Heuer JG, etal., Crit Care Med. 2004 Jul;32(7):1570-8.
OBJECTIVE: To evaluate protein C and other factors associated with the septic response as predictors of mortality in a clinically relevant animal model of sepsis. DESIGN: Laboratory investigation. SETTING: Eli Lilly and Company discovery research laboratory. SUBJECTS: Forty female Sprague Dawley rat
s weighing 245-265 g. INTERVENTIONS: Polyethylene catheters were surgically implanted into the femoral vein and sepsis was induced by cecal ligation and puncture (CLP). A solution of 5% dextrose in 0.9 % saline was continuously infused via femoral catheters immediately following surgery. Blood sampling was done before surgery and at 6 and 20 hrs after surgery. Rats were then monitored for survival out to 4 days. MEASUREMENTS AND MAIN RESULTS: Blood collections were used to measure blood glucose, bacteremia, plasma protein C, D-dimer, hormones, chemokines, cytokines, and myoglobin (as a marker of organ damage). Mortality was categorized into three groups: early death (before 30 hrs post-CLP), late death (after 30 hrs post-CLP), and survivors (96 hrs post-CLP). Compared with survivors, early death rats had statistically significant differences in 30 variables indicative of severe inflammation, coagulopathy, and muscle damage including less bacterial clearance, hypoglycemia, lower plasma protein C, higher plasma D dimer, higher plasma cytokine/ chemokines, and higher plasma myoglobin concentrations. Twenty variables had a moderate to strong correlation with time of death. Receiver operator characteristic curves generated from a simple logistic regression model indicated that KC and macrophage inflammatory protein-2, rodent homologues of the human growth related oncogene CXC chemokine family, and protein C were the best predictors of mortality in this model. CONCLUSIONS: The data from this study indicate that an early decrease in protein C concentration predicts poor outcome in a rat sepsis model. The data further indicate that increases in the CXC chemokines macrophage inflammatory protein-2 and KC precede poor outcome.
Low levels of protein C (PC) predict outcome as early as 10 h after insult in a rat polymicrobial sepsis model and were associated with suppression of PC mRNA, upstream transcription factor FoxA2, and cofactor hepatocyte nuclear factor 6 (HNF6). Small interfering RNA suppression of FoxA2 in isolated
hepatocytes demonstrated regulation of both its cofactor HNF6 and PC. Our data suggest that reduced FoxA2 may be important in the suppression of PC and resulting poor outcome in sepsis.
Sperber BR, etal., J Neurosci 2001 Mar 15;21(6):2039-47.
We analyzed the role of Fyn tyrosine kinase in CNS myelination by using fyn(-/-) null mutant mice, which express no Fyn protein. We found a severe myelin deficit in forebrain at all ages
from 14 d to 1 year. The deficit was maximal at 1 month of age and was similar regardless of mouse strain background or whether it was determined by bulk isolation of myelin or by quantitation of myelin basic protein. To determine the cellular basis of the myelin deficit, we counted oligodendrocytes in tissue sections of mice expressing oligodendrocyte-targeted beta-galactosidase, and we used light and electron microscopy to examine the number and morphology of myelinated fibers and size of myelinated CNS structures. All of these parameters were reduced in fyn(-/-) mice. Unexpectedly, there were regional differences in the myelin deficit; in contrast to forebrain, fyn(-/-) cervical spinal cord exhibited no reduction in myelin content, number of oligodendrocytes, or number of myelinated fibers, nor was myelination delayed developmentally. We found that oligodendrocytes express Src, but there was no significant reduction of myelin content in null mutants lacking the Fyn-related kinases Src, Yes, or Lyn. Finally, we investigated the molecular features of Fyn that are required for myelination and found that a single amino acid substitution, which abolishes the tyrosine kinase activity of Fyn, resulted in a myelin deficit as great as that observed in the complete absence of Fyn protein. These results demonstrate that Fyn plays a unique role in myelination, one that requires its kinase activity.
Zamora-Leon SP, etal., J Biol Chem. 2005 Jan 21;280(3):1962-70. Epub 2004 Nov 9.
The Src homology 3 (SH3) domain of Fyn binds to a conserved PXXP motif on microtubule-associated protein-2. Co-transfections into COS7 cells and in vitro kinase assays performed with Fyn and wild-type, or mutant MAP-2c, dete
rmined that Fyn phosphorylated MAP-2c on tyrosine 67. The phosphorylation generated a consensus sequence for the binding of the SH2 domain of Grb2 (pYSN). Pull-down assays with SH2-Grb2 from human fetal brain homogenates, and co-immunoprecipitation of Grb2 and MAP-2 confirmed the interaction in vivo, and demonstrated that MAP-2c is tyrosine-phosphorylated in human fetal brain. Filter overlay assays confirmed that the SH2 domain of Grb2 binds to human MAP-2c following incubation with active Fyn. Enzyme-linked immunosorbent assays confirmed the interaction between the SH2 domain of Grb2 and a tyrosine-phosphorylated MAP-2 peptide spanning the pY(67)SN motif. Thus, MAP-2c can directly recruit multiple signaling proteins important for central nervous system development.
Huculeci R, etal., Protein Sci. 2015 Dec;24(12):1964-78. doi: 10.1002/pro.2806. Epub 2015 Oct 7.
Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn S
H2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide-bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand.
Lee G, etal., J Neurosci 2004 Mar 3;24(9):2304-12.
The abnormal phosphorylation of tau protein on serines and threonines is a hallmark characteristic of the neurofibrillary tangles of Alzheimer's disease (AD). The discovery that tau could be phosphorylated on tyrosine and evidence that Abeta signal transduction involved tyrosine phosphorylation led
us to question whether tyrosine phosphorylation of tau occurred during the neurodegenerative process. In this study we determined that human tau tyr18 was phosphorylated by the src family tyrosine kinase fyn. By developing both polyclonal and monoclonal probes specific for phospho-tyr18, we found that the phosphorylation of tau at tyr18 occurred at early developmental stages in mouse but was absent in the adult. Our phosphospecific probes also revealed that paired helical filament preparations exhibited phospho-tyr18 reactivity that was sensitive to phosphotyrosine-specific protein phosphatase treatment. Moreover, immunocytochemical studies indicated that tyrosine phosphorylated tau was present in the neurofibrillary tangles in AD brain. However, the staining pattern excluded neuropil threads and dystrophic neurites indicating that tyrosine phosphorylated tau was distributed in AD brain in a manner dissimilar from other abnormally phosphorylated tau. We also found evidence suggesting that differentially phosphorylated tau existed within degenerating neurons. Our data add new support for a role for fyn in the neurodegenerative process.
NADPH oxidases (Noxes) produce ROS that regulate cell growth and death. NOX4 expression in cardiomyocytes (CMs) plays an important role in cardiac remodeling and injury, but the posttranslational mechanisms that modulate this enzyme are poorly understood. Here, we determined that FYN
eight:700;'>FYN, a Src family tyrosine kinase, interacts with the C-terminal domain of NOX4. FYN and NOX4 colocalized in perinuclear mitochondria, ER, and nuclear fractions in CMs, and FYN expression negatively regulated NOX4-induced O2- production and apoptosis in CMs. Mechanistically, we found that direct phosphorylation of tyrosine 566 on NOX4 was critical for this FYN-mediated negative regulation. Transverse aortic constriction activated FYN in the left ventricle (LV), and FYN-deficient mice displayed exacerbated cardiac hypertrophy and dysfunction and increased ROS production and apoptosis. Deletion of Nox4 rescued the exaggerated LV remodeling in FYN-deficient mice. Furthermore, FYN expression was markedly decreased in failing human hearts, corroborating its role as a regulator of cardiac cell death and ROS production. In conclusion, FYN is activated by oxidative stress and serves as a negative feedback regulator of NOX4 in CMs during cardiac remodeling.
Yagi T, etal., Nature 1993 Dec 23-30;366(6457):742-5.
Non-receptor-type tyrosine kinases of the Src family, such as Src, Yes and Fyn, are strongly expressed in the brain and have been suggested to have an important function in the central nervous system. We generated Fyn-defici
ent mice by inserting the beta-galactosidase gene (lacZ) into the fyn gene. The homozygous Fyn-mutant neonates from homozygous Fyn-deficient parents died because of a suckling problem. Neonates were, however, able to suckle milk normally when the homozygous mother's mammary glands had been activated by suckling of a heterozygous or wild-type pup. In these homozygous pups, the modified glomerular complex of the olfactory bulb, which had been suggested to play a role in perceiving pheromones, was abnormal in shape and reduced in size, and the hippocampal cell-layer was undulated. These results suggest that Fyn may be involved in the initial step of instinctive suckling behaviour in neonates.
Du C, etal., FEBS Lett. 2016 Feb;590(3):408-18. doi: 10.1002/1873-3468.12069. Epub 2016 Feb 1.
Kruppel-like factor 5 (KLF5) promotes cell proliferation of bladder cancer. However, whether KLF5 regulates other cell processes in bladder cancer is not clear. We found that KLF5 increases cell migration and lamellipodia formation, expression of FYN and phospho
rylation of FAK in bladder cancer cells. In addition, KLF5 promotes transcription of FYN through binding to its promoter. FYN overexpression rescues cell migration and lamellipodia formation reduced by KLF5 knockdown. Furthermore, the KLF5/FYN/p-FAK axis is necessary for lysophosphatidic acid (LPA) to promote cell migration. Our findings indicate that both KLF5 and FYN are important in the regulation of cell migration in bladder cancer cells. We propose the KLF5/FYN/p-FAK axis as a potential therapeutic target in bladder cancer.
Arnaud L, etal., Curr Biol. 2003 Jan 8;13(1):9-17.
BACKGROUND: Disabled-1 (Dab1) is an intracellular adaptor protein that regulates migrations of various classes of neurons during mammalian brain development. Dab1 function depends on its tyrosine phosphorylation, which is stimulated by Reelin, an extracellular signaling molecule. Reelin increases th
e stoichiometry of Dab1 phosphorylation and downregulates Dab1 protein levels. Reelin binds to various cell surface receptors, including two members of the low-density lipoprotein receptor family that also bind to Dab1. Mutations in Dab1, its phosphorylation sites, Reelin, or the Reelin receptors cause a common phenotype. However, the molecular mechanism whereby Reelin regulates Dab1 tyrosine phosphorylation is poorly understood. RESULTS: We found that Reelin-induced Dab1 tyrosine phosphorylation in neuron cultures is inhibited by acute treatment with pharmacological inhibitors of Src family, but not Abl family, kinases. In addition, Reelin stimulates Src family kinases by a mechanism involving Dab1. We analyzed the Dab1 protein level and tyrosine phosphorylation stoichiometry by using brain samples and cultured neurons that were obtained from mouse embryos carrying mutations in Src family tyrosine kinases. We found that fyn is required for proper Dab1 levels and phosphorylation in vivo and in vitro. When fyn copy number is reduced, src, but not yes, becomes important, reflecting a partial redundancy between fyn and src. CONCLUSIONS: Reelin activates Fyn to phosphorylate and downregulate Dab1 during brain development. The results were unexpected because Fyn deficiency does not cause the same developmental phenotype as Dab1 or Reelin deficiency. This suggests additional complexity in the Reelin signaling pathway.
Liu Q, etal., Am J Reprod Immunol. 2016 May;75(5):569-79. doi: 10.1111/aji.12498. Epub 2016 Feb 19.
PROBLEM: Spontaneous abortion is a poorly understood phenomenon, although fetomaternal intolerance is known to play an important role in its pathogenesis. The tyrosine-specific phosphotransferase Fyn has been reported as a significant regulator in imm
une response. However, its role in fetomaternal immune tolerance and contribution to spontaneous abortion remains unclear. METHODS OF STUDY: Fyn expression was evaluated at the fetomaternal interface of normal pregnant and abortion-prone mice, as well as in decidual tissue obtained from normal human pregnancies and idiopathic miscarriages. A Fyn inhibitor was administrated into the LPS-induced abortion mice to investigate the variation of embryo resorption and local immunity. RESULTS: Fyn expression fluctuated with the progress of normal pregnancy and was elevated in abortion-prone mice and patients with recurrent spontaneous abortion. The Fyn inhibitor reversed LPS-induced embryo absorption and aberrant inflammatory status including redundant expression of IRF4 and increased proportion of Th17 cells. CONCLUSION: Fyn is confirmed as a negative regulator in fetomaternal immune tolerance, through promoting Th17 cell expansion and proinflammatory factors expression.
Palacios EH and Weiss A, Oncogene. 2004 Oct 18;23(48):7990-8000.
The function of the Src-family kinases (SFKs) Lck and Fyn in T cells has been intensively studied over the past 15 years. Animal models and cell line studies both indicate a critical role for Lck and Fyn in proximal T-cell a
ntigen receptor (TCR) signal transduction. Recruited SFKs phosphorylate TCR ITAMs (immunoreceptor tyrosine-based activation motifs) in the CD3 and zeta chains, which then serve as docking sites for Syk-family kinases. SFKs then phosphorylate and activate the recruited Syk-family kinase. Lck and Fyn are spatially segregated in cell membranes due to differential lipid raft localization, and may undergo sequential activation. In addition to the CD4 and CD8 coreceptors, a recently described adaptor, Unc119, may link SFKs to the TCR. CD45 and Csk provide positive and negative regulatory control of SFK functions, respectively, and Csk is constitutively bound to the transmembrane adapter protein, PAG/Cbp. TCR-based signaling is required at several stages of T-cell development, including at least pre-TCR signaling, positive selection, peripheral maintenance of naive T cells, and lymphopenia-induced proliferation. SFKs are required for each of these TCR-based signals, and Lck seems to be the major contributor.
Li H, etal., Front Pharmacol. 2022 Feb 3;13:769827. doi: 10.3389/fphar.2022.769827. eCollection 2022.
Drug-associated context-induced relapse of cocaine-seeking behaviour requires the retrieval of drug-associated memory. Studies exploring the underlying neurobiological mechanism of drug memory formation will likely contribute to the development of treatments for drug addiction and the prevention of
relapse. In our study, we applied a cocaine-conditioned place preference (CPP) paradigm and a self-administration paradigm (two drug-associated memory formation model) to confirm the hypothesis that the Src kinase Fyn critically regulates cocaine-associated memory formation in the hippocampus. For this experiment, we administered the Src kinase inhibitor PP2 into the bilateral hippocampus before cocaine-CPP and self-administration training, and the results showed that pharmacological manipulation of the Src kinase Fyn activity significantly attenuated the response to cocaine-paired cues in the cocaine-CPP and self-administration paradigms, indicating that hippocampal Fyn activity contributes to cocaine-associated memory formation. In addition, the regulation of cocaine-associated memory formation by Fyn depends on Tau expression, as restoring Tau to normal levels disrupted cocaine memory formation. Together, these results indicate that hippocampal Fyn activity plays a key role in the formation of cocaine-associated memory, which underlies cocaine-associated contextual stimulus-mediated regulation of cocaine-seeking behaviour, suggesting that Fyn represents a promising therapeutic target for weakening cocaine-related memory and treating cocaine addiction.
An L, etal., Genet Mol Res. 2015 May 18;14(2):5304-9. doi: 10.4238/2015.May.18.23.
Swainsonine (SW), an extract from Astragalus membranaceus, represents a new class of compounds that inhibit growth and induce apoptosis in a cancer model. In this study, we demonstrated the effect of Fyn on SW-induced apoptosis in 293T cells. Western blotting w
as used to measure the expression of the apoptosis-related factors caspase-3, Bcl-2, Bax, and the key factor Akt (also known as protein kinase B). Apoptosis increased dramatically after treatment with SW. Unlike the control group, after transfection with Fyn, the expression of Bcl-2, in contrast to Bax, was markedly upregulated. The results also showed that the protein expression levels of Akt and phosphorylated Akt were markedly increased. Our results establish that Fyn can arrest SW-induced apoptosis via the activity of Akt and its effective phosphorylation in 293T cells.
Fyn, a member of the Src family of nonreceptor tyrosine kinases, promotes central nervous system myelination during development; however the mechanisms mediating this effect remain unknown. Here we show that Fyn phosphorylat
ion is modulated by BDNF in vivo. Concordant with this, we find that BDNF stimulates Fyn phosphorylation in myelinating cocultures, an effect dependent on oligodendroglial expression of TrkB. Importantly, PP2, a pharmacological inhibitor of Src family kinases, not only abrogated the promyelinating influence of BDNF in vitro, but also attenuated BDNF-induced phosphorylation of Erk1/2 in oligodendrocytes. Over-expression of Fyn in oligodendrocytes significantly promotes phosphorylation of Erk1/2, and promotes myelination to the extent that exogenous BDNF exerts no additive effect in vitro. In contrast, expression of a kinase-dead mutant of Fyn in oligodendrocytes significantly inhibited BDNF-induced activation of Erk1/2 and abrogated the promyelinating effect of BDNF. Analysis of white matter tracts in vivo revealed that phosphorylated Fyn primarily colocalized with mature oligodendrocytes, and was rarely observed in oligodendrocyte progenitor cells, a profile that closely parallels the detection of phosphorylated Erk1/2 in the developing central nervous system. Taken together, these data identify that Fyn kinase exerts a key role in mediating the promyelinating influence of BDNF. Here we identify a pathway in which BDNF activation of oligodendroglial TrkB receptors stimulates the phosphorylation of Fyn, a necessary step required to potentiate the phosphorylation of Erk1/2, which in turn regulates oligodendrocyte myelination.
Liu X, etal., J Biol Chem. 2012 May 18;287(21):17503-17516. doi: 10.1074/jbc.M111.317610. Epub 2012 Mar 20.
Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanis
ms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.
The tyrosine kinase Fyn phosphorylates tyrosine residues on key targets involved in early T-cell signal transduction. T-cell signal transduction is one essential step for acute transplant rejection. The aim of this study was to evaluate the association of ... (more)
n style='font-weight:700;'>Fyn -93A>G single nucleotide polymorphism (SNP) (rs706895) with the susceptibility to acute rejection episodes in liver transplantation. In total, 72 liver transplant recipients with one biopsy proven acute rejection (S-BPAR), 56 with multiple BPAR (M-BPAR), 105 without BPAR (No-BPAR), and 145 healthy controls were enrolled in this case-control study. The SNP was genotyped by polymerase chain reaction-allele specific restriction enzyme analysis (PCR-ASRA) and was analyzed for a recessive and a dominant model. The Fyn -93G allele exhibits in healthy controls a statistically significant lower frequency than in liver recipients (18% vs. 24%; p=0.046) or in liver recipients with BPAR (18% vs. 27%; p=0.017). However, the genotype and allele frequencies of the Fyn -93A>G SNP demonstrate no significant differences between recipients with acute rejection episodes (S-BPAR and M-BPAR) and No-BPAR recipients. Thus our results provide no evidence that the Fyn -93A>G SNP contributes to the susceptibility to acute liver transplant rejection in a Caucasian population.
Yaka R, etal., J Neurosci 2003 May 1;23(9):3623-32.
Alcohol (ethanol) abuse is a major societal problem. Although ethanol is a structurally simple, diffusible molecule, its sites of action are surprisingly selective, and the molecular mechanisms underlying specificity in ethanol actions are not understood. The NMDA receptor channel is one of the main
targets for ethanol in the brain. We report here that the brain region-specific compartmentalization of Fyn kinase determines NMDA receptor sensitivity to ethanol. We demonstrate that, in the hippocampus but not in the cerebral cortex, Fyn is targeted to the NR2B subunit of the NMDA receptor by the scaffolding protein RACK1. During acute exposure to ethanol, RACK1 is dissociated from the complex, thereby facilitating Fyn-mediated phosphorylation of NR2B, which enhances channel activity, counteracting the inhibitory actions of ethanol. In this way, the selective scaffolding can account for the ethanol-induced acute tolerance of NMDA receptor activity that is detected in the hippocampus but not in the cerebral cortex. The phosphorylation-dependent, region-specific activities of ethanol on the NMDA receptor provide a compelling molecular explanation that accounts for the selective activities of ethanol and may have important implications for elucidating pathways leading to alcohol addiction.
Nonreceptor protein tyrosine kinases phosphorylate proteins, thereby activating many intracellular signaling pathways and mediating protein-protein interactions. Protein phosphorylation is regulated in large part by the subcellular localization of these kinases and their respective substrates. Src i
s the most studied of these kinases, although other members of the Src family have been shown to be important in the differentiation of specific cell types. Src and Src family members are reported to be membrane-associated, but detergent-extraction studies have demonstrated a major difference in the solubility of Src compared with other members of the Src family (Fgr, Fyn, Lck, Lyn, and Yes), suggesting that their subcellular distributions may be different. By immunoelectron microscopy, we demonstrate that, unlike Src, the Src-related kinases are associated with electron-dense cytoplasmic domains and plasma membrane domains that correspond in size and frequency to endocytotic vesicles and coated pits. Clusters of labeling for these kinases also were seen adjacent to granule membranes. These kinases colocalize with the coated vesicle protein, clathrin, confirming their association with this class of endocytotic vesicle. We hypothesize that this vesicular association of Src-related kinases indicates a role for them in the endocytotic vesicle-mediated uptake and trafficking of plasma proteins into platelet granules.
Okamoto M, etal., J Cell Biochem. 2016 Apr;117(4):894-903. doi: 10.1002/jcb.25373. Epub 2015 Oct 20.
The mitotic spindle is the major piece of cellular machinery essential for faithful chromosome segregation. Whereas Fyn, a member of Src-family kinases, is known to be localized to the meiotic and mitotic spindle microtubules, the role of Fyn
ht:700;'>Fyn in mitotic spindle formation has not yet been completely elucidated. In this study, we studied the role of Fyn in spindle formation and effects on M-phase progression. Re-expression of Fyn induced increases in the fluorescence intensity of mitotic spindle microtubules in SYF cells having triple knock-out mutations of c-Src, c-Yes, and Fyn. Cold treatment results showed that Fyn increases the maximum length of microtubules in HeLa S3 cells in a manner dependent on Fyn kinase activity. Complete depolymerization of microtubules under cold treatment and the following release into 37 degrees C revealed that the increase in the microtubule length in Fyn-expressing cells may be attributed to the promotion of microtubule polymerization. After cold treatment, Fyn promotes the accumulation of EB1, which is a plus-end tracking protein and facilitates microtubule growth, in a manner dependent on the kinase activity. Furthermore, Fyn accelerates the M phase progression of cells from nocodazole arrest. These results suggest that Fyn facilitates mitotic spindle formation through the increase in microtubule polymerization, resulting in the acceleration of M-phase progression.
Amyloid-beta (Aß) oligomers are thought to trigger Alzheimer's disease pathophysiology. Cellular prion protein (PrP(C)) selectively binds oligomeric Aß and can mediate Alzheimer's disease-related phenotypes. We examined the specificity, distribution and signaling of Aß-PrP(C) complexes, seeking to u
nderstand how they might alter the function of NMDA receptors (NMDARs) in neurons. PrP(C) is enriched in postsynaptic densities, and Aß-PrP(C) interaction leads to Fyn kinase activation. Soluble Aß assemblies derived from the brains of individuals with Alzheimer's disease interacted with PrP(C) to activate Fyn. Aß engagement of PrP(C)-Fyn signaling yielded phosphorylation of the NR2B subunit of NMDARs, which was coupled to an initial increase and then a loss of surface NMDARs. Aß-induced dendritic spine loss and lactate dehydrogenase release required both PrP(C) and Fyn, and human familial Alzheimer's disease transgene-induced convulsive seizures did not occur in mice lacking PrP(C). These results delineate an Aß oligomer signal transduction pathway that requires PrP(C) and Fyn to alter synaptic function, with deleterious consequences in Alzheimer's disease.
Grant SG, etal., Science 1992 Dec 18;258(5090):1903-10.
Mice with mutations in four nonreceptor tyrosine kinase genes, fyn, src, yes, and abl, were used to study the role of these kinases in long-term potentiation (LTP) and in the relation of LTP to spatial learning and memory. All four kinases were expressed in the
hippocampus. Mutations in src, yes, and abl did not interfere with either the induction or the maintenance of LTP. However, in fyn mutants, LTP was blunted even though synaptic transmission and two short-term forms of synaptic plasticity, paired-pulse facilitation and post-tetanic potentiation, were normal. In parallel with the blunting of LTP, fyn mutants showed impaired spatial learning, consistent with a functional link between LTP and learning. Although fyn is expressed at mature synapses, its lack of expression during development resulted in an increased number of granule cells in the dentate gyrus and of pyramidal cells in the CA3 region. Thus, a common tyrosine kinase pathway may regulate the growth of neurons in the developing hippocampus and the strength of synaptic plasticity in the mature hippocampus.
Hou XY, etal., Brain Res 2002 Nov 15;955(1-2):123-32.
Recent studies have indicated that tyrosine phosphorylation of NMDA receptor subunit 2A (NR2A) by Src family kinases (Src, Fyn, etc.) up-regulates NMDA receptors activity and postsynaptic density protein 95 kDa (PSD95) may mediate the regulation. To investigate
whether the above processes are involved in brain ischemia-induced enhancement of NMDA receptors function, we examined the effects of transient (15 min) brain ischemia followed by reperfusion on interactions involving Fyn, NR2A and PSD95 in rat hippocampus by co-immunoprecipitation. Transient brain ischemia was induced by the method of four-vessel occlusion in Sprague-Dawley rats. Association between Fyn and NR2A increased immediately after brain ischemia and the increase was maintained for at least 24 h during followed reperfusion, up to about 1.7-1.8-fold relative to sham-groups. The 15-min reperfusion after brain ischemia induced enhanced co-immunoprecipitation of PSD95, Fyn and NR2A with one another. The associations of PSD95 with Fyn and NR2A increased at 0-24 h, 0-1 h of reperfusion, up to 6.9- and 2.1-fold relative to sham groups, respectively. Inhibiting activation of NMDA receptors or L-type voltage-gated calcium channels (L-VGCC) by ketamine or nifedipine attenuated the above increases of associations. These results suggest that stimulation of NMDA receptors and L-VGCC facilitates formation of a ternary complex: Fyn-PSD95-NR2A during transient brain ischemia followed by reperfusion, which may result in potentiation of NMDA receptor function and contribute to ischemic neuronal cell death.
Both phospholipase D1 (PLD1) and PLD2 regulate degranulation when RBL-2H3 cells are stimulated via the immunoglobulin E receptor, Fc epsilon RI. However, the activation mechanism for PLD2 is unclear. As reported here, PLD2 but not PLD1 is phosphorylated through the Src kinases, Fyn
ght:700;'>Fyn and Fgr, and this phosphorylation appears to regulate PLD2 activation and degranulation. For example, only hemagglutinin-tagged PLD2 was tyrosine phosphorylated in antigen-stimulated cells that had been made to express HA-PLD1 and HA-PLD2. This phosphorylation was blocked by a Src kinase inhibitor or by small interfering RNAs directed against Fyn and Fgr and was enhanced by overexpression of Fyn and Fgr but not by other Src kinases. The phosphorylation and activity of PLD2 were further enhanced by the tyrosine phosphatase inhibitor, Na(3)VO(4). Mutation of PLD2 at tyrosines 11, 14, 165, or 470 partially impaired, and mutation of all tyrosines blocked, PLD2 phosphorylation and activation, although two of these mutations were detrimental to PLD2 function. PLD2 phosphorylation preceded degranulation, both events were equally sensitive to inhibition of Src kinase activity, and both were enhanced by coexpression of PLD2 and the Src kinases. The findings provide the first description of a mechanism for activation of PLD2 in a physiological setting and of a role for Fgr in Fc epsilon RI-mediated signaling.
Schumann G, etal., Biol Psychiatry. 2003 Dec 15;54(12):1422-6. doi: 10.1016/s0006-3223(03)00635-8.
BACKGROUND: Decreased sensitivity to and increased tolerance for the effects of alcohol is a phenotype, which was shown to be associated with an increased risk for alcoholism in humans and was observed in protein tyrosine kinase (PTK) fyn knockout mic
e. METHODS: We performed an association study of genetic variations of PTK fyn in 430 alcohol-dependent patients and 365 unrelated control subjects from two independent samples. RESULTS: In a combined analysis, we found an association of alcohol dependence with the single nucleotide polymorphism (SNP) T137346C in the 5' untranslated region (UTR) of the gene. A relevant association could be excluded for the remaining two informative SNPs. Selection by phenotype showed that a high number of withdrawal symptoms, high amount of alcohol intake, and high maximum number of drinks compared with unrelated control subjects was associated with the SNP in the 5'-UTR region but not with the remaining SNPs. CONCLUSIONS: Our results indicate a possible association of alcohol dependence with a genotype of the SNP T137346C of the PTK fyn, with C being the risk allele.
The current opioid epidemic necessitates a better understanding of human addiction neurobiology to develop efficacious treatment approaches. Here, we perform genome-wide assessment of chromatin accessibility of the human striatum in heroin users and matched controls. Our study reveals distinct neuro
nal and non-neuronal epigenetic signatures, and identifies a locus in the proximity of the gene encoding tyrosine kinase FYN as the most affected region in neurons. FYN expression, kinase activity and the phosphorylation of its target Tau are increased by heroin use in the post-mortem human striatum, as well as in rats trained to self-administer heroin and primary striatal neurons treated with chronic morphine in vitro. Pharmacological or genetic manipulation of FYN activity significantly attenuates heroin self-administration and responding for drug-paired cues in rodents. Our findings suggest that striatal FYN is an important driver of heroin-related neurodegenerative-like pathology and drug-taking behavior, making FYN a promising therapeutic target for heroin use disorder.
BACKGROUND/AIMS: Post-translational modifications such as phosphorylation and dephosphorylation can finely tune the function of ion channels. Nav1.5 is the main sodium channel in human hearts and alternative splicing of the transcript generates two major splice variants, characterized by the presenc
e (Q-pre) or absence (Q-del) of glutamine at position 1077. In the heart, both the Nav1.5 channel and Fyn tyrosine kinase are colocalized at adherens junctions. This study aimed to investigate the modulation of the aforementioned splice variants by Fyn tyrosine kinase. METHODS AND RESULTS: Q-del and Q-pre were transiently expressed alone, with catalytically active Fyn kinase (FynKa) or with a catalytically dead Fyn kinase (FynKd). Co-expression of Nav1.5 channel splice variants and Fyn kinase was confirmed by Western blotting and their Interaction was established by co-immunoprecipitation experiments. The enzymatic activity of Fyn kinase and phosphorylation of Nav1.5 channel were ascertained by immunoprecipitation and anti-phosphotyrosine immunoblotting. Whole-cell ionic currents were recorded in patch clamp experiments to examine the modulation of Nav1.5 channel variants by Fyn kinase, which indicated a hyperpolarizing shift of 9.68 mV in fast inactivation of Q-del. In contrast, a depolarizing shift of 8.77 mV in fast inactivation was observed in the case of Q-pre, while activation curves remained unaltered for both splice variants. This differential modulation in fast inactivation was further assessed by mutating tyrosine 1495 to phenylalanine in the inactivation loop, which completely removed the modulatory effect of Fyn kinase in Q-pre splice variant, while in Q-del variant hyperpolarizing shift in fast inactivation was reduced to 4.74 mV. Finally, the modulatory effect of Fyn kinase was compensated at a mid-value of 94.63 +/- 0.34, when both splice variants were co-expressed at a normal physiological ratio. CONCLUSION: Q-del and Q-pre were differentially modulated by Fyn kinase, and this fine modification resulted in smooth electrical activity in the heart.
Lancki DW, etal., J Immunol. 1995 May 1;154(9):4363-70.
The protein tyrosine kinase Fyn has been shown to be involved in signal transduction through the TCR and the glycosyl-phosphatidylinositol-linked surface molecule Thy-1 expressed on T cells. In this study, we examine the requirement for Fyn
700;'>Fyn expression in signaling through the TCR or Thy-1 using a panel of Ag-specific T cell clones derived from fyn-/- mutant mice. These clones do not express normal Fyn protein, as measured by immune-complex kinase reaction using anti-Fyn Ab. Stimulation through the TCR, either by APC bearing relevant Ag or by immobilized anti-CD3 mAb, resulted in comparable levels of proliferation, lymphokine production, and cytolysis by clones from both wild-type and fyn-/- mice. In contrast, stimulation through Thy-1, using soluble (or cross-linked) anti-Thy-1 mAb, was deficient, as measured by these responses. Thus, Fyn expression is selectively required for functional activation through Thy-1 in these T cell clones.
Mao LM and Wang JQ, J Neurosci Res. 2016 Apr;94(4):329-38. doi: 10.1002/jnr.23713. Epub 2016 Jan 17.
Fyn, a major Src family kinase (SFK) member that is densely expressed in striatal neurons, is actively involved in the regulation of cellular and synaptic activities in local neurons. This SFK member is likely regulated by dopamine signaling through a receptor m
echanism involving dopamine D2 receptors (D2Rs). This study characterizes the D2R-dependent regulation of Fyn in the rat striatum in vivo. Moreover, we explore whether D2Rs regulate metabotropic glutamate receptor 5 (mGluR5) in its tyrosine phosphorylation and whether the D2R-SFK pathway modulates trafficking of mGluR5. We found that blockade of D2Rs by systemic administration of a D2R antagonist, eticlopride, substantially increased SFK phosphorylation in the striatum. This increase was a transient and reversible event. The eticlopride-induced SFK phosphorylation occurred predominantly in immunopurified Fyn but not in another SFK member, Src. Eticlopride also elevated tyrosine phosphorylation of mGluR5. In parallel, eticlopride enhanced synaptic delivery of active Fyn and mGluR5. Pretreatment with an SFK inhibitor blocked the eticlopride-induced tyrosine phosphorylation and synaptic trafficking of mGluR5. These results indicate that D2Rs inhibit SFK (mainly Fyn) phosphorylation in the striatum. D2Rs also inhibit tyrosine phosphorylation and synaptic recruitment of mGluR5 through a signaling mechanism likely involving Fyn.
Mao LM and Wang JQ, Neuropharmacology. 2015 Dec;99:491-9. doi: 10.1016/j.neuropharm.2015.08.017. Epub 2015 Aug 13.
Src and Fyn are two Src family kinase (SFK) members that are expressed in mammalian brains and play important roles in the regulation of a variety of neuronal and synaptic substrates. Here we investigated the responsiveness of these SFKs to changing dopamine rec
eptor signals in dopamine responsive regions of adult rat brains in vivo. Pharmacological activation of dopamine D1 receptors (D1Rs) by a systemic injection of the selective agonist SKF81297 increased phosphorylation of SFKs at a conserved and activation-associated autophosphorylation site (Y416) in the striatum, indicating activation of SFKs following SKF81297 injection. The dopamine D2 receptor (D2R) agonist quinpirole had no effect. Blockade of D1Rs with an antagonist SCH23390 did not alter striatal Y416 phosphorylation, while the D2R antagonist eticlopride elevated it. Between Src and Fyn, SKF81297 seemed to preferentially facilitate Fyn phosphorylation. Activation of muscarinic acetylcholine M4 receptors (M4Rs) with a positive allosteric modulator VU0152100 suppressed SFK Y416 responses to SKF81297. Additionally, SKF81297 induced a correlated increase in phosphorylation of N-methyl-D-aspartate (NMDA) receptor GluN2B subunits at a Fyn site (Y1472), which was attenuated by VU0152100. SKF81297 also enhanced synaptic recruitments of active Fyn and GluN1/GluN2B-containing NMDA receptors. These data demonstrate that D1Rs regulate Fyn and downstream NMDA receptors in striatal neurons in vivo. Acetylcholine through activating M4Rs inhibits Fyn and NMDA receptors in their sensitivity to D1R signaling.
Ohnuma T, etal., Brain Res Mol Brain Res 2003 Apr 10;112(1-2):90-4.
Fyn is a member of the non-receptor tyrosine kinase family, which is known to be closely involved in signal transduction in neurons and has an important role in the development and organisation of the central nervous system. In order to explore the possible role
of Fyn in schizophrenia, the expression of Fyn messenger RNA (mRNA) and protein were investigated in the postmortem prefrontal cortex of brains from normal and 'schizophrenic' cases. There was an increase in both total area Fyn mRNA signal (17.7%, P<0.05) and cellular mRNA content (15.7%, P<0.05) in the schizophrenic group relative to controls. In parallel the content of Fyn protein detected by immuno-autoradiography was also increased in the schizophrenic cases (21.8% P<0.05). In addition, the cellular Fyn mRNA signal was negatively correlated with the age of onset (r=-0.94, P=0.0026). These results suggest that an increase in Fyn expression may contribute to the pathophysiology of schizophrenia.
Quek LS, etal., Blood. 2000 Dec 15;96(13):4246-53.
Activation of platelets by collagen is mediated by the complex glycoprotein VI (GPVI)/Fc receptor gamma (FcR gamma chain). In the current study, the role of 2 Src family kinases, Fyn and Lyn, in GPVI signaling has been examined using murine platelets deficient i
n one or both kinases. In the fyn(-/-) platelets, tyrosine phosphorylation of FcR gamma chain, phopholipase C (PLC) activity, aggregation, and secretion are reduced, though the time of onset of response is unchanged. In the lyn(-/-) platelets, there is a delay of up to 30 seconds in the onset of tyrosine phosphorylation and functional responses, followed by recovery of phosphorylation and potentiation of aggregation and alpha-granule secretion. Tyrosine phosphorylation and aggregation in response to stimulation by collagen-related peptide is further attenuated and delayed in fyn(-/-)lyn(-/-) double-mutant platelets, and potentiation is not seen. This study provides the first genetic evidence that Fyn and Lyn mediate FcR immune receptor tyrosine-based activation motif phosphorylation and PLC gamma 2 activation after the ligation of GPVI. Lyn plays an additional role in inhibiting platelet activation through an uncharacterized inhibitory pathway. (Blood. 2000;96:4246-4253)
Badour K, etal., J Exp Med. 2004 Jan 5;199(1):99-112.
Involvement of the Wiskott-Aldrich syndrome protein (WASp) in promoting cell activation requires its release from autoinhibitory structural constraints and has been attributed to WASp association with activated cdc42. Here, however, we show that T cell development and T cell receptor (TCR)-induced p
roliferation and actin polymerization proceed normally in WASp-/- mice expressing a WASp transgene lacking the cdc42 binding domain. By contrast, mutation of tyrosine residue Y291, identified here as the major site of TCR-induced WASp tyrosine phosphorylation, abrogated induction of WASp tyrosine phosphorylation and its effector activities, including nuclear factor of activated T cell transcriptional activity, actin polymerization, and immunological synapse formation. TCR-induced WASp tyrosine phosphorylation was also disrupted in T cells lacking Fyn, a kinase shown here to bind, colocalize with, and phosphorylate WASp. By contrast, WASp was tyrosine dephosphorylated by protein tyrosine phosphatase (PTP)-PEST, a tyrosine phosphatase shown here to interact with WASp via proline, serine, threonine phosphatase interacting protein (PSTPIP)1 binding. Although Fyn enhanced WASp-mediated Arp2/3 activation and was required for synapse formation, PTP-PEST combined with PSTPIP1 inhibited WASp-driven actin polymerization and synapse formation. These observations identify key roles for Fyn and PTP-PEST in regulating WASp and imply that inducible WASp tyrosine phosphorylation can occur independently of cdc42 binding, but unlike the cdc42 interaction, is absolutely required for WASp contributions to T cell activation.
Chavez-Solano M, etal., Mol Cell Neurosci. 2016 Apr;72:91-100. doi: 10.1016/j.mcn.2016.01.008. Epub 2016 Jan 22.
Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn
weight:700;'>Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Muller glia. We used a mouse model of Fyn genetic ablation and Muller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Muller cell physiology. These include shortening of Muller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Muller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Muller cell physiology and suggests that Fyn is required for optimal visual processing.
Chin J, etal., J Neurosci. 2005 Oct 19;25(42):9694-703.
Human amyloid precursor protein (hAPP) transgenic mice with high levels of amyloid-beta (Abeta) develop behavioral deficits that correlate with the depletion of synaptic activity-related proteins in the dentate gyrus. The tyrosine kinase Fyn is altered in Alzhei
mer's disease brains and modulates premature mortality and synaptotoxicity in hAPP mice. To determine whether Fyn also modulates Abeta-induced behavioral deficits and depletions of synaptic activity-dependent proteins, we overexpressed Fyn in neurons of hAPP mice with moderate levels of Abeta production. Compared with nontransgenic controls and singly transgenic mice expressing hAPP or FYN alone, doubly transgenic FYN/hAPP mice had striking depletions of calbindin, Fos, and phosphorylated ERK (extracellular signal-regulated kinase), impaired neuronal induction of Arc, and impaired spatial memory retention. These deficits were qualitatively and quantitatively similar to those otherwise seen only in hAPP mice with higher Abeta levels. Surprisingly, levels of active Fyn were lower in high expresser hAPP mice than in NTG controls and lower in FYN/hAPP mice than in FYN mice. Suppression of Fyn activity may result from dephosphorylation by striatal-enriched phosphatase, which was upregulated in FYN/hAPP mice and in hAPP mice with high levels of Abeta. Thus, increased Fyn expression is sufficient to trigger prominent neuronal deficits in the context of even relatively moderate Abeta levels, and inhibition of Fyn activity may help counteract Abeta-induced impairments.
Cleavage of the intracellular carboxyl terminus of the N-methyl-d-aspartate (NMDA) receptor 2 subunit (NR2) by calpain regulates NMDA receptor function and localization. Here, we show that Fyn-mediated phosphorylation of NR2B controls calpain-mediated NR2B cleav
age. In cultured neurons, calpain-mediated NR2B cleavage is significantly attenuated by blocking NR2B phosphorylation of Tyr-1336, but not Tyr-1472, via inhibition of Src family kinase activity or decreasing Fyn levels by small interfering RNA. In HEK cells, mutation of Tyr-1336 eliminates the potentiating effect of Fyn on calpain-mediated NR2B cleavage. The potentiation of NR2B cleavage by Fyn is limited to cell surface receptors and is associated with calpain translocation to plasma membranes during NMDA receptor activation. Finally, reducing full-length NR2B by calpain does not decrease extrasynaptic NMDA receptor function, and truncated NR1/2B receptors similar to those generated by calpain have electrophysiological properties matching those of wild-type receptors. Thus, the Fyn-controlled regulation of NMDA receptor cleavage by calpain may play critical roles in controlling NMDA receptor properties during synaptic plasticity and excitotoxicity.
Zhang S, etal., Cell Death Differ. 2016 Jan;23(1):52-63. doi: 10.1038/cdd.2015.66. Epub 2015 May 22.
The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which a
re mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.
Pastor IJ, etal., Eur Psychiatry. 2009 Apr;24(3):191-4. doi: 10.1016/j.eurpsy.2008.08.007. Epub 2008 Oct 11.
BACKGROUND: Fyn tyrosine kinase is a member of the Scr family that phosphorylates the NR2A and NR2B subunits of the NMDA receptors reducing the inhibitory effects of ethanol and therefore may regulate the individual sensitivity to ethanol. OBJEC
TIVES: To investigate whether there is any relationship between the polymorphism at position -93 of the Fyn kinase gene and the susceptibility to develop alcoholism. METHODS: We studied the distribution of genotypes and alleles of the polymorphism -93A/G (137346 T/C) in the 5' UTR region of the fyn gene in 207 male heavy drinkers (119 with alcohol dependence and 88 with alcohol abuse) and 100 control subjects from Castilla y León (Spain). RESULTS: The frequency of G allele carriers was higher in alcohol dependents than in alcohol abusers (47.9% vs 30.6%; p=0.015; OR=2.077; 95% CI 1.165-3.704). CONCLUSION: Our results show that the -93G allele of Fyn kinase gene is associated with higher risk to develop alcohol dependence in Spanish men.
Chow A, etal., FEBS Lett. 2000 Mar 3;469(1):88-92.
p120(GAP) (RasGAP) has been proposed to function as both an inhibitor and effector of Ras. Previously we have shown that RasGAP contains a C2 domain which mediates both Ca(2+)-dependent membrane association and protein-protein interactions. Specifically, three proteins have been isolated in a comple
x with the C2 domain of RasGAP; these are the Ca(2+)-dependent lipid binding protein annexin VI (p70) and two previously unidentified proteins, p55 and p120. Here we provide evidence that p55 is the Src family kinase Fyn and p120 is the focal adhesion kinase family member Pyk2. In addition, in vitro binding assays indicate that Fyn, but not Pyk2 binds directly to annexin VI. Finally, co-immunoprecipitation studies in Rat-1 fibroblasts confirm that Fyn, Pyk2, annexin VI and RasGAP can form a protein complex in mammalian cells.
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z.
Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.
Neuroinflammation elicited by microglia plays a key role in periventricular white matter (PWM) damage (PWMD) induced by infectious exposure. This study aimed to determine if microglia-derived interleukin-1beta (IL-1beta) would induce hypomyelination through suppression of maturation of oligodendrocy
te progenitor cells (OPCs) in the developing PWM. Sprague-Dawley rats (1-day old) were injected with lipopolysaccharide (LPS) (1 mg/kg) intraperitoneally, following which upregulated expression of IL-1beta and IL-1 receptor 1 (IL-1R1 ) was observed. This was coupled with enhanced apoptosis and suppressed proliferation of OPCs in the PWM. The number of PDGFR-alpha and NG2-positive OPCs was significantly decreased in the PWM at 24 h and 3 days after injection of LPS, whereas it was increased at 14 days and 28 days. The protein expression of Olig1, Olig2, and Nkx2.2 was significantly reduced, and mRNA expression of Tcf4 and Axin2 was upregulated in the developing PWM after LPS injection. The expression of myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3"-phosphodiesterase (CNPase) was downregulated in the PWM at 14 days and 28 days after LPS injection; this was linked to reduction of the proportion of myelinated axons and thinner myelin sheath as revealed by electron microscopy. Primary cultured OPCs treated with IL-1beta showed the failure of maturation and proliferation. Furthermore, FYN/MEK/ERK signaling pathway was involved in suppression of maturation of primary OPCs induced by IL-1beta administration. Our results suggest that following LPS injection, microglia are activated and produce IL-1beta in the PWM in the neonatal rats. Excess IL-1beta inhibits the maturation of OPCs via suppression of FYN/MEK/ERK phosphorylation thereby leading to axonal hypomyelination.
Ma J and Zhang GY, Neurosci Lett. 2003 Sep 18;348(3):185-9. doi: 10.1016/s0304-3940(03)00784-5.
Recently, the neuroprotective effects of lithium against excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors have been demonstrated. Since brain ischemia results in NMDA receptor over-excitation and Src family protein tyrosine kinase-mediated tyrosine phosphorylation of NMDA receptor su
bunit 2A (NR2A) enhances NMDA receptor activity, we examined the effects of lithium on tyrosine phosphorylation of NR2A and its interactions with Src and Fyn (two members of the Src family of protein tyrosine kinases) mediated by PSD-95 (postsynaptic density protein 95 kDa) after 6 h of reperfusion following 15 min of ischemia (I/R), which was induced by occlusion of the four vessels in Sprague-Dawley rats. After abdominal injection of LiCl (2 mg/kg) for 7 days, the data showed that together with the significant decrease in I/R-induced tyrosine phosphorylation of NR2A, the interactions of NR2A with Src and Fyn mediated by PSD-95 were also decreased significantly. However, lithium pretreatment did not alter the total protein levels of NR2A, Src, Fyn and PSD-95. These results suggest that the inhibition of NR2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 may contribute to the lithium-induced downregulation of NMDA receptor function and provide neuroprotection against excitotoxicity.
Schäfer I, etal., J Cell Sci. 2016 Mar 1;129(5):930-42. doi: 10.1242/jcs.172148. Epub 2016 Jan 22.
Oligodendrocytes are the myelinating glial cells of the central nervous system (CNS). Myelin is formed by extensive wrapping of oligodendroglial processes around axonal segments, which ultimately allows a rapid saltatory conduction of action potentials within the CNS and sustains neuronal health. Th
e non-receptor tyrosine kinase Fyn is an important signaling molecule in oligodendrocytes. It controls the morphological differentiation of oligodendrocytes and is an integrator of axon-glial signaling cascades leading to localized synthesis of myelin basic protein (MBP), which is essential for myelin formation. The abundant myelin-associated oligodendrocytic basic protein (MOBP) resembles MBP in several aspects and has also been reported to be localized as mRNA and translated in the peripheral myelin compartment. The signals initiating local MOBP synthesis are so far unknown and the cellular function of MOBP remains elusive. Here, we show, by several approaches in cultured primary oligodendrocytes, that MOBP synthesis is stimulated by Fyn activity. Moreover, we reveal a new function for MOBP in oligodendroglial morphological differentiation.
beta-Catenin has a key role in the formation of adherens junction through its interactions with E-cadherin and alpha-catenin. We show here that interaction of beta-catenin with alpha-catenin is regulated by the phosphorylation of beta-catenin Tyr-142. This residue can be phosphorylated in vitro by F
er or Fyn tyrosine kinases. Transfection of these kinases to epithelial cells disrupted the association between both catenins. We have also examined whether these kinases are involved in the regulation of this interaction by K-ras. Stable transfectants of the K-ras oncogene in intestinal epithelial IEC18 cells were generated which show little alpha-catenin-beta-catenin association with respect to control clones; this effect is accompanied by increased Tyr-142 phosphorylation and activation of Fer and Fyn kinases. As reported for Fer, Fyn kinase is constitutively bound to p120 catenin; expression of K-ras induces the phosphorylation of p120 catenin on tyrosine residues increasing its affinity for E-cadherin and, consequently, promotes the association of Fyn with the adherens junction complex. Yes tyrosine kinase also binds to p120 catenin but only upon activation, and stimulates Fer and Fyn tyrosine kinases. These results indicate that p120 catenin acts as a docking protein facilitating the activation of Fer/Fyn tyrosine kinases by Yes and demonstrate the role of these p120 catenin-associated kinases in the regulation of beta-catenin-alpha-catenin interaction.
Panchamoorthy G, etal., J Biol Chem. 1996 Feb 9;271(6):3187-94.
We and others have demonstrated that the c-cbl proto-oncogene product is one of the earliest targets of tyrosine phosphorylation upon T cell receptor stimulation. Given the similarities in the B and T lymphocyte antigen receptors, and the induction of pre-B leukemias in mice by the v-cbl oncogene,
we examined the potential involvement of Cbl in B cell receptor signaling. We demonstrate prominent and early tyrosine phosphorylation of Cbl upon stimulation of human B cell lines through surface IgM. Cbl was associated in vivo with Fyn and, to a lesser extent, other Src family kinases. B cell activation also induced a prominent association of Cbl with Syk tyrosine kinase. A substantial fraction of Cbl was constitutively associated with Grb2 and this interaction was mediated by Grb2 SH3 domains. Tyrosine-phosphorylated Shc, which prominently associated with Grb2, was detected in association with Cbl in activated B cells. Thus, Grb2 and Shc adaptors, which associate with immunoreceptor tyrosine based activation motifs, may link Cbl to the B cell receptor. B cell activation also induced a prominent association between Cbl and the p85 subunit of phosphatidylinositol (PI) 3-kinase resulting in the association of a substantial fraction of PI 3-kinase activity with Cbl. Thus, Cbl is likely to play an important role to couple the B cell receptor to the PI 3-kinase pathway. Our results strongly suggest a role for p120cbl in signaling downstream of the B cell receptor and support the idea that Cbl participates in a general signal transduction function downstream of the immune cell surface receptors.
Stoss O, etal., Mol Cell Neurosci 2004 Sep;27(1):8-21.
The Sam68-like mammalian protein SLM-1 is a member of the STAR protein family and is related to SAM68 and SLM-2. Here, we demonstrate that rSLM-1 interacts with itself, scaffold-attachment factor B, YT521-B, SAM68, rSLM-2, SRp30c, and hnRNP G. rSLM-1 regulates splice site selection in vivo via a pur
ine-rich enhancer. In contrast to the widely expressed SAM68 and rSLM-2 proteins, rSLM-1 is found primarily in brain and, to a much smaller degree, in testis. In the brain, rSLM-1 and rSLM-2 are predominantly expressed in different neurons. In the hippocampal formation, rSLM-1 is present only in the dentate gyrus, whereas rSLM-2 is found in the pyramidal cells of the CA1, CA3, and CA4 regions. rSLM-1, but not rSLM-2, is phosphorylated by p59(fyn). p59(fyn)-mediated phosphorylation abolishes the ability of rSLM-1 to regulate splice site selection, but has no effect on rSLM-2 activity. This suggests that rSLM-1-positive cells could respond with a change of their splicing pattern to p59(fyn) activation, whereas rSLM-2-positive cells would not be affected. Together, our data indicate that rSLM-1 is a tissue-specific splicing factor whose activity is regulated by tyrosine phosphorylation signals emanating from p59(fyn).
Nishio H, etal., Brain Res 2002 Sep 20;950(1-2):203-9.
We have previously shown that ethanol administration results in tyrosine phosphorylation of the 130 kDa protein in rat brain, and identified the protein as Cas, the crk-associated src substrate. In the present study, we demonstrate that Cbl of a 120 kDa protein is also tyrosine-phosphorylated in the
cerebellum in response to ethanol administration. We also investigated whether Fyn kinase was involved in ethanol-induced Cbl phosphorylation. Immunoprecipitation experiments showed that the amount of coimmunoprecipitated Fyn kinase with an anti-Cbl antibody increased in extracts from ethanol-administered rats compared to those from saline-administered rats. Exogenous Fyn kinase was shown to phosphorylate on tyrosine residue(s) of Cbl from the cerebellum in vitro. Furthermore, Fyn kinase and Cbl were demonstrated immunohistochemically to be coexpressed in white matter in the cerebellum. These findings indicate that Cbl is tyrosine-phosphorylated in rat cerebellum in response to ethanol administration, and also raise the possibility that Fyn kinase may be involved in the process.
Ba M, etal., Drug Des Devel Ther. 2014 Dec 19;9:199-206. doi: 10.2147/DDDT.S75495. eCollection 2015.
CONTEXT: Abnormality in interactions between N-methyl-d-aspartate (NMDA) receptor and its signaling molecules occurs in the lesioned striatum in Parkinson's disease (PD) and levodopa-induced dyskinesia (LID). It was reported that Fyn-mediated NR2B tyrosine phosp
horylation, can enhance NMDA receptor function. Postsynaptic density protein 95 (PSD-95), one of the synapse-associated proteins, regulates interactions between receptor and downstream-signaling molecules. In light of the relationship between PSD-95, NR2B, and Fyn kinases, does PSD-95 contribute to the overactivity of NMDA receptor function induced by dopaminergic treatment? To further prove the possibility, the effects of regulating the PSD-95 expression on the augmented NR2B tyrosine phosphorylation and on the interactions of Fyn and NR2B in LID rat models were evaluated. METHODS: In the present study, parkinsonian rat models were established by injecting 6-hydroxydopamine. Subsequently, valid PD rats were treated with levodopa (50 mg/kg/day with benserazide 12.5 mg/kg/day, twice daily) intraperitoneally for 22 days to create LID rat models. Then, the effect of pretreatment with an intrastriatal injection of the PSD-95mRNA antisense oligonucleotides (PSD-95 ASO) on the rotational response to levodopa challenge was assessed. The effects of pretreatment with an intrastriatal injection of PSD-95 ASO on the augmented NR2B tyrosine phosphorylation and interactions of Fyn with NR2B in the LID rat models were detected by immunoblotting and immunoprecipitation. RESULTS: Levodopa administration twice daily for 22 days to parkinsonian rats shortened the rotational duration and increased the peak turning responses. The altered rotational responses were attenuated by PSD-95 ASO pretreatment. Meanwhile, PSD-95 ASO pretreatment decreased the level of PSD-95 protein expression and reduced both the augmented NR2B tyrosine phosphorylation and interactions of Fyn with NR2B triggered during the levodopa administration in the lesioned striatum of PD rats. However, the protein levels of Fyn and NR2B showed no difference under the above conditions. CONCLUSION: The data demonstrate that the inhibition of PSD-95 protein expression suppressed the interactions of Fyn with NR2B and NR2B tyrosine phosphorylation and subsequently downregulated NMDA receptor overactivation, thus providing benefit for the therapy of LID. Therefore, PSD-95 is important for overactivity of NMDA receptor function due to facilitating NR2B tyrosine phosphorylation dependent on Fyn kinase by regulating interactions of Fyn with NR2B under the pathological conditions of LID.
Hsu KL, etal., Int J Biochem Cell Biol. 2009 Jul;41(7):1536-46. Epub 2009 Jan 8.
Oleic acid (OA) affects assembly of gap junctions in neonatal cardiomyocytes. Adherens junction (AJ) regulates the stability of gap junction integrity; however, the effect of OA on AJ remains largely unexplored. The distribution of N-cadherin and catenins at cell-cell junction was decreased by OA. O
A induced activation of protein kinase C(PKC)-alpha and -epsilon and Src family kinase, and all three kinases were involved in the oleic acid-induced disassembly of the adherens junction, since it was blocked by pretreatment with Go6976 (a PKCalpha inhibitor), epsilonV1-2 (a PKCepsilon inhibitor), or PP2 (a Src family kinase inhibitor). Src family kinase appeared to be the downstream of PKC-alpha and -epsilon, as blockade of either PKC-alpha or -epsilon activity prevented the OA-induced activation of Src family kinase. Immunoprecipitation analyses showed that OA activated Fyn and Fer. OA promoted the association of p120 catenin/beta-catenin with Fyn and Fer and caused increased tyrosine phosphorylation of p120 catenin and beta-catenin, resulting in decreased binding of the former to N-cadherin and of the latter to alpha-catenin. Pretreatment with PP2 abrogated this OA-induced tyrosine phosphorylation of p120 catenin and beta-catenin and restored the association of N-cadherin with p120 catenin and that of beta-catenin with alpha-catenin. In conclusion, these results show that OA activates the PKC-Fyn signaling pathway, leading to the disassembly of the AJ. Therefore, inhibitors of PKC-alpha/-epsilon and Src family kinase are potential candidates as cardioprotection agents against OA-induced heart injury during ischemia-reperfusion.
The tyrosine kinase Fyn plays a key role in oligodendrocyte differentiation and in myelination in the central nervous system, but the molecules responsible for regulating Fyn activation in these processes remain poorly defin
ed. Here we show that receptor-like protein tyrosine phosphatase alpha (PTPalpha) is an important positive regulator of Fyn activation and signaling that is required for the differentiation of oligodendrocyte progenitor cells (OPCs). PTPalpha is expressed in OPCs and is upregulated during differentiation. We used two model systems to investigate the role of PTPalpha in OPC differentiation; the rat CG4 cell line where PTPalpha expression was silenced by small interfering RNA, and oligosphere-derived primary OPCs isolated from wild-type and PTPalpha-null mouse embryos. In both cell systems, the ablation of PTPalpha inhibited differentiation and the morphological changes that accompany this process. Although Fyn was activated upon the induction of differentiation, the level of activation was severely reduced in cells lacking PTPalpha, as was the activation of the Fyn effector molecules focal adhesion kinase, Rac1, and Cdc42; and the inactivation of Rho. Interestingly, another downstream effector of Fyn, p190RhoGAP, which is responsible for Rho inactivation during differentiation, was not affected by PTPalpha ablation. In vivo studies revealed defective myelination in PTPalpha(-/-) mouse brain. Together, our findings demonstrate that PTPalpha is a critical regulator of Fyn activation and of specific Fyn signaling events during differentiation, and is essential for promoting OPC differentiation and CNS myelination.
Gururajan M, etal., Oncotarget. 2015 Dec 29;6(42):44072-83. doi: 10.18632/oncotarget.6398.
FYN is a SRC family kinase (SFK) that has been shown to be up-regulated in human prostate cancer (PCa) tissues and cell lines. In this study, we observed that FYN is strongly up-regulated in human neuroendocrine PCa (NEPC)
tissues and xenografts, as well as cells derived from a NEPC transgenic mouse model. In silico analysis of FYN expression in prostate cancer cell line databases revealed an association with the expression of neuroendocrine (NE) markers such as CHGA, CD44, CD56, and SYP. The loss of FYN abrogated the invasion of PC3 and ARCaPM cells in response to MET receptor ligand HGF. FYN also contributed to the metastatic potential of NEPC cells in two mouse models of visceral metastasis with two different cell lines (PC3 and TRAMPC2-RANKL). The activation of MET appeared to regulate neuroendocrine (NE) features as evidenced by increased expression of NE markers in PC3 cells with HGF. Importantly, the overexpression of FYN protein in DU145 cells was directly correlated with the increase of CHGA. Thus, our data demonstrated that the neuroendocrine differentiation that occurs in PCa cells is, at least in part, regulated by FYN kinase. Understanding the role of FYN in the regulation of NE markers will provide further support for ongoing clinical trials of SFK and MET inhibitors in castration-resistant PCa patients.
Lim SH, etal., EMBO J. 2009 Nov 18;28(22):3564-78. doi: 10.1038/emboj.2009.289. Epub 2009 Oct 8.
The receptor-type protein tyrosine phosphatases (RPTPs) have been linked to signal transduction, cell adhesion, and neurite extension. PTPRT/RPTPrho is exclusively expressed in the central nervous system and regulates synapse formation by interacting with cell adhesion molecules and Fyn
t-weight:700;'>Fyn protein tyrosine kinase. Overexpression of PTPRT in cultured neurons increased the number of excitatory and inhibitory synapses by recruiting neuroligins that interact with PTPRT through their ecto-domains. In contrast, knockdown of PTPRT inhibited synapse formation and withered dendrites. Incubation of cultured neurons with recombinant proteins containing the extracellular region of PTPRT reduced the number of synapses by inhibiting the interaction between ecto-domains. Synapse formation by PTPRT was inhibited by phosphorylation of tyrosine 912 within the membrane-proximal catalytic domain of PTPRT by Fyn. This tyrosine phosphorylation reduced phosphatase activity of PTPRT and reinforced homophilic interactions of PTPRT, thereby preventing the heterophilic interaction between PTPRT and neuroligins. These results suggest that brain-specific PTPRT regulates synapse formation through interaction with cell adhesion molecules, and this function and the phosphatase activity are attenuated through tyrosine phosphorylation by the synaptic tyrosine kinase Fyn.
Sunitha I and Avigan MI, Oncogene 1996 Aug 1;13(3):547-59.
Recently, we isolated a new src family member from a rat small intestinal cDNA library which by RNase protection analysis is selectively expressed in the columnar epithelium of gut. Complete nucleotide sequencing of the gastrointestinal associated tyrosine kinase (gtk) has revealed that it is a rat
homologue of frk/rak-a fyn related human tyrosine kinase. Unlike frk/rak, gtk is myristylated, in vivo. Furthermore, by immunohistochemical analysis, the kinase is concentrated in the brush border membranes of epithelial cells, throughout the maturation axis of the adult small intestine. In vitro analysis revealed that gtk kinase activity is present in intestinal cells throughout their maturation, suggesting that the enzyme might influence signal transduction pathways in both mitotic and post-mitotic states. Gtk is expressed in all regions of the gastrointestinal tract which contain columnar epithelium, but is absent in the stratified epithelium of the esophagus. Moreover, during gestation, the kinase dramatically appears at high levels in plasma membranes, at the time of transition of gut cells from an undifferentiated to a simple columnar phenotype. After solubilization of cellular membranes with Triton X-100, sucrose gradient analysis of gtk revealed that it partitions differently than c-yes, demonstrating that the brush border src kinases associate with different components of the plasma membranes. These findings suggest that gtk plays a specialized role in the growth/differentiation of gut columnar epithelial cells.
Sun XJ, etal., J Biol Chem. 1996 May 3;271(18):10583-7.
Irs-proteins link the receptors for insulin/IGF-1, growth hormones, and several interleukins and interferons to signaling proteins that contain Src homology-2 (SH2). To identify new Irs-1-binding proteins, we screened a mouse embryo expression library with recombinant [32P]Irs-1, which revealed a sp
ecific association between p59fyn and Irs-1. The SH2 domain in p59fyn bound to phosphorylated Tyr895 and Tyr1172, which are located in YXX(L/I) motifs. Mutation of p59fyn at the COOH-terminal tyrosine phosphorylation site (Tyr531) enhanced its binding to Irs-1 during insulin stimulation. Binding experiments with various SH2 protein revealed that Grb-2 was largely excluded from Irs-1 complexes containing p59fyn, whereas Grb-2 and p85 occurred in the same Irs-1 complex. By comparison with the insulin receptor, p59fyn kinase phosphorylated a unique cohort of tyrosine residues in Irs-1. These results outline a role for p59fyn or other related Src-kinases during insulin and cytokine signaling.
Alternative pre-mRNA splicing patterns can change an extracellular stimulus, but the signaling pathways leading to these changes are still poorly characterized. Here, we describe a tyrosine-phosphorylated nuclear protein, YT521-B, and show that it interacts with the nuclear transcriptosomal componen
t scaffold attachment factor B, and the 68-kDa Src substrate associated during mitosis, Sam68. Northern blot analysis demonstrated ubiquitous expression, but detailed RNA in situ analysis revealed cell type specificity in the brain. YT521-B protein is localized in the nucleoplasm and concentrated in 5-20 large nuclear dots. Deletion analysis demonstrated that the formation of these dots depends on the presence of the amino-terminal glutamic acid-rich domain and the carboxyl-terminal glutamic acid/arginine-rich region. We show that the latter comprises an important protein-protein interaction domain. The Src family kinase p59(fyn)-mediated tyrosine phosphorylation of Sam68 negatively regulates its association with YT521-B, and overexpression of p59(fyn) dissolves nuclear dots containing YT521-B. In vivo splicing assays demonstrated that YT521-B modulates alternative splice site selection in a concentration-dependent manner. Together, our data indicate that YT521-B and Sam68 may be part of a signal transduction pathway that influences splice site selection.
Ko HM, etal., Mol Neurobiol. 2015 Aug;52(1):8-25. doi: 10.1007/s12035-014-8837-z. Epub 2014 Aug 9.
Plasminogen activator inhibitor-1 (PAI-1) is an endogenous inhibitor of tissue plasminogen activator (tPA) that acts as a neuromodulator in various neurophysiological and pathological conditions. Several researchers including us reported the induction of PAI-1 during inflammatory condition; however
, the mechanism regulating PAI-1 induction is not yet clear. In this study, we investigated the role of non-receptor tyrosine kinase Fyn in the regulation of lipopolysaccharide (LPS)-induced upregulation of PAI-1 in rat primary astrocyte. The activation of toll-like receptor 4 (TLR4) signaling, induced by its ligand LPS, stimulated a physical interaction between TLR4 and Fyn along with phosphorylation of tyrosine residue in both molecules as determined by co-immunoprecipitation experiments. Immunofluorescence staining also showed increased co-localization of TLR4-Fyn on cultured rat primary astrocytes after LPS treatment. The increased TRLR4-Fyn interaction induced expression of PAI-1 through the activation of PI3k/Akt/NFkB pathway. Treatment with Src kinase inhibitor (PP2) or transfection of Fyn small interfering RNA (siRNA) into cultured rat primary astrocytes inhibited phosphorylation of tyrosine residue of TLR4 and blocked the interaction between TLR4 and Fyn resulting to the inhibition of LPS-induced expression of PAI-1. The activation of PI3K/Akt/NFkB signaling cascades was also inhibited by Fyn knockdown in rat primary astrocytes. The induction of PAI-1 in rat primary astrocytes, which resulted in downregulation of tPA activity in culture supernatants, inhibited neurite outgrowth in cultured rat primary cortical neuron. The inhibition of neurite extension was prevented by PP2 or Fyn siRNA treatment in rat primary astrocytes. These results suggest the critical physiological role of TRL4-Fyn interaction in the modulation of PAI-1-tPA axis in astrocytes during neuroinflammatory responses such as ischemia/reperfusion injuries.
Fukazawa T, etal., J Biol Chem. 1995 Aug 11;270(32):19141-50.
Previously, we have identified p120 as a Fyn/Lck SH3 and SH2 domain-binding protein that is tyrosine phosphorylated rapidly after T cell receptor triggering. Here, we used direct protein purification, amino acid sequence analysis, reactivity with antibodies, and
two-dimensional gel analyses to identify p120 as the human c-cbl protooncogene product. We demonstrate in vivo complexes of p120cbl with Fyn tyrosine kinase, the adaptor protein Grb2, and the p85 subunit of phosphatidylinositol (PI) 3-kinase. The association of p120cbl with Fyn and the p85 subunit of PI 3-kinase (together with PI 3-kinase activity) was markedly increased by T cell activation, consistent with in vitro binding of p120cbl to their SH2 as well as SH3 domains. In contrast, a large fraction of p120cbl was associated with Grb2 prior to activation, and this association did not change upon T cell activation. In vitro, p120cbl interacted with Grb2 exclusively through its SH3 domains. These results demonstrate a novel Grb2-p120cbl signaling complex in T cells, distinct from the previously analyzed Grb2-Sos complex. The association of p120cbl with ubiquitous signaling proteins strongly suggests a general signal transducing function for this enigmatic protooncogene with established leukemogenic potential but unknown physiological function.
Chen M, etal., Neurosci Lett. 2003 Mar 13;339(1):29-32.
In this study, we investigated the effects of protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) on the tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2A (NR2A) and the interactions among NR2A, postsynaptic density protein 95 (PSD-95), Fyn
0;'>Fyn/Src after brain ischemia/reperfusion (I/R). The following results were observed: (1) the increase in tyrosine phosphorylation of NR2A induced by I/R was suppressed by genistein, an inhibitor of PTK, but was further enhanced by sodium orthovanadate, an inhibitor of PTP, which were administered to the SD rats 20 min before ischemia. (2) Importantly, genistein and sodium orthovanadate increased and decreased the interactions involving NR2A, PSD-95, Fyn and Src, respectively. These results demonstrated that PTK and PTP were involved in regulating tyrosine phosphorylation of NR2A through changing the interaction among NR2A, PSD-95, Fyn/Src.
Lee C, etal., J Neurochem. 2016 Feb;136(3):637-50. doi: 10.1111/jnc.13429. Epub 2015 Dec 10.
Alzheimer's disease (AD) is the leading cause of dementia in old age and is characterized by the accumulation of beta-amyloid plaques and neurofibrillary tangles (NFT). Recent studies suggest that Fyn tyrosine kinase forms part of a toxic triad with beta-amyloid
and tau in the disease process. However, it is not known whether Fyn is associated with the pathological features of AD in an isoform-specific manner. In this study, we identified selective up-regulation of the alternative-spliced FynT isoform with no change in FynB in the AD neocortex. Furthermore, gene ontology term enrichment analyses and cell type-specific localization of FynT immunoreactivity suggest that FynT up-regulation was associated with neurofibrillary degeneration and reactive astrogliosis. Interestingly, significantly increased FynT in NFT-bearing neurons was concomitant to decreased FynB immunoreactivity, suggesting an involvement of alternative splicing in NFT formation. Furthermore, cultured cells of astrocytic origin have higher FynT to FynB ratio compared to those of neuronal origin. Lastly, primary rat mixed neuron-astrocyte cultures treated with Abeta25-35 showed selective up-regulation of FynT expression in activated astrocytes. Our findings point to an isoform-specific role of FynT in modulating neurofibrillary degeneration and reactive astrogliosis in AD. Fyn kinase is known to interact with beta-amyloid and tau, and contributes to Alzheimer's disease pathogenesis. In this study, it is shown that the alternatively spliced FynT isoform is specifically up-regulated in the AD neocortex, with no change in FynB isoform. The increased FynT correlated with markers of neurofibrillary degeneration and reactive astrogliosis. In primary mixed cultures, treatment with amyloid peptides specifically up-regulated FynT in activated astrocytes. This study points to altered alternative splicing as a potential pathogenic mechanism in AD.
Simarro M, etal., Int Immunol. 2004 May;16(5):727-36. Epub 2004 Apr 13.
The free Src homology 2 (SH2) domain protein SAP, encoded by the X-linked lymphoproliferative disease gene SH2D1A, controls signal transduction initiated by engagement of the SLAM-related receptors in T and NK cells. Here we demonstrate that SAP is required for phosphorylation of both SLAM and Ly9 i
n thymocytes and peripheral T cells. Furthermore, in vitro protein interaction studies and yeast two-hybrid analyses indicated that SAP binds directly to FynT and Lck. While SAP bound to both the SH3 domain and to the kinase domain of FynT, SAP bound solely to the kinase domain of Lck. The existence of a strong interaction between SAP and the SH3 domain of FynT prompted us to study the role of SAP in modulating the activity of FynT. In vitro addition of SAP to the autoinhibited form of FynT caused a large increase in FynT catalytic activity. By contrast, the SAP mutant R78E, which is unable to bind to the FynT SH3 domain, did not increase FynT activity and also displayed a reduced adaptor function upon transfection into T cells. Our results demonstrate that SAP is an adaptor that bridges SLAM and Ly9 with Src-like protein tyrosine kinases (PTKs), and has the ability to activate FynT.
SAP (or SH2D1A), an adaptor-like molecule expressed in immune cells, is composed almost exclusively of a Src homology 2 (SH2) domain. In humans, SAP is mutated and either absent or non-functional in X-linked lymphoproliferative (XLP) syndrome, a disease characterized by an inappropriate response to
Epstein-Barr virus (EBV) infection. Through its SH2 domain, SAP associates with tyrosines in the cytoplasmic domain of the SLAM family of immune cell receptors, and is absolutely required for the function of these receptors. This property results from the ability of SAP to promote the selective recruitment and activation of FynT, a cytoplasmic Src-related protein tyrosine kinase (PTK). Here, we demonstrate that SAP operates in this pathway by binding to the SH3 domain of FynT, through a second region in the SAP SH2 domain distinct from the phosphotyrosine-binding motif. We demonstrate that this interaction is essential for SAP-mediated signalling in T cells, and for the capacity of SAP to modulate immune cell function. These observations characterize a biologically important signalling mechanism in which an adaptor molecule composed only of an SH2 domain links a receptor devoid of intrinsic catalytic activity to the kinase required for its function.