted in a five-Sp1-site promoter that had 50% less promoter activity and was more sensitive to inactivation by DNA methylation than the more common seven Sp1 site promoter allele, which was only partially inactivated by DNA methylation. In cell lines, this five-Sp1-site polymorphism resulted in reduced MSH6 expression at both the mRNA and protein level. An additional 2% of Caucasians contained another polymorphism, -210 C-->T, which inactivated a single Sp1 site that also contributes to promoter activity.
Her S, etal., Mol Pharmacol. 2003 Nov;64(5):1180-8.
The rat phenylethanolamine N-methyltransferase (PNMT) gene promoter contains 1-base pair (bp) overlapping consensus sequences for Sp1 and MAZ transcription factors at -48 and -38 bp, respectively. Gel mobility assays using PC-12-derived RS1 cell nuclear extracts
or in vitro translated proteins showed that Sp1 and MAZ specifically bind to these elements, that MAZ displaces/prevents Sp1 binding, and that Sp1 and MAZ binding is mutually exclusive, with occupancy dependent on each factor's concentration and affinity for its consensus element. In transfection assays, PNMT promoter activation by Sp1 and MAZ depends on promoter length, with -893 bp of sequence yielding greatest activation. Although MAZ has higher affinity for its binding element, it is a less effective activator. Changes in PNMT promoter activity for the constructs pGL3RP60 or pGL3RP893 using a fixed amount of MAZ expression construct and a variable amount of Sp1 expression construct or vice versa confirmed the latter. Mutation of the MAZ or Sp1 sites in pGL3RP60 attenuated but did not eliminate PNMT promoter activity, even though the proteins no longer bind to their consensus elements. Phosphatase treatment of RS1 cell nuclear extracts prevented MAZ- and Sp1-DNA binding complex formation. Although MAZ and Sp1 elevate endogenous PNMT mRNA in RS1 cells, MAZ preferentially increases intron-retaining whereas Sp1 preferentially increases intronless mRNA. Thus, expression of the PNMT gene seems to be modulated through competitive binding of phosphorylated Sp1 and MAZ to their consensus elements in the promoter. In addition, post-transcriptional regulation seems to be another important mechanism controlling PNMT expression.
Dauphinee SM, etal., J Cell Biochem. 2005 Oct 15;96(3):579-88.
The mTOR alpha4 phosphoprotein is a prolactin (PRL)-downregulated gene product that is found in the nucleus of PRL-dependent rat Nb2 lymphoma cells. Alpha4 lacks a nuclear localization signal (NLS) and the mechanism of its nuclear targeting is unknown. Post-translational modification by O-linked bet
a-N-acetylglucosamine (O-GlcNAc) moieties has been implicated in the nuclear transport of some proteins, including transcription factor Sp1. The nucleocytoplasmic enzymes O-beta-N-acetylglucosaminyltransferase (OGT) and O-beta-N-acetylglucosaminidase (O-GlcNAcase) adds or remove O-GlcNAc moieties, respectively. If O-GlcNac moieties contribute to the nuclear targeting of alpha4, a decrease in O-GlcNAcylation (e.g., by inhibition of OGT) may redistribute alpha4 to the cytosol. The present study showed that alpha4 and Sp1 were both O-GlcNAcylated in quiescent and PRL-treated Nb2 cells. PRL alone or PRL + streptozotocin (STZ; an O-GlcNAcase inhibitor) significantly (P Sp1 protein levels, caused a significant decrease in the GlcNAc/Sp1 ratio (P Sp1 to the cytosol. Finally, a 50% downregulation of OGT gene expression by small interfering RNA (i.e., siOGT) partially redistributed both alpha4 and Sp1 to the cytosol. The alpha4 protein partner PP2Ac had no detectable O-GlcNAc moieties and its nuclear distribution was not affected by siOGT. In summary, alpha4 and Sp1 contained O-GlcNAc moieties, which contributed to their nuclear targeting in Nb2 cells.
The expression of a biologically active human IFNlambda4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functiona
l IFNlambda4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C). By using RNAi and overexpression strategies, we also show key roles in IFNL4 gene expression for the virus-inducible TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB), IFN regulatory factor 3 (IRF3), and IRF7. Interestingly, we also observe that overexpression of IFNlambda4 influences IFNL4 promoter activity, which may further be dependent on the retinoic acid-inducible gene-I (RIG-I)-like receptor pathway. Together, our work for the first time reports on the functional characterization of the human IFNL4 promoter.
Wang M, etal., Protein Cell. 2016 Jan;7(1):63-77. doi: 10.1007/s13238-015-0216-7. Epub 2015 Oct 28.
SUMOylation is recently found to function as a targeting signal for the degradation of substrates through the ubiquitin-proteasome system. RNF4 is the most studied human SUMO-targeted ubiquitin E3 ligase. However, the relationship between SUMO proteases, SENPs, and RNF4 remains obscure. There are li
mited examples of the SENP regulation of SUMO2/3-targeted proteolysis mediated by RNF4. The present study investigated the role of SENP3 in the global protein turnover related to SUMO2/3-targeted ubiquitination and focused in particular on the SENP3 regulation of the stability of Sp1. Our data demonstrated that SENP3 impaired the global ubiquitination profile and promoted the accumulation of many proteins. Sp1, a cancer-associated transcription factor, was among these proteins. SENP3 increased the level of Sp1 protein via antagonizing the SUMO2/3-targeted ubiquitination and the consequent proteasome-dependent degradation that was mediated by RNF4. De-conjugation of SUMO2/3 by SENP3 attenuated the interaction of Sp1 with RNF4. In gastric cancer cell lines and specimens derived from patients and nude mice, the level of Sp1 was generally increased in parallel to the level of SENP3. These results provided a new explanation for the enrichment of the Sp1 protein in various cancers, and revealed a regulation of SUMO2/3 conjugated proteins whose levels may be tightly controlled by SENP3 and RNF4.
Nakatsuka H, etal., Am J Physiol Gastrointest Liver Physiol. 2006 Jul;291(1):G26-34. Epub 2006 Feb 23.
Partial hepatectomy causes hemodynamic changes that increase portal blood flow in the remaining lobe, where the expression of immediate-early genes, including plasminogen activator inhibitor-1 (PAI-1), is induced. We hypothesized that a hyperdynamic circulatory state occurring in the remaining lobe
induces immediate-early gene expression. In this study, we investigated whether the mechanical force generated by flowing blood, shear stress, induces PAI-1 expression in hepatocytes. When cultured rat hepatocytes were exposed to flow, PAI-1 mRNA levels began to increase within 3 h, peaked at levels significantly higher than the static control levels, and then gradually decreased. The flow-induced PAI-1 expression was shear stress dependent rather than shear rate dependent and accompanied by increased hepatocyte production of PAI-1 protein. Shear stress increased PAI-1 transcription but did not affect PAI-1 mRNA stability. Functional analysis of the 2.1-kb PAI-1 5'-promoter indicated that a 278-bp segment containing transcription factor Sp1 and Ets-1 consensus sequences was critical to the shear stress-dependent increase of PAI-1 transcription. Mutations of both the Sp1 and Ets-1 consensus sequences, but not of either one alone, markedly prevented basal PAI-1 transcription and abolished the response of the PAI-1 promoter to shear stress. EMSA and chromatin immunoprecipitation assays showed binding of Sp1 and Ets-1 to each consensus sequence under static conditions, which increased in response to shear stress. In conclusion, hepatocyte PAI-1 expression is flow sensitive and transcriptionally regulated by shear stress via cooperative interactions between Sp1 and Ets-1.
Hu J, etal., Oncotarget. 2016 Nov 29;7(48):78557-78565. doi: 10.18632/oncotarget.12447.
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with few therapeutic options. Recently, insight into cancer biology suggested abnormal lipid metabolism to be a risk factor for human malignancies. As a key enzyme implicated in lipid metabolism, PLD1 was elevated in various human cancer as
sociating with malignant phenotypes. However, little was known about its expression and function in PDAC. We showed that PLD1 was elevated in both the cell lines and clinical samples of PDAC, and it positively correlated with vascular invasion (p = 0.041) and responsible for a poor prognosis (p = 0.009). Meanwhile, we also found Sp1 to be elevated in the disease, correlating with vascular invasion (p = 0.007). Moreover, the correlation assay suggested that PLD1 positively correlated with Sp1 in the clinical sample (r = 0.390; p < 0.001) and the cell lines. Finally, we showed that co-high expression of both the factors confers the poorest prognosis for the patients, and that their simultaneous high expression might be an independent prognostic factor (p = 0.001; HR = 3.427; 95% CI 1.629-7.211).
Fibrotic disorders are characterized by an increase in extracellular matrix protein expression and deposition, Duchene Muscular Dystrophy being one of them. Among the factors that induce fibrosis are Transforming Growth Factor type beta (TGF-beta) and the matricellular protein Connective Tissue Gro
wth Factor (CTGF/CCN2), the latter being a target of the TGF-beta/SMAD signaling pathway and is the responsible for the profibrotic effects of TGF-beta. Both CTGF and TGF are increased in tissues affected by fibrosis but little is known about the regulation of the expression of CTGF mediated by TGF-beta in muscle cells. By using luciferase reporter assays, site directed mutagenesis and specific inhibitors in C2C12 cells; we described a novel SMAD Binding Element (SBE) located in the 5' UTR region of the CTGF gene important for the TGF-beta-mediated expression of CTGF in myoblasts. In addition, our results suggest that additional transcription factor binding sites (TFBS) present in the 5' UTR of the CTGF gene are important for this expression and that SP1/SP3 factors are involved in TGF-beta-mediated CTGF expression.
BACKGROUND: Ethanolamine kinase (EK) catalyzes the phosphorylation of ethanolamine, the first step in the CDP-ethanolamine pathway for the biosynthesis of phosphatidylethanolamine (PE). Human EK exists as EK1, EK2alpha and EK2beta isoforms, encoded by two separate genes, named ek1 and ek2. EK activi
ty is stimulated by carcinogens and oncogenes, suggesting the involvement of EK in carcinogenesis. Currently, little is known about EK transcriptional regulation by endogenous or exogenous signals, and the ek gene promoter has never been studied. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we mapped the important regulatory regions in the human ek1 promoter. 5' deletion analysis and site-directed mutagenesis identified a Sp site at position (-40/-31) that was essential for the basal transcription of this gene. Treatment of HCT116 cells with trichostatin A (TSA), a histone deacetylase inhibitor, significantly upregulated the ek1 promoter activity through the Sp(-40/-31) site and increased the endogenous expression of ek1. Chromatin immunoprecipitation assay revealed that TSA increased the binding of Sp1, Sp3 and RNA polymerase II to the ek1 promoter in HCT116 cells. The effect of TSA on ek1 promoter activity was cell-line specific as TSA treatment did not affect ek1 promoter activity in HepG2 cells. CONCLUSION/SIGNIFICANCE: In conclusion, we showed that Sp1 and Sp3 are not only essential for the basal transcription of the ek1 gene, their accessibility to the target site on the ek1 promoter is regulated by histone protein modification in a cell line dependent manner.
Garcia-Ruiz I, etal., J Biol Chem 2002 Aug 23;277(34):30551-8.
Malondialdehyde, the end product of lipid peroxidation, has been shown to stimulate collagen alpha1(I) (Col1a1) gene expression. However, mechanisms of this effect are unclear. The purpose of this study was to clarify these mechanisms. Rat hepatic stellate cells were cultured in the presence of 200
microm malondialdehyde, and the effects on collagen gene expression and the binding of nuclear proteins to the col1a1 promoter were analyzed. Malondialdehyde treatment induced an increase in the cellular levels of col1a1 mRNA that was abrogated by pretreating cells with cycloheximide, p-hydroxymercuribenzoate, pyridoxal 5'-phosphate, and mithramycin. Transient transfections showed that malondialdehyde exerted its effect through regulatory elements located between -220 and -110 bp of the col1a1 promoter. Gel retardation assays demonstrated that malondialdehyde increased the binding of nuclear proteins to two elements located between -161 and -110 bp of the col1a1 promoter. These bindings were supershifted with Sp1 and Sp3 antibodies. Finally, malondialdehyde increased cellular levels of the Sp1 and Sp3 proteins and Sp1 mRNA. Our data indicated that treatment of hepatic stellate cells with malondialdehyde stimulated col1a1 gene expression by inducing the synthesis of Sp1 and Sp3 and their binding to two regulatory elements located between -161 and -110 bp of the col1a1 promoter.
Kaiser UB, etal., J Biol Chem 1998 May 22;273(21):12943-51.
The hypothalamic hormone gonadotropin-releasing hormone (GnRH) plays a critical role in reproductive function by regulating the biosynthesis and secretion of the pituitary gonadotropins. Although it is known that GnRH induces luteinizing hormone beta (LHbeta) gene transcription, the mechanisms by wh
ich this occurs remain to be elucidated. We have shown previously that GH3 cells transfected with the rat GnRH receptor cDNA (GGH3-1' cells) support the expression of a cotransfected fusion gene composed of 797 base pairs of rat LHbeta gene 5'-flanking sequence and the first 5 base pairs of the 5'-untranslated region fused to a luciferase reporter (-797/+5LHbetaLUC) and respond to a GnRH agonist with a 10-fold stimulation of activity. Furthermore, we have shown that DNA sequences at -490/-352 confer GnRH responsiveness to the rat LHbeta gene. We have now identified two putative binding sites for Sp1, a three-zinc-finger transcription factor, within this region. Using electrophoretic mobility shift assay, DNase I footprinting, and methylation interference assays, we demonstrate that Sp1 can bind to these sites and that Sp1 is responsible for DNA-protein complexes formed using GGH3-1' and alphaT3-1 nuclear extracts. Mutations of the Sp1 binding sites, which block binding of Sp1, blunt the stimulation of the LHbeta gene promoter by GnRH. These data define GnRH-responsive elements in the LHbeta 5'-flanking sequence and suggest that Sp1 plays an important role in conferring GnRH responsiveness to the LHbeta subunit gene.
Kavurma MM and Khachigian LM, J Biol Chem 2003 Aug 29;278(35):32537-43. Epub 2003 Jun 9.
Atherosclerosis and restenosis are common vascular disorders that involve excess proliferation of smooth muscle cells (SMCs) in the artery wall. In this study we demonstrate the anti-mitogenic, pro-apoptotic role of the zinc finger transcription factor Sp1 in va
scular SMCs and define the underlying molecular mechanism via its capacity to repress the expression of the cyclin-dependent kinase inhibitor p21WAF1/Cip1 at the level of transcription, mRNA, and protein. SMC proliferation inducible by a dominant-negative mutant form of Sp1 was abrogated by antisense strategies targeting p21WAF1/Cip1. Conversely, antisense p21WAF1/Cip1 induced apoptosis in SMCs overexpressing dominant-negative-Sp1. p21WAF1/Cip1 overexpression alone stimulated proliferation and inhibited apoptosis. Sp1 down-regulated p21WAF1/Cip1 expression in SMCs. Sp1 blocked assembly of cyclin D1-Cdk4-p21WAF1/Cip1 complex formation whose integrity is critical for G1->S transition. Moreover, Rb phosphorylation, which lies immediately downstream of the cyclin D1-Cdk4-p21WAF1/Cip1 complex, was blocked either by Sp1 overexpression or antisense p21WAF1/Cip1. These findings, using complementary approaches, demonstrate the inverse relationship between Sp1 and p21WAF1/Cip1 in SMCs and the capacity of Sp1 to regulate SMC proliferation and apoptosis via its repression of p21WAF1/Cip1.
Wang J, etal., Int J Clin Exp Pathol. 2015 Jun 1;8(6):6936-43. eCollection 2015.
Nasopharyngeal cancer (NPC) is a tumor of epithelial origin with complex etiology. Currently the standard treatment of NPC is radiotherapy, but therapy failure is quite common, making radioresistance an important issue. This study explores the association of specificity protein 1 (Sp1
weight:700;'>Sp1) protein expression with clinicopathological significance and disease prognosis in NPC patients receiving radiotherapy. A total of 82 NPC patients (55 males and 27 females, median age: 48 years old) were enrolled and received radiotherapy between September 2011 and March 2014. Tumor tissue and grossly adjacent normal mucosa were obtained in each patient. Sp1 expression was detected by western blot and immunohistochemical analysis, and the associations with clinicopathological status and radiotherapy response were analyzed. Our Results showed Sp1 protein expression was higher in CNE-1 and CNE-2 nasopharyngeal cancer cells than in normal nasopharyngeal mucosal NP69 cells. All 82 patients' tissue sections were stained positive for the Sp1 protein, and 39 (47.6%) patients showed higher level than adjacent normal mucosa. Sp1-overexpression in the tumor tissue was correlated with a higher tumor stage, nodal status, clinical stage and distant metastasis (P < 0.01). Patients with higher Sp1 expression in pretreatment biopsies had a lower radiotherapy response compared to those with lower expression. In conclusion, Sp1 may play roles in radioresistance of nasopharyngeal cancer which attributes to tumor invasiveness, and serve as a novel prognostic marker of NPC radiotherapy. However, further studies are required to validate our findings in larger samples and explore more detailed mechanisms underlying radioresistance of Sp1.
MicroRNA-7a/b (miR-7a/b) protects cardiac myocytes from apoptosis during ischemia/reperfusion injury; however, its role in angiotensin II (ANG II)-stimulated cardiac fibroblasts (CFs) remains unknown. Therefore, the present study investigated the anti-fibrotic mechanism of miR-7a/b in ANG II-treate
d CFs. ANG II stimulated the expression of specific protein 1 (Sp1) and collagen I in a dose- and time-dependent manner, and the overexpression of miR-7a/b significantly down-regulated the expression of Sp1 and collagen I stimulated by ANG II (100 nM) for 24 h. miR-7a/b overexpression effectively inhibited MMP-2 expression/activity and MMP-9 expression, as well as CF proliferation and migration. In addition, miR-7a/b also repressed the activation of TGF-beta, ERK, JNK and p38 by ANG II. The inhibition of Sp1 binding activity by mithramycin prevented collagen I overproduction; however, miR-7a/b down-regulation reversed this effect. Further studies revealed that Sp1 also mediated miR-7a/b-regulated MMP expression and CF migration, as well as TGF-beta and ERK activation. In conclusion, miR-7a/b has an anti-fibrotic role in ANG II-treated CFs that is mediated by Sp1 mechanism involving the TGF-beta and MAPKs pathways.
Watanabe K, etal., In Vitro Cell Dev Biol Anim. 2016 Feb;52(2):235-42. doi: 10.1007/s11626-015-9959-y. Epub 2015 Oct 20.
Type XI collagen is a cartilage-specific extracellular matrix, and is important for collagen fibril formation and skeletal morphogenesis. We have previously reported that NF-Y regulated the proximal promoter activity of the mouse collagen alpha1(XI) gene (Col11a1) in chondrocytes (Hida et. al. In Vi
tro Cell. Dev. Biol. Anim. 2014). However, the mechanism of the Col11a1 gene regulation in chondrocytes has not been fully elucidated. In this study, we further characterized the proximal promoter activity of the mouse Col11a1 gene in chondrocytes. Cell transfection experiments with deletion and mutation constructs indicated that the downstream region of the NF-Y binding site (-116 to +1) is also necessary to regulate the proximal promoter activity of the mouse Col11a1 gene. This minimal promoter region has no TATA box and GC-rich sequence; we therefore examined whether the GC-rich sequence (-96 to -67) is necessary for the transcription regulation of the Col11a1 gene. Luciferase assays using a series of mutation constructs exhibited that the GC-rich sequence is a critical element of Col11a1 promoter activity in chondrocytes. Moreover, in silico analysis of this region suggested that one of the most effective candidates was transcription factor Sp1. Consistent with the prediction, overexpression of Sp1 significantly increased the promoter activity. Furthermore, knockdown of Sp1 expression by siRNA transfection suppressed the proximal promoter activity and the expression of endogenous transcript of the mouse Col11a1 gene. Taken together, these results indicate that the transcription factor Sp1 upregulates the proximal promoter activity of the mouse Col11a1 gene in chondrocytes.
We recently reported that TNF-related apoptosis-inducing ligand (TRAIL) is important in atherogenesis, since it can induce vascular smooth muscle cell (VSMC) proliferation and arterial thickening following injury. Here we show the first demonstrate that TRAIL siRNA reduces platelet-derived growth fa
ctor-BB (PDGF-BB)-stimulated VSMC proliferation and migration. PDGF-BB-inducible VSMC proliferation was completely inhibited in VSMCs isolated from aortas of TRAIL(-/-) mice; whereas inducible migration was blocked compared to control VSMCs. TRAIL transcriptional control mediating this response is not established. TRAIL mRNA, protein and promoter activity was increased by PDGF-BB and subsequently inhibited by dominant-negative Sp1, suggesting that the transcription factor Sp1 plays a role. Sp1 bound multiple Sp1 sites on the TRAIL promoter, including two established (Sp1-1 and -2) and two novel Sp1-5/6 and -7 sites. PDGF-BB-inducible TRAIL promoter activity by Sp1 was mediated through these sites, since transverse mutations to each abolished inducible activity. PDGF-BB stimulation increased acetylation of histone-3 (ac-H3) and expression of the transcriptional co-activator p300, implicating chromatin remodelling. p300 overexpression increased TRAIL promoter activity, which was blocked by dominant-negative Sp1. Furthermore, PDGF-BB treatment increased the physical interaction of Sp1, p300 and ac-H3, while chromatin immunoprecipitation studies revealed Sp1, p300 and ac-H3 enrichment on the TRAIL promoter. Taken together, our studies demonstrate for the first time that PDGF-BB-induced TRAIL transcriptional activity requires the cooperation of Sp1, ac-H3 and p300, mediating increased expression of TRAIL which is important for VSMC proliferation and migration. Our findings have the promising potential for targeting TRAIL as a new therapeutic for vascular proliferative disorders.
Yen WH, etal., Cancer Med. 2016 Mar;5(3):465-77. doi: 10.1002/cam4.611. Epub 2016 Jan 14.
T-cell lymphoma invasion and metastasis 2 (TIAM2) is a neuron-specific protein that has been found ectopically expressed in hepatocellular carcinoma (HCC). Results from clinical specimens and cellular and animal models have shown that the short form of TIAM2 (TIAM2S) functions as an oncogene in the
tumorigenesis of liver cancer. However, the regulation of TIAM2S ectopic expression in HCC cells remains largely unknown. This study aimed to identify the mechanism underlying the ectopic expression of TIAM2S in liver cancer cells. In this report, we provide evidence illustrating that Sp1 binds directly to the GC box located in the TIAM2S core promoter. We further demonstrated that overexpression of Sp1 in HepaRG cells promotes endogenous TIAM2S mRNA and protein expressions, and knockdown of Sp1 in 2 HCC cell lines, HepG2 and PLC/PRF/5, led to a substantial reduction in TIAM2S mRNA and protein in these cells. Of 60 paired HCC samples, 70% showed a significant increase (from 1.1- to 3.6-fold) in Sp1 protein expression in the tumor cells. The elevated Sp1 expression was highly correlated with both TIAM2S mRNA and protein expressions in these samples. Together, these results illustrate that Sp1 positively controls TIAM2S transcription and that Sp1-mediated transcriptional activation is essential for TIAM2S ectopic expression in liver cancer cells.
Boylan MO, etal., Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1287-95. Epub 2006 Jan 10.
The physiological effects of glucose-dependent insulinotropic polypeptide (GIP) are mediated through specific receptors expressed on target cells. Because aberrant GIP receptor (GIPR) expression has been implicated in abnormal GIP responses associated with type 2 diabetes mellitus and food-induced C
ushing's syndrome, we sought to identify factors that regulate the GIPR. We previously demonstrated that sequences between -1 and -100 of the GIPR gene were sufficient to direct transcription in a rat insulinoma cell line (RIN38). In the present study, we compared the 5'-flanking regions of the rat and human GIPR gene and demonstrated 88% identity within the first 92 bp. Subsequent serial deletion analyses showed that the region between -85 and -40 is essential for maximal promoter activity. Within this region, we identified three putative Sp1 binding motifs, located at positions -77, -60, and -50, that can specifically bind both Sp1 and Sp3. Whereas mutation of the Sp1 sites at -50 and -60 led to 36 and 40% reduction in promoter activity, respectively, mutation of the Sp1 motif at -70 did not affect promoter activity. Cotransfection of S2 Schneider cells with GIPR-luciferase chimeric constructs and either Sp1 or Sp3 expression vectors indicated that both Sp1 and the long form of Sp3 activate transcription through binding to the Sp1 sites located between -100 and -40. Lastly, chromatin immunoprecipitation analyses revealed that both Sp1 and Sp3 bind to the GIPR promoter region in RIN38 cells. These results indicate that cell-specific expression of GIPR is associated with the binding of the transcription factors Sp1 and Sp3 to the GIPR promoter.
Higaki Y, etal., Nucleic Acids Res 2002 Jun 1;30(11):2270-9.
Laminin is a multifunctional heterotrimeric protein present in extracellular matrix where it regulates processes that compose tissue architecture including cell differentiation. Laminin gamma1 is the most widely expressed laminin chain and its absence causes early lethality in mouse embryos. Laminin
gamma1 chain gene (LAMC1) promoter contains several GC/GT-rich motifs including the bcn-1 element. Using the bcn-1 element as a bait in the yeast one-hybrid screen, we cloned the gut-enriched Kruppel-like factor (GKLF or KLF4) from a rat mesangial cell library. We show that GKLF binds bcn-1, but this binding is not required for the GKLF-mediated activation of the LAMC1 promoter. The activity of GKLF is dependent on a synergism with another Kruppel-like factor, Sp1. The LAMC1 promoter appears to have multiple GKLF- and Sp1-responsive elements which may account for the synergistic activation. We provide evidence that the synergistic action of GKLF and Sp1 is dependent on the promoter context and the integrity of GKLF activation and DNA-binding domain. GKLF is thought to participate in the switch from cell proliferation to differentiation. Thus, the Sp1-GKLF synergistic activation of the LAMC1 promoter may be one of the avenues for expression of laminin gamma1 chain when laminin is needed to regulate cell differentiation.
Villegas-Martinez I, etal., Pharmacogenet Genomics. 2016 Mar;26(3):126-32. doi: 10.1097/FPC.0000000000000199.
OBJECTIVE: The aim of this study was to determine the possible relationship between the Sp1 polymorphism of gene COL1A1 and bone metabolism disorder in individuals with epilepsy. METHODS: To this end, we carried out an observational cross-sectional study on 64
patients in monotherapy with an antiepileptic drug. The patients were classified on the basis of the presence of the 's' allele of the COL1A1 Sp1 polymorphism. RESULTS: In the patients with SS, the standardized bone mineral density (sBMD) in the left femoral neck was 1024.9+/-206.1 mg/cm, whereas in the patients with Ss or ss, the density was significantly lower, 917+/-141.4 mg/cm (P=0.027), as was the femoral t-score (0.72+/-1.67 vs. -0.29+/-1.15, P=0.01). The values in the lumbar spine were equally greater in those with SS: 1219.1+/-236.3 versus 1090.5+/-142.7 mg/cm for the sBMD (P=0.018) and 0.67+/-1.98 versus -0.34+/-1.16 for the lumbar t-score (P=0.023). The bone biomarkers showed no significant differences nor did the 25-OH vitamin D and parathormone values. In the patient group treated with valproic acid (VPA), the densitometric values were significantly lower in the Ss or ss patients compared with SS homozygotes: 887.1+/-142.6 versus 1120.6+/-198.2 mg/cm for femoral sBMD (P=0.02), 990+/-98.1 versus 1417+/-251.2 mg/cm for lumbar sBMD (P=0.001). Of the patients who were carriers of the 's' allele and who were treated with VPA, 86% achieved osteopenia values. CONCLUSION: In our study, the presence of the 's' allele of the COL1A1 Sp1 polymorphism in individuals with epilepsy was related to lower bone BMD (lumbar and femoral). This relationship seemed to be further apparent in the patients undergoing treatment with VPA.
Increased flux through the hexosamine biosynthesis pathway (HBP) has been shown to stimulate the expression of a number of genes. We previously demonstrated in glomerular mesangial and endothelial cells that both high glucose concentrations and glucosamine activated the plasminogen activator inhibit
or-1 (PAI-1) gene promoter through the transcription factor, Sp1; and that the glutamine:fructose-6-phosphate amidotransferase inhibitor, 6-diazo-5-oxonorleucine, inhibited the effect of high glucose, but not that of glucosamine. Here, we examined the role of protein kinase C (PKC) isoforms in the regulation of the PAI-1 promoter and Sp1 transcriptional activity by the HBP. In transient transfections, exposure to 2 mm glucosamine or 20 mm glucose for 4 days increased the activities of a PAI-1 promoter-luciferase reporter gene as well as the Sp1 transcriptional activation domain fused to the GAL4 DNA-binding domain cotransfected with a GAL4 promoter-luciferase reporter. Cotransfected dominant negative PKC-betaI and -delta completely blocked the induction of PAI-1 promoter transcription by both sugars, whereas only dominant negative PKC-betaI interfered with Sp1-GAL4 activation. Both glucosamine and high glucose stimulated the in vitro kinase activity of immunoprecipitated PKC-betaI and -delta. Furthermore, 6-diazo-5-oxonorleucine suppressed high glucose-induced PKC kinase activity and Sp1-GAL4 transcriptional activation. These findings demonstrate a requirement for the PKC-betaI and -delta signal transduction pathways in HBP-induced transcription.
As an important epigenetic mechanism, histone acetylation modulates the transcription of many genes and plays important roles in hepatocellular carcinoma (HCC). Aberrations in histone acetylation have been observed in HCC, but the factors that contribute to the aberrations have not been fully elucid
ated. MicroRNAs (miRNAs), which are noncoding RNAs that regulate gene expression, are involved in important epigenetic mechanisms. In this study, we determined that miR-200a and the level of histone H3 acetylation at its promoter were reduced in human HCC tissues in comparison with adjacent noncancerous hepatic tissues. Furthermore, our results suggested that the histone deacetylase 4 (HDAC4) inhibited the expression of miR-200a and its promoter activity and reduced the histone H3 acetylation level at the mir-200a promoter through a Sp1-dependent pathway. Interestingly, we observed that the miR-200a directly targeted the 3'-untranslated region of the HDAC4 messenger RNA and repressed expression of HDAC4. Therefore, miR-200a ultimately induced its own transcription and increased the histone H3 acetylation level at its own promoter. Through targeting HDAC4, miR-200a also induced the up-regulation of total acetyl-histone H3 levels and increased the histone H3 acetylation level at the p21(WAF/Cip1) promoter. Finally, we determined that miR-200a inhibited the proliferation and migration of HCC cells in vivo and in vitro. CONCLUSION: Our findings suggest that the HDAC4/Sp1/miR-200a regulatory network induces the down-regulation of miR-200a and the up-regulation of HDAC4 in HCC. As a result, down-regulation of miR-200a enhances the proliferation and migration of HCC cells and induces aberrant histone acetylation in HCC. These findings highlight a potential therapeutic approach in targeting the HDAC4/Sp1/miR-200a regulatory network for the treatment of HCC.
Shi H, etal., Biochem Biophys Res Commun. 2016 Feb 26;471(1):89-94. doi: 10.1016/j.bbrc.2016.01.174. Epub 2016 Jan 29.
We have reported that the oncoprotein hepatitis B X-interacting protein (HBXIP) is able to promote migration of breast cancer cells. Fibroblast growth factor 4 (FGF4) is a multipotent growth factor and is highly expressed in various human cancers. However, the regulatory mechanism of FGF4 in breast
cancer remains poorly understood. In the present study, we report that HBXIP is able to up-regulate FGF4 to enhance the migration of breast cancer cells. Immunohistochemistry staining showed that HBXIP and FGF4 were highly expressed in clinical metastatic lymph nodes of breast tumor. The expression levels of HBXIP were positively related to those of FGF4 in clinical breast cancer tissues. Then, we validated that HBXIP up-regulated the expression of FGF4 at the levels of promoter, mRNA and protein by luciferase reporter gene assays, reverse transcription-polymerase chain reaction and Western blot analysis. Moreover, we found that HBXIP was able to activate FGF4 promoter through transcriptional factor Sp1 by luciferase reporter gene assays. Chromatin immunoprecipitation assays confirmed that HBXIP coactivated Sp1 to stimulate FGF4 promoter. In function, we showed that HBXIP promoted breast cancer cell migration through FGF4 by wound healing and transwell cell migration assays. Thus, we conclude that the oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells. Therapeutically, HBXIP may serve as a novel target in breast cancer.
Uchida C, etal., J Biol Chem 2002 Oct 18;277(42):39082-92.
Transcription of mitochondrial serine:pyruvate aminotransferase (SPT) mRNA (SPTm-mRNA) in rat liver is unique in that it occurs from the upstream site of the two transcription start sites within the first exon of the SPT gene and is selectively enhanced by cAMP via the protein kinase A (PKA) signali
ng pathway. In this study, we identified the DNA elements and nuclear factors responsible for the basal and PKA-induced activities of the upstream promoter. By using a luciferase reporter assay with HepG2 cells, DNase I footprinting analysis, and gel shift experiments, we identified the binding sites for Sp1 and AP-2 within the regions -125 to -89 and -14 to +10, respectively. Mutational analyses indicated that these regions are essential for the transcription factor binding and the SPT promoter activity. Expression of AP-2 caused a marked increase in the basal promoter activity to about the same level as that achieved by PKA. On the other hand, both the basal and PKA-induced activities were elevated by overexpression of Sp1, its effect on PKA-induced activity being more pronounced with coexpression of CBP and repressed by E1A oncoprotein. These results suggest that AP-2 and Sp1 regulate basal promoter activity, and Sp1 is also involved in PKA-mediated expression of the rat SPT gene in concert with the transcriptional coactivator CBP.
Lecuyer E, etal., Blood. 2002 Oct 1;100(7):2430-40.
The combinatorial interaction among transcription factors is believed to determine hematopoietic cell fate. Stem cell leukemia (SCL, also known as TAL1 [T-cell acute lymphoblastic leukemia 1]) is a tissue-specific basic helix-loop-helix (bHLH) factor that plays a central function in hematopoietic de
velopment; however, its target genes and molecular mode of action remain to be elucidated. Here we show that SCL and the c-Kit receptor are coexpressed in hematopoietic progenitors at the single-cell level and that SCL induces c-kit in chromatin, as ectopic SCL expression in transgenic mice sustains c-kit transcription in developing B lymphocytes, in which both genes are normally down-regulated. Through transient transfection assays and coimmunoprecipitation of endogenous proteins, we define the role of SCL as a nucleation factor for a multifactorial complex (SCL complex) that specifically enhances c-kit promoter activity without affecting the activity of myelomonocytic promoters. This complex, containing hematopoietic-specific (SCL, Lim-only 2 (LMO2), GATA-1/GATA-2) and ubiquitous (E2A, LIM- domain binding protein 1 [Ldb-1]) factors, is tethered to DNA via a specificity protein 1 (Sp1) motif, through direct interactions between elements of the SCL complex and the Sp1 zinc finger protein. Furthermore, we demonstrate by chromatin immunoprecipitation that SCL, E2A, and Sp1 specifically co-occupy the c-kit promoter in vivo. We therefore conclude that c-kit is a direct target of the SCL complex. Proper activation of the c-kit promoter depends on the combinatorial interaction of all members of the complex. Since SCL is down-regulated in maturing cells while its partners remain expressed, our observations suggest that loss of SCL inactivates the SCL complex, which may be an important event in the differentiation of pluripotent hematopoietic cells.
Several genetic polymorphisms are implicated as determinants of bone mineral density (BMD) in postmenopausal women. These include the Sp1 polymorphism of the collagen type I alpha 1 (COLIA1) gene, the FokI and BsmI polymorphisms of the vitamin D receptor (VDR)
gene, and the PvuII and XbaI polymorphisms of the estrogen receptor (ER) gene. The relative importance and the independence of these genetic effects have not been studied simultaneously in the same population. We evaluated the effects of these polymorphisms on lumbar spine BMD among 154 postmenopausal Greek women. BMD tended to differ across Sp1 genotypes (mean 0.842 g/cm2 in SS, 0.851 g/cm2 in Ss, 0.763 in ss, age-adjusted p = 0.056), mostly because ss homozygotes had lower BMD (p = 0.018 compared with SS and Ss). No other polymorphisms were associated with BMD in this population (p = 0.53 for FokI, p = 0.94 for BsmI, p = 0.80 for PvuII, p = 0.91 for XbaI). In multivariate modeling, the effect of ss homozygosity was clinically and statistically significant (-0.105 g/cm2, p = 0.013) after adjusting for age, weight, height, hormone replacement use, and the other four polymorphisms. None of the other four polymorphisms was retained as an independent predictor of BMD in a backward elimination model and no significant synergistic effects were observed when gene interactions were tested. When all five polymorphisms are considered simultaneously, the Sp1 COLIA1 polymorphism seems to have the most unequivocal effect on BMD, at least in postmenopausal women.
Gordon-Shaag A, etal., J Mol Biol. 1998 Jan 16;275(2):187-95.
Chromatin structure and protein-protein interactions play an important role in eukaryotic gene function. Nucleosomal rearrangement at the simian virus 40 (SV40) regulatory region occurs at the late stages of the viral life cycle preceding viral assembly. The SV40 capsid proteins are required for thi
s nucleosomal rearrangement suggesting that they participate in turning-off the viral promoters. In aiming to elucidate the role of the capsid proteins in gene regulation, we studied the interaction between VP3, an internal capsid protein, and the cellular transcription factor Sp1, a major regulator of both the early and late viral promoters. Our results showed that VP3 repressed transcription from the viral early promoter in vitro. We found significant cooperativity between Sp1 and VP3 in specific DNA-binding to the Sp1 binding site. In addition, protein-protein interactions between VP3 and Sp1 in the absence of DNA were observed. These findings have led us to conclude that the novel host-viral Sp1-VP3 complex down regulates viral transcription and further suggest that Sp1 participates in recruiting VP3 to the SV40 minichromosome in SV40 assembly.
BACKGROUND: Sp1 is a ubiquitous transcription factor that mediates the fibrogenic factor transforming growth factor beta (TGF-beta) signals through cooperation with Smad proteins. The transcriptional coactivator p300 is also suggested to play a role in Smad sign
al transduction. METHODS: We investigated the immunohistochemical expression of Sp1 as well as the expression of pSmad2/3 and the coactivator p300 in 157 renal biopsy specimens from patients with various types of glomerulonephritis (GN). Correlations between immunohistochemical, clinical, and histologic parameters were performed. RESULTS: Sp1 exhibited an increased glomerular and proximal tubular expression in all forms of GN compared to controls. The proximal tubular expression of Sp1 was significantly increased in proliferative GNs (p = 0.025), whereas in secondary GNs, there was a significant increase in the molecule's glomerular expression (p = 0.008). Sp1 correlated positively with pSmad2/3 and p300 expression in proximal tubules (r = 0.241, p = 0.018 and r = 0.244, p = 0.014, respectively), while in proliferative GNs, its expression correlated positively with pSmad2/3 expression in glomeruli (r = 0.32, p = 0.028). Sp1 glomerular and proximal tubular immunostaining correlated positively with serum creatinine levels (r = 0.265, p = 0.02 and r = 0.306, p = 0.006, respectively), while its proximal tubular expression showed a similar correlation with interstitial fibrosis (r = 0.213, p = 0.025). Sp1 was constantly detected in hyperplastic lesions and cellular crescents (each 100%), and very often in micro adhesions (94%) and segmentally or globally sclerotic areas (each 83%). CONCLUSIONS: This study documents the upregulation of Sp1 expression in glomeruli and proximal tubules of GN specimens. Our findings suggest a possible cooperation of Sp1 with pSmad2/3 and p300 in mediating renal injury as well as a possible role for this molecule in the pathogenesis and the progression of human GN.
An HJ, etal., Mol Cell Biochem. 2016 Mar;414(1-2):201-8. doi: 10.1007/s11010-016-2672-7. Epub 2016 Feb 23.
Telomere uncapping is thought to be the fundamental cause of replicative cellular senescence, but the cellular machineries mediating this process have not been fully understood. In the present study, we present the role of Sp1 transcription factor in the state o
f telomere uncapping using the TRF2(¿B¿M)-induced senescence model in human diploid fibroblasts. We observed that the expression of Sp1 is down-regulated in the TRF2(¿B¿M)-induced senescence, which was mediated by ATM and p38 MAPK. In addition, overexpression of Sp1 prevented the TRF2(¿B¿M)-induced senescence. Among transcriptional targets of Sp1, expression levels of nuclear transport genes such as karyopherin a, Nup107, and Nup50 were down-regulated in the TRF2(¿B¿M)-induced senescence, which was prevented by Sp1 overexpression. Moreover, inhibition of the nuclear transport by wheat germ agglutinin (an import inhibitor) and leptomycin B (an export inhibitor) induced premature senescence. These results suggest that Sp1 is an anti-senescence transcription factor in the telomere uncapping-induced senescence and that down-regulation of Sp1 leads to the senescence via down-regulation of the nuclear transport.
Sphingosine kinase (SPHK) is known to exert an anti-apoptic role in various cells and cell lines. We previously reported that human brain is rich in SPHK1 (Murate et al. 2001). After showing a high expression of SPHK1 in rat brain, we examined the gene expression mechanism using nerve growth factor
(NGF)-stimulated rat PC12 cells. With RT-PCR, we found that both rat brain and PC12 utilized exon 1d mostly out of eight untranslated first exons. NGF induced an increase in SPHK enzyme activity and protein about double those in PC12 cells, and NGF-induced SPHK1 mRNA was three times higher than in the control. The minimal 5' promoter was determined, and TrkA specific inhibitor K252a inhibited the NGF-induced promoter activity of SPHK1. The truncation or mutation of putative transcription factor-binding motifs revealed that one specificity protein 1 (Sp1) binding motif of the 5' region of exon 1d is prerequisite. Electrophoresis mobility shift assay confirmed the promoter analysis, indicating increased Sp1 protein binding to this motif after NGF treatment. Chromatin immunoprecipitation assay also showed the binding of Sp1 and the promoter region in vivo. These results suggest the signal transduction pathway from NGF receptor TrkA to transcription factor Sp1 protein binding to the promoter Sp1-like motif in NGF-induced rat SPHK1 gene expression.
Xie L and Collins JF, J Biol Chem. 2013 Aug 16;288(33):23943-52. doi: 10.1074/jbc.M113.489500. Epub 2013 Jun 28.
Genes with G/C-rich promoters were up-regulated in the duodenal epithelium of iron-deficient rats including those encoding iron (e.g. Dmt1 and Dcytb) and copper (e.g. Atp7a and Mt1) metabolism-related proteins. It was shown previously that an intestinal copper transporter (Atp7a) was co-regulated w
ith iron transport-related genes by a hypoxia-inducible transcription factor, Hif2alpha. In the current study, we sought to test the role of Sp1 in transcriptional regulation of Atp7a expression during iron deprivation/hypoxia. Initial studies in IEC-6 cells showed that mithramycin, an Sp1 inhibitor, reduced expression of Atp7a and iron transport-related genes (Dmt1, Dcytb, and Fpn1) and blocked their induction by CoCl2, a hypoxia mimetic. Consistent with this, overexpression of Sp1 increased endogenous Atp7a mRNA and protein expression and stimulated Atp7a, Dmt1, and Dcytb promoter activity. Site-directed mutagenesis and functional analysis of a basal Atp7a promoter construct revealed four functional Sp1 binding sites that were necessary for Hif2alpha-mediated induction of promoter activity. Furthermore, chromatin immunoprecipitation (ChIP) assays confirmed that Sp1 specifically interacts with the Atp7a promoter in IEC-6 cells and in rat duodenal enterocytes. This investigation has thus revealed a novel aspect of Atp7a gene regulation in which Sp1 may be necessary for the HIF-mediated induction of gene transcription during iron deficiency/hypoxia. Understanding regulation of Atp7a expression may help further clarify the physiological role of copper in the maintenance of iron homeostasis. Furthermore, this Sp1/Hif2alpha regulatory mechanism may have broader implications for understanding the genetic response of the intestinal epithelium to maintain whole-body iron homeostasis during states of deficiency.
Sugawara A, etal., J Biol Chem 2002 Mar 22;277(12):9676-83.
Thromboxane (TX) A(2) exerts contraction and proliferation of vascular smooth muscle cells (VSMCs) via its specific membrane TX receptor (TXR), possibly leading to the progression of atherosclerosis. A nuclear hormone receptor, peroxisome proliferator-activated receptor (PPAR)-gamma, has recently be
en reported to be expressed in VSMCs. Here we examined a role of PPAR-gamma in TXR gene expression in VSMCs. PPAR-gamma ligands 15-deoxy-Delta(12,14)-prostaglandin J(2) and troglitazone reduced TXR mRNA expression levels as well as cell growth as assessed by [(3)H]thymidine incorporation. Transcriptional activity of the TXR gene promoter was suppressed with PPAR-gamma ligands, and the suppression was augmented further by PPAR-gamma overexpression. By deletion and mutation analyses, the transcription suppression was shown to be the result of a -22/-7 GC box-related sequence (upstream of transcription start site). Electrophoretic mobility shift assays also showed that the sequence was bound by Sp1 but not by PPAR-gamma, and the formation of a Sp1 small middle dotDNA complex was inhibited either by coincubation with PPAR-gamma or PPAR-gamma ligand treatment of VSMCs. Moreover, glutathione S-transferase pull-down assays demonstrated a direct interaction between PPAR-gamma and Sp1. In conclusion, PPAR-gamma suppresses TXR gene transcription via an interaction with Sp1. PPAR-gamma may possibly have an antiatherosclerotic action by inhibiting TXR gene expression in VSMCs.
Lin H, etal., Cell Physiol Biochem. 2009;23(4-6):317-26. doi: 10.1159/000218178. Epub 2009 May 6.
Cardiac hypertrophy is characterized by electrical remolding with increased risk of arrhythmogenesis. Enhanced abnormal automaticity of ventricular cells may contribute to hypertrophic arrhythmias. The pacemaker current I(f), carried by the hyperpolarization-activated channels encoded mainly by the
HCN2 and HCN4 genes in the heart, plays an important role in rhythmogenesis. Their expressions reportedly increase in hypertrophic and failing hearts, contributing to arrhythmogenesis under these conditions. However, how their expressions are controlled remained unclear. We performed a study to characterize the regulatory elements and transcriptional control of HCN2 and HCN4 genes. We identified the transcription start sites by 5'RACE and core promoter regions of these genes using luciferase reporter assay, and revealed the ubiquitous Sp1 protein as a common transactivator of HCN2 and HCN4 genes. We further unraveled robust increases in HCN2/HCN4 transcripts and protein levels, using real-time RT-PCR and Western blot analyses, in a rat model of left ventricular hypertrophy and in angiotensin II-induced neonatal ventricular hypertrophy. The upregulation of HCN2 and HCN4 transcription was accompanied by pronounced elevations of Sp1 and silencing of Sp1 by siRNA prevented overexpression of HCN2/HCN4 in hypertrophic cardiomyocytes. Our data indicate that Sp1 drives HCN2/HCN4 transcription and determines the functional level of HCN2/HCN4 mRNAs, and upregulation of Sp1 underlie the abnormal re-expression of HCN2/HCN4 genes in hypertrophied myocytes. This study also provides the first evidence for the role of Sp1 in the reactivation of 'fetal' cardiac genes, HCN2 and HCN4, in ventricular myocytes, and thereby in the pathological electrical remodeling in hypertrophied myocytes.
Xu Y, etal., Biochem J 2002 Mar 1;362(Pt 2):401-12.
Manganese superoxide dismutase (MnSOD) plays an important role in regulating cellular redox conditions. Expression of MnSOD has been shown to protect against damage by oxidative stress and to suppress the malignant phenotype of human cancer cells. We have previously cloned the human MnSOD (SOD2) gen
e and analysed its 5' proximal promoter, which has been characterized by a lack of a TATA or CAAT box and the presence of multiple GC boxes. To define further the molecular mechanisms for the regulation of MnSOD expression, multiple transcription factor-binding motifs containing overlapping specificity protein 1 (Sp1)- and activator protein (AP)-2-binding sites were identified by DNase I footprinting analysis. Functional studies in three cell lines with different levels of Sp1 and AP-2 proteins suggested that the cellular levels of these proteins may differentially regulate transcription via GC-binding motifs in the human SOD2 promoter. Co-transfection of an Sp1 expression vector resulted in an increase in the transcription of the promoter-driven reporter gene. In contrast, co-transfection of the AP-2 expression vector caused a decrease in transcription. Direct mutagenesis analysis of Sp1- and AP-2-binding sites showed that Sp1 is essential for transcription of the human SOD2 gene, whereas AP-2 plays a negative role in the transcription. Immunoprecipitation of Sp1 and AP-2 proteins demonstrated that Sp1 interacts with AP-2 in vivo. Two-hybrid analysis revealed that interaction between Sp1 and AP-2 plays both a positive and negative role in the transcription of the reporter gene in vivo. Taken together, our data indicate that AP-2 down-regulates transcription of the human SOD2 gene via its interaction with Sp1 within the promoter region. These findings, coupled with our previous observation that several cancer cell lines have mutations in the promoter region of the human MnSOD gene, which lead to an increase in an AP-2-binding site and a decrease in the promoter activity, signal the importance of understanding the promoter structure and the regulation of the human SOD2 gene by Sp1 and AP-2.
The adrenergic and serotonergic stimulations of rat C6 glioma cells have previously been shown to induce the activation of steroid 5alpha-reductase (5alpha-R) gene expression, resulting in their differentiation through the production of neuroactive 5alpha-reduced steroid metabolites. In addition, pr
ogesterone and histone deacetylase (HDAC) inhibitors have also been reported to promote the glial cell differentiation with the enhancement of serotonin-stimulated brain-derived neurotrophic factor gene transcription through the production of 5alpha-reduced neurosteroids, thus suggesting that glial cell differentiation is probably implicated in the protection and survival of neuronal cells in the brain. Therefore, the expression of 5alpha-R gene in glial cells seems physiologically important in maintaining the neural function in the brain, but little is known about the mechanism underlying the regulation of 5alpha-R gene transcription. In the present study, the effect of a HDAC inhibitor trichostatin A (TSA) on 5alpha-R gene transcription in the glioma cells was examined, and TSA was shown to induce the elevation of 5alpha-R mRNA levels through the activation of the 5alpha-R promoter via a mechanism involving Sp1 and Sp3 transcription factors in a time- and concentration-dependent manner. Thus, both Sp1 and Sp3 are considered to play a physiological role in the regulation of 5alpha-R gene expression, and hence the production of 5alpha-reduced neurosteroids in glial cells.
Lian K, etal., Arthritis Rheum. 2005 May;52(5):1431-6.
OBJECTIVE: A common G/T substitution at an Sp1 binding site in intron 1 of the COL1A1 gene has been reported to be associated with reduced bone mineral density and increased risk of osteoporotic fracture. The purpose of this study was to examine whether there i
s an association between COL1A1 Sp1 polymorphism and radiographic osteoarthritis (OA) of the hip in elderly women in the Study of Osteoporotic Fractures. METHODS: Radiographic hip OA status of subjects was defined by the presence of 1 of the following criteria in either hip: a joint space narrowing (JSN) score of >/=3, a Croft summary grade of >/=3, or both definite (score >/=2) osteophytes and JSN in the same hip. Cases of radiographic OA of the hip were further subdivided into those with JSN score >/=3 and those with a femoral osteophyte score >/=2 and JSN score =2. The COL1A1 Sp1 polymorphism was genotyped using allele-specific kinetic polymerase chain reaction in 4,746 women. Multivariate logistic regression was performed to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS: Radiographic OA of the hip was present in 571 women (12%). Of these patients, 325 (57%) had severe JSN (score >/=3), and 131 (23%) had moderate or moderate-to-severe femoral osteophytosis (score >/=2). There was no association of the T/T genotype with either radiographic hip OA or radiographic hip OA characterized by osteophytosis. For radiographic OA of the hip characterized by moderate-to-severe JSN, the odds of disease were significantly reduced among subjects with the T/T compared with the G/G genotype (OR 0.30, 95% CI 0.11-0.81, P = 0.02) and did not change after adjustment for potential confounders (OR 0.36, 95% CI 0.13-0.99, P = 0.048). CONCLUSION: The T/T genotype of the COL1A1 Sp1 polymorphism was associated with a reduced risk of radiographic OA of the hip characterized by JSN. This association should be confirmed in other populations to determine if mechanistic studies are warranted.
Marinovic AC, etal., J Biol Chem 2002 May 10;277(19):16673-81.
The muscle protein catabolism present in rats with insulin-dependent diabetes and other catabolic conditions is generally associated with increased glucocorticoid production and mRNAs encoding components of the ubiquitin-proteasome system. The mechanisms that increase ubiquitin (UbC) expression have
not been identified. We studied the regulation of UbC expression in L6 muscle cells because dexamethasone stimulates the transcription of this gene and others encoding components of the ubiquitin-proteasome pathway. Results of in vivo genomic DNA footprinting experiments indicate that a protein(s) binds to Sp1 sites approximately 50 bp upstream from the UbC transcription start site; dexamethasone changes the methylation pattern at these sites. Sp1 binds to DNA probes corresponding to the rat or human UbC promoter, and treating cells with dexamethasone increases this binding. Deletion and mutation analyses of the rat and human UbC promoters are consistent with an important role of Sp1 in UbC induction by glucocorticoids. Dexamethasone-induced ubiquitin expression is blocked by mithramycin, an inhibitor of Sp1 binding. UO126, a pharmacologic inhibitor of MEK1, also blocks UbC transcriptional activation by dexamethasone; L6 cells transfected to express constitutively active MEK1 exhibit increased UbC promoter activity. Thus, glucocorticoids increase UbC expression in muscle cells by a novel transcriptional mechanism involving Sp1 and MEK1.
Neuroprotective properties of the mood stabilizer valproic acid (VPA) are implicated in its therapeutic efficacy. Heat-shock protein 70 (HSP70) is a molecular chaperone, neuroprotective and anti-inflammatory agent. This study aimed to investigate underlying mechanisms and functional significance of
HSP70 induction by VPA in rat cortical neurons. VPA treatment markedly up-regulated HSP70 protein levels, and this was accompanied by increased HSP70 mRNA levels and promoter hyperacetylation and activity. Other HDAC inhibitors--sodium butyrate, trichostatin A, and Class I HDAC-specific inhibitors MS-275 and apicidin, --all mimicked the ability of VPA to induce HSP70. Pre-treatment with phosphatidylinositol 3-kinase inhibitors or an Akt inhibitor attenuated HSP70 induction by VPA and other HDAC inhibitors. VPA treatment increased Sp1 acetylation, and a Sp1 inhibitor, mithramycin, abolished the induction of HSP70 by HDAC inhibitors. Moreover, VPA promoted the association of Sp1 with the histone acetyltransferases p300 and recruitment of p300 to the HSP70 promoter. Further, VPA-induced neuroprotection against glutamate excitotoxicity was prevented by blocking HSP70 induction. Taken together, the data suggest that the phosphatidylinositol 3-kinase/Akt pathway and Sp1 are likely involved in HSP70 induction by HDAC inhibitors, and induction of HSP70 by VPA in cortical neurons may contribute to its neuroprotective and therapeutic effects.
Rafty LA and Khachigian LM, J Cell Biochem 2002;85(3):490-5.
VHL is the causative gene for von Hippel-Lindau disease and sporadic clear cell renal cancer. It has been shown that pVHL can suppress the expression of certain genes that are overexpressed in renal carcinomas. One such gene is that encoding the potent mitogen and chemoattractant, platelet-derived g
rowth factor B-chain (PDGF-B). The regulatory mechanisms underlying pVHL suppression of PDGF-B expression, however, are completely unknown. This understanding would shed vital light on the control of growth factor gene expression by this tumor suppressor. Here we report that pVHL can repress both endogenous steady-state PDGF-B mRNA expression and PDGF-B promoter-dependent transcription in WKY12-22 cells. Transient transfection analysis utilizing PDGF-B promoter-chloramphenicol acetyl transferase (CAT) reporter constructs revealed that pVHL inhibition of PDGF-B expression is mediated via the Sp1-binding element in the proximal region of the PDGF-B promoter. Recent studies have demonstrated a physical interaction between pVHL and Sp1, which activates the PDGF-B promoter. We show that Sp1 can rescue PDGF-B promoter activity and endogenous PDGF-B mRNA expression from pVHL repression. These findings thus demonstrate a pivotal role for Sp1 in pVHL inhibition of PDGF-B transcription.
Granito A, etal., Am J Gastroenterol. 2010 Jan;105(1):125-31. doi: 10.1038/ajg.2009.596. Epub 2009 Oct 27.
OBJECTIVES: Some patients with primary biliary cirrhosis (PBC) have antinuclear antibodies (ANAs). These ANAs include the "multiple nuclear dots" (MND) staining pattern, targeting promyelocytic leukemia protein (PML) nuclear body (NB) components, such as "speckled 100-kD" protein (Sp1
-weight:700;'>Sp100) and PML. A new PML NB protein, designated as Sp140, was identified using serum from a PBC patient. The aim of this study was to analyze the immune response against Sp140 protein in PBC patients. METHODS: We studied 135 PBC patients and 157 pathological controls with type 1 autoimmune hepatitis, primary sclerosing cholangitis, and systemic lupus erythematosus. We used indirect immunofluorescence and a neuroblastoma cell line expressing Sp140 for detecting anti-Sp140 antibodies, and a commercially available immunoblot for detecting anti-Sp100 and anti-PML antibodies. RESULTS: Anti-Sp140 antibodies were present in 20 (15%) PBC patients but not in control samples, with a higher frequency in antimitochondrial antibody (AMA)-negative cases (53 vs. 9%, P<0.0001). Anti-Sp140 antibodies were found together with anti-Sp100 antibodies in all but one case (19 of 20, 90%) and with anti-PML antibodies in 12 (60%) cases. Anti-Sp140 positivity was not associated with a specific clinical feature of PBC. CONCLUSIONS: Our study identifies Sp140 as a new, highly specific autoantigen in PBC for the first time. The very frequent coexistence of anti-Sp140, anti-Sp100 and anti-PML antibodies suggests that the NB is a multiantigenic complex in PBC and enhances the diagnostic significance of these reactivities, which are particularly useful in AMA-negative cases.
Xu Y, etal., Gene. 2016 May 25;583(1):36-47. doi: 10.1016/j.gene.2016.02.048. Epub 2016 Mar 3.
Recent studies were mainly focus on the cytidine deaminase family genes, which contained a lot of members that varied on the function of catalytic deamination in RNA or DNA and were involved in the process of growth maintenance, host immunity, retroviral infection, tumorigenesis, and drug resistance
with a feature of C-U deamination. In this study, we identified a new member of cytidine deaminase family, NYD-SP15. Previous work showed that the deduced structure of the protein contained two dCMP_cyt_deam domains, which were involved in zinc ion binding. NYD-SP15 was expressed variably in a wide range of tissues, indicating its worthy biological function and creative significances. Sequence analysis, RT-PCR, western blot, flow cytometry, direct-site mutation and GST pull-down assay were performed to analyze the construction and function of NYD-SP15. The results in our studies showed that NYD-SP15 was closely related to deoxycytidylate deaminase and cytidine deaminase, with authentic cytidine deaminase activity in vivo and vitro as well as homo dimerization effects. NYD-SP15 contained nuclear localization sequence (NLS) and nuclear export-signal (NES) and could dynamically shuttle between the nucleus and cytoplasm. Furthermore, NYD-SP15 gene over-expression reduced the cells growth and blocked G1 to S phase, which implied a potential inhibition effect on cell growth.
The role of the FTO gene in obesity development is well established in populations around the world. The NYD-SP18 variant has been suggested to have a similar effect on BMI, but the role of this gene in determining BMI has not yet been verified. The objective of
our study was to confirm the association between NYD-SP18 rs6971019 SNP and BMI in the Slavic population and to analyze i) the gender-specific effects of NYD-SP18 on BMI and ii) the simultaneous effect of FTO rs17817449 and NYD-SP18 on BMI. We analyzed a sample of a large adult population based on the post-MONICA study (1,191 males and 1,368 females). Individuals were analyzed three times over 9 years. NYD-SP18 rs6971019 SNP is related to BMI in males (2000/1 GG 28.3+/-3.7 kg/m(2) vs. +A 27.5+/-3.7 kg/m(2) P<0.0005; in other examinations P<0.05 and <0.005), but not in females (all P values over 0.48 in all three examinations). Further analysis revealed the significant additive effect (but not the interaction) of FTO and NYD-SP18 SNPs on BMI in males (all P<0.01). These results suggest that association between NYD-SP18 rs6971019 SNP and BMI may be restricted to males. Furthermore, variants within NYD-SP18 and FTO genes revealed a significant additive effect on BMI values in males.
Habiger C, etal., J Virol. 2015 Oct 21;90(2):694-704. doi: 10.1128/JVI.02137-15.
High-risk human papillomaviruses (hr-HPV) establish persistent infections in keratinocytes, which can lead to cancer of the anogenital tract. Interferons (IFNs) are a family of secreted cytokines that induce IFN-stimulated genes (ISGs), many of which display antiviral activities. Transcriptome studi
es have indicated that established hr-HPV-positive cell lines display a reduced expression of ISGs, which correlates with decreased levels of interferon kappa (IFN-kappa), a type I IFN constitutively expressed in keratinocytes. Prior studies have also suggested that IFN-beta has anti-hr-HPV activity but the underlying mechanisms are not well understood. The downregulation of IFN-kappa by hr-HPV raises the possibility that IFN-kappa has anti-HPV activity. Using doxycycline-inducible IFN-kappa expression in CIN612-9E cells, which maintain extrachromosomally replicating HPV31 genomes, we demonstrated that IFN-kappa inhibits the growth of these cells and reduces viral transcription and replication. Interestingly, the initiation of viral early transcription was already inhibited at 4 to 6 h after IFN-kappa expression. This was also observed with recombinant IFN-beta, suggesting a common mechanism of IFNs. Transcriptome sequencing (RNA-seq) analysis identified 1,367 IFN-kappa-regulated genes, of which 221 were modulated >2-fold. The majority of those (71%) matched known ISGs, confirming that IFN-kappa acts as a bona fide type I IFN in hr-HPV-positive keratinocytes. RNA interference (RNAi) and cotransfection experiments indicated that the inhibition of viral transcription is mainly due to the induction of Sp100 proteins by IFN-kappa. Consistent with published data showing that Sp100 acts as a restriction factor for HPV18 infection, our results suggest that hr-HPV target IFN-kappa to prevent Sp100 expression and identify Sp100 as an ISG with anti-HPV activity. IMPORTANCE: High-risk HPV can establish persistent infections which may progress to anogenital cancers. hr-HPV interfere with the expression of interferon (IFN)-stimulated genes (ISGs), which is due to reduced levels of IFN-kappa, an IFN that is constitutively expressed in human keratinocytes. This study reveals that IFN-kappa rapidly inhibits HPV transcription and that this is due to the induction of Sp100 proteins. Thus, Sp100 represents an ISG for hr-HPV.
Several variants in strong linkage disequilibrium (LD) at the SP140 locus have been associated with multiple sclerosis (MS), Crohn's disease (CD) and chronic lymphocytic leukemia (CLL). To determine the causal polymorphism, we have integrated high-density data s
ets of expression quantitative trait loci (eQTL), using GEUVADIS RNA sequences and 1000 Genomes genotypes, with MS-risk variants of the high-density Immunochip array performed by the International Multiple Sclerosis Genetic Consortium (IMSGC). The variants most associated with MS were also correlated with a decreased expression of the full-length RNA isoform of SP140 and an increase of an isoform lacking exon 7. By exon splicing assay, we have demonstrated that the rs28445040 variant was the causal factor for skipping of exon 7. Western blots of peripheral blood mononuclear cells from MS patients showed a significant allele-dependent reduction of the SP140 protein expression. To confirm the association of this functional variant with MS and to compare it with the best-associated variant previously reported by GWAS (rs10201872), a case-control study including 4384 MS patients and 3197 controls was performed. Both variants, in strong LD (r(2) = 0.93), were found similarly associated with MS [P-values, odds ratios: 1.9E-9, OR = 1.35 (1.22-1.49) and 4.9E-10, OR = 1.37 (1.24-1.51), respectively]. In conclusion, our data uncover the causal variant for the SP140 locus and the molecular mechanism associated with MS risk. In addition, this study and others previously reported strongly suggest that this functional variant may be shared with other immune-mediated diseases as CD and CLL.
AIM: The study focuses on the analysis of the possible relationship between a common NYD-SP18 (rs6971091, G>A) gene polymorphism and weight loss after lifestyle intervention (combined dietary intake and physical activity) in overweight/obese females. METHODS: We
genotyped 139 unrelated non-diabetic Czech females (49.5 +/- 13.3 years, average BMI at baseline 32.2 +/- 4.6 kg/m(2). Biochemical and anthropometrical measurements were performed before and after ten weeks of lifestyle intervention. CONCLUSION: Overweight/obese female carriers of the NYD-SP18 rs6971091 GG genotype exhibited a more beneficial response to the intensive lifestyle intervention than others.
BACKGROUND: Mutations in the SP110 gene result in infantile onset of the autosomal recessive primary immunodeficiency disease veno-occlusive disease with immunodeficiency syndrome (VODI), which is characterized by hypogammaglobulinemia, T-cell dysfunction, and
a high frequency of hepatic veno-occlusive disease. OBJECTIVES: We sought to further characterize the clinical features, B-lineage cellular immunologic findings, and molecular pathogenesis of this disorder in 9 patients with new diagnoses, including 4 novel mutations from families of Italian, Hispanic, and Arabic ethnic origin. METHODS: Methods used include clinical review; Sanger DNA sequencing of the SP110 gene; determination of transfected mutant protein function by using immunofluorescent studies in Hep-2 cells; quantitation of B-cell subsets by means of flow cytometry; assessments of B-cell function after stimulation with CD40 ligand, IL-21, or both; and differential gene expression array studies of EBV-transformed B cells. RESULTS: We confirm the major diagnostic criteria and the clinical utility of SP110 mutation testing for the diagnosis of VODI. Analysis of 4 new alleles confirms that VODI is caused by reduced functional SP110 protein levels. Detailed B-cell immunophenotyping demonstrated that Sp110 deficiency compromises the ability of human B cells to respond to T cell-dependent stimuli and differentiate into immunoglobulin-secreting cells in vitro. Expression microarray studies have identified pathways involved in B-lymphocyte differentiation and macrophage function. CONCLUSION: These studies show that a range of mutations in SP110 that cause decreased SP110 protein levels and impaired late B-cell differentiation cause VODI and that the condition is not restricted to the Lebanese population.
Wagenknecht N, etal., Viruses. 2015 Jun 5;7(6):2884-907. doi: 10.3390/v7062751.
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still cont
roversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence andWestern blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency.
The decoding of histone post-translational modifications by chromatin-binding modules ("readers") constitutes one major mechanism of epigenetic regulation. Nuclear antigen Sp100 (SPECKLED, 100 kDa), a constitutive component of the promyelocytic leukemia nuclear
bodies, plays key roles in intrinsic immunity and transcriptional repression. Sp100C, a splicing isoform specifically up-regulated upon interferon stimulation, harbors a unique tandem plant homeodomain (PHD) finger and bromodomain at its C terminus. Combining structural, quantitative binding, and cellular co-localization studies, we characterized Sp100C PHD finger as an unmethylated histone H3 Lys(4) (H3K4me0) reader that tolerates histone H3 Thr(3) phosphorylation (H3T3ph), histone H3 Lys(9) trimethylation (H3K9me3), and histone H3 Ser(10) phosphorylation (H3S10ph), hallmarks associated with the mitotic chromosome. In contrast, whereas H3K4me0 reader activity is conserved in Sp140, an Sp100C paralog, the multivalent tolerance of H3T3ph, H3K9me3, and H3S10ph was lost for Sp140. The complex structure determined at 2.1 Å revealed a highly coordinated lysine ¿-amine recognition sphere formed by an extended N-terminal motif for H3K4me0 readout. Interestingly, reader pocket rigidification by disulfide bond formation enhanced H3K4me0 binding by Sp100C. An additional complex structure solved at 2.7 Å revealed that H3T3ph is recognized by the arginine residue, Arg(713), that is unique to the PHD finger of Sp100C. Consistent with a restrictive cellular role of Sp100C, these results establish a direct chromatin targeting function of Sp100C that may regulate transcriptional gene silencing and promyelocytic leukemia nuclear body-mediated intrinsic immunity in response to interferon stimulation.
We describe mutations in the PML nuclear body protein Sp110 in the syndrome veno-occlusive disease with immunodeficiency, an autosomal recessive disorder of severe hypogammaglobulinemia, combined T and B cell immunodeficiency, absent lymph node germinal centers
, absent tissue plasma cells and hepatic veno-occlusive disease. This is the first report of the involvement of a nuclear body protein in a human primary immunodeficiency and of high-penetrance genetic mutations in hepatic veno-occlusive disease.
Saare M, etal., J Immunol Res. 2015;2015:526518. doi: 10.1155/2015/526518. Epub 2015 Aug 11.
The SP100 family members comprise a set of closely related genes on chromosome 2q37.1. The widely expressed SP100 and the leukocyte-specific proteins SP110 and SP1
700;'>SP140 have been associated with transcriptional regulation and various human diseases. Here, we have characterized the SP100 family member SP140L. The genome sequence analysis showed the formation of SP140L gene through rearrangements of the two neighboring genes, SP100 and SP140, during the evolution of higher primates. The SP140L expression is interferon-inducible with high transcript levels in B cells and other peripheral blood mononuclear cells. Subcellularly, SP140L colocalizes with SP100 and SP140 in nuclear structures that are devoid of SP110, PML, or p300 proteins. Similarly to SP100 and SP140 protein, we detected serum autoantibodies to SP140L in patients with primary biliary cirrhosis using luciferase immunoprecipitation system and immunoblotting assays. In conclusion, our results show that SP140L is phylogenetically recent member of SP100 proteins and acts as an autoantigen in primary biliary cirrhosis patients.
Liu Y, etal., Cell Immunol. 2015 Nov-Dec;298(1-2):18-24. doi: 10.1016/j.cellimm.2015.08.004. Epub 2015 Aug 18.
Sperm protein 17 (SP17), a cancer/testis antigen, is expressed by non-small cell lung cancer (NSCLC). This study examined whether dendritic cells (DC) from human umbilical cord blood (UCB) could be induced for SP17 express
ion and induce antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) against NSCLC in vitro. We generated recombinant adenovirus of Ad-SP17 and control Ad-null. Infection with Ad-SP17, but not control, induced higher levels of SP17 expression in UCB-derived DC-Ad-SP17. Infection with Ad-SP17 significantly increased the frequency of CD80(+), CD83(+), CD86(+), and HLA-DR(+) DC that produced higher levels of IL-12, but lower IL-10. Co-culture of DC-Ad-SP17 with autologous UCB lymphocytes induced high frequency of IFNgamma(+) CD8(+) CTLs, which had selective cytotoxicity against SP17(+) lung cancer CRL-5922 cells in a HLA-I restrictive manner. Thus, UCB-derived DC modulated for SP17 expression induced antigen-specific anti-tumor immunity against SP17(+) NSCLC, and SP17 may be a valuable target for development of immunotherapy against SP17(+) NSCLC.
STUDY OBJECTIVES: We hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA). METHODS: Illumina's (San Diego, CA, USA) DNA methylation 27-K assay was used to
identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB). RESULTS: Microarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (-114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (-531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (-608/-618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (-194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS. CONCLUSIONS: IL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA. COMMENTARY: A commentary on this article appears in this issue on page 723.