CX3CL1 is a chemoattractant and adhesion molecule that induces the redistribution of CX3CR1-positive inflammatory leucocytes to sites of inflammation. As a consequence of their increased expression in plaques of psoriasis, and location within genomic regions pre
viously linked to this disease, CX3CL1, and its receptor CX3CR1, represent attractive positional and functional 'psoriasis susceptibility genes'. To investigate the CX3CL1-CX3CR1 system in psoriasis, eight single nucleotide polymorphisms (SNPs) in CX3CL1 and two SNPs in CX3CR1 were genotyped in 281 psoriasis patients and 184 unrelated controls. Allele, genotype and estimated haplotype frequencies were then compared between experimental groups. Allele frequency differences between healthy volunteers and psoriasis patients revealed associations with two CX3CR1 SNPs (hCV11578468, P = 0.03 and c_5687_1, P = 0.04). No associations were observed between CX3CL1 SNPs and psoriasis. These results support a role for the CX3CL1-CX3CR1 system in the pathogenesis of psoriasis and identify SNPs within the chemokine receptors that are associated with the disease.
CX3CR1, a fractalkine receptor, mediates cell-adhesive and migratory functions in inflammation. Based on CX3CR1 expression observed in bronchial tissues of asthmatic subjects, we hypothesized that genetic variation at this l
ocus may affect susceptibility to asthma. We carried out an association study and a haplotypic analysis with selected polymorphisms of the CX3CR1 in a familial asthmatic sample from a founder population. Genetic analyses performed by FBAT software showed five CX3CR1 single nucleotide polymorphisms (rs938203, rs2669849, rs1050592, T280M and V249I) with significant associations between their common alleles and asthma (P<0.004) in a dominant model. A haplotype formed with common alleles of rs1050592, T280M and V249I is also overtransmitted in asthmatic subjects (P=0.005) under a dominant model. The associations of V249I and rs2669849 have been validated in an independent case-control sample. For V249I, odds ratios (OR) are 2.16 (common homozygous) and 2.11 (heterozygous) in dominant model (P=0.031). For rs2669849, OR are 2.75 (common homozygous) and 1.86 (heterozygous) in additive model (P=0.007) and dominant model (P=0.059). These results suggest an asthma protective effect of the minor alleles in healthy control carriers. Further functional studies of CX3CR1 are needed to document its role in the pathophysiology of asthma.
Ma B, etal., Int J Clin Exp Pathol. 2015 Aug 1;8(8):9592-6. eCollection 2015.
BACKGROUND: Age-related macular degeneration (AMD), a most common eye disease, can lead to irreversible visual impairment. Age, genetic and environmental factors have been implicated in AMD. Chemokine (C-X3-C motif) receptor 1 (CX3CR1) gene polymorphisms could i
nfluence the susceptibility of AMD. METHODS: We tested the association between AMD and single nocleotide polymorphisms (SNPs) of CX3CR1 gene (rs3732378 and rs3732379) in 102 cases and 115 controls from China. Genotypes were determined by MassArray genotyping assay method. Association between CX3CR1 gene polymorphisms and AMD were examined by chi(2) test and logistic regression. RESULTS: Genotype distribution of CX3CR1 gene polymorphisms were in accordance with HWE examination. No obvious differences were observed in the genotypes of rs3732378 polymorphism between case and control groups (P>0.05), but A allele of it could increase the risk of AMD (P=0.025, OR=2.391, 95% CI=1.092-5.237). Both TT genotype and T allele of rs3732379 were significantly associated with the susceptibility of AMD (P=8.663, OR=8.663, 95% CI=1.044-71.874; P=0.021, OR=2.076, 95% CI=1.104-3.903). Age, gender and smoking status were used as common confounders to adjust the association between CX3CR1 gene polymorphism and AMD risk. Then we found that rs3732378 had no obvious association with AMD susceptibility. TT genotype of rs3732379 related to the occurrence of AMD, but the association was not significant (P=0.050, OR=8.274, 95% CI=1.002-69.963). T allele of rs3732379 might increase the susceptibility of AMD (P=0.029, OR=2.033, 95% CI=1.077-3.838). CONCLUSION: T allele of rs3732379 might have a positive association with the susceptibility of AMD.
Kohno H, etal., J Neuroinflammation. 2015 Oct 12;12:188. doi: 10.1186/s12974-015-0408-3.
BACKGROUND: Though accumulating evidence suggests that microglia, resident macrophages in the retina, and bone marrow-derived macrophages can cause retinal inflammation which accelerates photoreceptor cell death, the details of how these cells are activated during retinal degeneration (RD) remain u
ncertain. Therefore, it is important to clarify which cells play a dominant role in fueling retinal inflammation. However, distinguishing between microglia and macrophages is difficult using conventional techniques such as cell markers (e.g., Iba-1). Recently, two mouse models for visualizing chemokine receptors were established, Cx3cr1 (GFP/GFP) and Ccr2 (RFP/RFP) mice. As Cx3cr1 is expressed in microglia and Ccr2 is reportedly expressed in activated macrophages, these mice have the potential to distinguish microglia and macrophages, yielding novel information about the activation of these inflammatory cells and their individual roles in retinal inflammation. METHODS: In this study, c-mer proto-oncogene tyrosine kinase (Mertk) (-/-) mice, which show photoreceptor cell death due to defective retinal pigment epithelium phagocytosis, were employed as an animal model of RD. Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice were established by breeding Mertk (-/-) , Cx3cr1 (GFP/GFP) , and Ccr2 (RFP/RFP) mice. The retinal morphology and pattern of inflammatory cell activation and invasion of Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice were evaluated using retina and retinal pigment epithelium (RPE) flat mounts, retinal sections, and flow cytometry. RESULTS: Four-week-old Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice showed Cx3cr1-GFP-positive microglia in the inner retina. Cx3cr1-GFP and Ccr2-RFP dual positive activated microglia were observed in the outer retina and subretinal space of 6- and 8-week-old animals. Ccr2-RFP single positive bone marrow-derived macrophages were observed to migrate into the retina of Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice. These invading cells were still observed in the subretinal space in 18-week-old animals. CONCLUSIONS: Cx3cr1-GFP-positive microglia and Ccr2-RFP-positive macrophages were distinguishable in the retinas of Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice. In addition, Ccr2 expression in Cx3cr1 positive microglia is a feature of microglial activation in RD. Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice enabled observation of microglial activation over time during RD and may be useful for developing inflammation-targeted treatment strategies for RD in the future.
Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8(+) T cells with cytotoxic effecto
r function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX3CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory.
Sun C, etal., Zhonghua Yi Xue Za Zhi. 2013 Jan 1;93(1):69-72.
OBJECTIVE: To explore the intervention of aspirin and the changes of CX3CL1 and its receptor CX3CR1 in a rat model of acute pulmonary embolism (APE). METHODS: The autologous blood clot method was employed to establish the animal model of APE
. A total of 64 rats were randomly divided into 4 groups: normal group (control), sham operation group (sham), model group (model) and aspirin group (aspirin). The profiles of pathology and tissue immunohistochemistry of CX3CL1 and CX3CR1 were compared at 4 h versus 72 h post-embolization. RESULTS: At 4 h and 72 h post-embolism, hematoxylin and eosin staining of lung tissue showed a high degree of expansion of alveolar wall vessels and congestion. Furthermore, several rats had hemorrhagic infarction under light microscope. After the dosing of aspirin, hyperemia of lung tissue and the number of rats with infarction significantly decreased. Immunohistochemistry: CX3CL1 was predominantly expressed in cytoplasm and membrane while CX3CR1 in cytoplasm and nuclear membrane. Both showed strongly positive expression in the model group (++++) and slightly positive expression in the aspirin group (+). At 4 h and 72 h post-embolization, the CX3CL1 and CX3CR1-positive cell counts of the control, sham and aspirin groups were significantly less than those of the model group (P < 0.05). CONCLUSION: Aspirin may improve the pathology and inhibit the expression of CX3CL1 and CX3CR1 in APE lung.
An JL, etal., Forensic Sci Int. 2009 Nov 20;192(1-3):e21-5. Epub 2009 Sep 4.
Sepsis is a systemic inflammatory disease with high mortality. In the present study, we immunohistochemically examined CCR2 and CX3CR1 expression in sepsis-induced lung injury, and discussed its availability for the postmortem diagnosis of sepsis. Lung samples w
ere obtained from different lung lobes of nine sepsis and eight control cases with postmortem intervals between 12 and 48h. Immunohistochemically, mononuclear cells recruited into the lungs expressed CCR2 and CX3CR1 in both sepsis and non-septic groups. In double-color immunofluorescence analysis, CCR2- or CX3CR1-positive cells could be identified as CD68-positive macrophages. Moreover, most of CD68-positive macrophages expressed both CCR2 and CX3CR1. Morphometrically, the average of CCR2- and CX3CR1-positive macrophages was significantly increased in sepsis group, compared with control group (sepsis vs. control: 41.6+/-1.3% vs. 8.0+/-0.4% in CCR2; 36.2+/-1.3% vs. 9.2+/-0.4% in CX3CR1). These observations implied that CCR2- or CX3CR1-positive macrophages were recruited into the lungs under several pathological conditions. In particular, their recruitment might be more evident in sepsis. Moreover, from the forensic aspects, immunohistochemical detection of CCR2 and CX3CR1 expression in the lungs can be considered as valuable diagnostic tools for the postmortem diagnosis of sepsis.
Depner M, etal., Int Arch Allergy Immunol. 2007;144(1):91-4. Epub 2007 May 15.
Chemokines and their receptors are involved in many aspects of immunity. Chemokine CX3CL1, acting via its receptor CX3CR1, regulates monocyte migration and macrophage differentiation as well as T cell-dependent inflammation. Two common, nonsynonymous polymorphis
ms in CX3CR1 have previously been shown to alter the function of the CX3CL1/CX3CR1 pathway and were suggested to modify the risk for asthma. Using matrix-assisted laser desorption/ionization time-of-flight technology, we genotyped polymorphisms Val249Ile and Thr280Met in a cross-sectional population of German children from Munich (n = 1,159) and Dresden (n = 1,940). For 249Ile an odds ratio of 0.77 (95% confidence interval 0.63-0.96; p = 0.017) and for 280Met an odds ratio of 0.71 (95% confidence interval 0.56-0.89; p = 0.004) were found with atopy in Dresden but not in Munich. Neither polymorphism was associated with asthma. Thus, amino acid changes in CX3CR1 may influence the development of atopy but not asthma in German children. Potentially, other factors such as environmental effects may modify the role of CX3CR1 polymorphisms.
Pong WW, etal., Ann Neurol. 2013 Feb;73(2):303-8. doi: 10.1002/ana.23813. Epub 2013 Feb 19.
Although traditional models of carcinogenesis have largely focused on neoplastic cells, converging data have revealed the importance of non-neoplastic stromal cells in influencing tumor growth and progression. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1)-associa
ted optic glioma, we now demonstrate that stromal microglia express the CX3CR1 chemokine receptor, such that reduced CX3CR1 expression decreases optic nerve microglia. Moreover, genetic reduction of Cx3cr1 expression in Nf1 optic glioma mice delays optic glioma formation. Coupled with previous findings demonstrating that microglia maintain optic glioma growth, these new findings provide a strong preclinical rationale for the development of future stroma-directed glioma therapies in children.
BACKGROUND: Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the ch
emokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases. METHODS: In this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated the effects of genetic deletion of CX3CR1 on histopathology, cell death/survival, microglia activation, and cognitive function for 30 days post-injury. RESULTS: During the acute post-injury period (24 h-15 days), motor deficits, cell death, and neuronal cell loss were more profound in injured wild-type than in CX3CR1(-/-) mice. In contrast, during the chronic period of 30 days post-TBI, injured CX3CR1(-/-) mice exhibited greater cognitive dysfunction and increased neuronal death than wild-type mice. The protective and deleterious effects of CX3CR1 were associated with changes in microglia phenotypes; during the acute phase CX3CR1(-/-) mice showed a predominant anti-inflammatory M2 microglial response, with increased expression of Ym1, CD206, and TGFbeta. In contrast, increased M1 phenotypic microglia markers, Marco, and CD68 were predominant at 30 days post-TBI. CONCLUSION: Collectively, these novel data demonstrate a time-dependent role for CX3CL1/CX3CR1 signaling after TBI and suggest that the acute and chronic responses to mild TBI are modulated in part by distinct microglia phenotypes.
The inflammatory component in obesity is now well established. The CX3CR1 gene encodes the fractalkine (CX3CL1) receptor and has two coding single-nucleotide polymorphisms, V249I and T280M, linked to a lower risk of other inflammatory diseases such as coronary a
rtery disease (CAD) and asthma. To determine whether CX3CR1 is associated with obesity, we genotyped the V249I and T280M polymorphisms of the CX3CR1 gene in subjects with a BMI >/=30 kg/m(2) and nonobese controls with a BMI <30 kg/m(2). Binary logistic regression analyses revealed that the 280MM genotype was associated with obesity (P = 0.022). A gender-specific one-way ANOVA was also conducted to investigate mean BMI and waist circumference differences between genotypes of each polymorphism. For both polymorphisms independently, women carrying two copies of the minor allele had significant higher mean waist circumference than those carrying only one copy of the minor allele (MM > TM, P = 0.031; II > VI, P = 0.013) or those who were homozygous for the major allele (MM > TT, P = 0.005; II > VV, P = 0.006). We also observed significant higher mean waist circumference in men carrying one copy of the minor allele when compared to those who were homozygous for the major allele for the T280M polymorphism (TM > TT, P = 0.029). This study suggests that CX3CR1, a biomarker of obesity in this sample, constitutes a potential target for further investigation of the role of inflammation in the expression of obesity-related phenotypes.
Wallace GR, etal., Invest Ophthalmol Vis Sci. 2006 Jul;47(7):2966-70.
PURPOSE: To investigate whether polymorphisms in the gene encoding the chemokine receptor CX3CR1, which has been linked to changes in functional ligand-binding activity, are associated with retinal vasculitis (RV) in a cohort of patients in the United Kingdom.
METHODS: DNA was prepared from whole blood of 126 patients with RV and 95 healthy individuals by a standard salting-out procedure. Two polymorphisms, V249I and T280M, were analyzed by multiplex polymerase chain reaction-sequence-specific primers (PCR-SSPs). RESULTS: There was no significant difference between the prevalence of V249 or I249 variants in patients with RV or in control subjects. By contrast, the 280M variant was significantly raised in patients compared with control subjects (P=0.01), the IV/MT haplotype was also more prevalent in patients with RV than in control subjects (P=0.006), and the I249/M280 haplotype was associated with retinal vasculitis (P=0.01). The 280M variant was significantly associated with the nonischemic form of RV compared with healthy control subjects (P=0.009). CONCLUSIONS: Polymorphisms related to a functional decrease in ligand binding activity of CX3CR1 are associated with disease in U.K. patients with retinal vasculitis. CX3CR1 and its ligand CX3CL1 have been implicated in leukocyte adhesion and neuronal protection. Changes in the activity of this interaction may have a role in the pathogenesis of RV.
Jerath MR, etal., Thromb J. 2010 Sep 13;8:14. doi: 10.1186/1477-9560-8-14.
OBJECTIVES: The chemokine receptors CCR2 and CX3CR1 are important in the development of coronary artery disease. The purpose of this study is to analyze the effect of a novel CCR2 inhibitor in conjunction with CX3CR1 deletio
n on vascular inflammation. METHODS: The novel CCR2 antagonist MRL-677 was characterized using an in vivo model of monocyte migration. To determine the relative roles of CCR2 and CX3CR1 in vascular remodeling, normal or CX3CR1 deficient mice were treated with MRL-677. After 14 days, the level of intimal hyperplasia in the artery was visualized by paraffin sectioning and histology of the hind limbs. RESULTS: MRL-677 is a CCR2 antagonist that is effective in blocking macrophage trafficking in a peritoneal thioglycollate model. Intimal hyperplasia resulting from vascular injury was also assessed in mice. Based on the whole-blood potency of MRL-677, sufficient drug levels were maintained for the entire 14 day experimental period to afford good coverage of mCCR2 with MRL-677. Blocking CCR2 with MRL-677 resulted in a 56% decrease in the vascular injury response (n = 9, p < 0.05) in normal animals. Mice in which both CCR2 and CX3CR1 pathways were targeted (CX3CR1 KO mice given MRL-677) had an 88% decrease in the injury response (n = 6, p = 0.009). CONCLUSION: In this study we have shown that blocking CCR2 with a low molecular weight antagonist ameliorates the inflammatory response to vascular injury. The protective effect of CCR2 blockade is increased in the presence of CX3CR1 deficiency suggesting that CX3CR1 and CCR2 have non-redundant functions in the progression of vascular inflammation.
Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particul
ar interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2(-/-)/Crb1(Rd8/RD8), Cx3cr1(-/-)/Crb1(Rd8/RD8) and CCl2(-/-)/Cx3cr1(-/-)/Crb1(Rd8/RD8) mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings indicate that CCDKO mice are not a model of AMD, but a model for an inherited retinal degeneration that is differentially modulated by Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling.
Wang L, etal., Int Endod J. 2014 Mar;47(3):271-9. doi: 10.1111/iej.12143. Epub 2013 Jul 6.
AIM: To investigate the expression of CX3CL1 and its receptor, CX3CR1, in the development of periapical lesions induced in rats and explore the possible role of these substances in the pathogenesis of periapical lesions. METHODOLOGY: Periapical lesions in mandib
ular first molar teeth were established in 30 rats following pulp exposure to the oral environment. The animals were killed 0, 7, 14, 21, 28 and 42 days after lesion induction. The development of periapical lesions was investigated by histological and enzyme histochemical examination. The distributions of CX3CL1 and CX3CR1 in the periapical tissue were examined by immunohistochemistry and immunofluorescence staining. Osteoclasts and CX3CL1-positive cells were counted in each specimen. The data were then analysed by one-way anova using the SPSS 13.0 statistical package. RESULTS: The lesions expanded from days 0 to 14 and stabilized thereafter. Where expansion of the periapical lesion was most evident, numerous CX3CL1-positive cells were observed around the apical foramen and adjacent periapical areas. From days 21 to 42, subjacent connective tissues presented intense CX3CL1 immunostaining in inflammatory cells with different morphologies, such as round, oval and fibroblastic. The number of CX3CL1-positive cells increased from days 7 to 28, but decreased on day 42 post-operation. Double immunofluorescence staining showed CX3CL1- and CX3CR1-positive cells around periapical lesions surrounding the apical foramen. Most CX3CL1-positive cells were mononuclear in nature, which suggests the presence of macrophages, infiltrating neutrophils and lymphocytes, and overlapped with CX3CR1-positive cells. CONCLUSIONS: CX3CL1 and CX3CR1 are related to the development of periapical lesions. The chemokine and its receptor may be involved in the progression of tissue destruction, including bone resorption, during periapical inflammation.
Meucci O, etal., Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8075-80.
Recent in vitro and in vivo studies have shown that the chemokine fractalkine is widely expressed in the brain and localized principally to neurons. Central nervous system expression of CX(3)CR1, the only known receptor for fractalkine, has been demonstrated exclusively on microglia and astrocytes.
Thus, it has been proposed that fractalkine regulates cellular communication between neurons (that produce fractalkine) and microglia (that express its receptor). Here we show, for the first time, that hippocampal neurons also express CX(3)CR1. Receptor activation by soluble fractalkine induces activation of the protein kinase Akt, a major component of prosurvival signaling pathways, and nuclear translocation of NF-kappaB, a downstream effector of Akt. Fractalkine protects hippocampal neurons from the neurotoxicity induced by the HIV-1 envelope protein gp120(IIIB), an effect blocked by anti-CX(3)CR1 antibodies. Experiments with two different inhibitors of the phosphatidylinositol 3-kinase, a key enzyme in the activation of Akt, and with a phospholipid activator of Akt demonstrate that Akt activation is responsible for the neuroprotective effects of fractalkine. These data show that neuronal CX(3)CR1 receptors mediate the neurotrophic effects of fractalkine, suggesting that fractalkine and its receptor are involved in a complex network of both paracrine and autocrine interactions between neurons and glia.
Combadiere C, etal., Circulation. 2003 Feb 25;107(7):1009-16.
BACKGROUND: Fractalkine (CX3CL1), a CX3C chemokine, is expressed in the vessel wall and mediates the firm adhesion and chemotaxis of leukocytes expressing its receptor, CX3CR1. A polymorphism in the CX3CR1 gene is associated
with low CX3CR1 expression and reduced risk of acute coronary disease in humans. METHODS AND RESULTS: We generated CX3CR1-deficient mice (CX3CR1(-/-)) by targeted gene disruption and crossed them with the proatherogenic apolipoprotein E-deficient mice (apoE(-/-)). Here we show that the extent of lipid-stained lesions in the thoracic aorta was reduced by 59% in CX3CR1/apoE double knockout mice compared with their CX3CR1(+/+)/apoE(-/-) littermates. The development of atherosclerosis in the aortic sinus was also markedly altered in the double knockout mice, with 50% reduction in macrophage accumulation. Although lesions of CX3CR1(-/-) mice were smaller in size, they retained a substantial accumulation of smooth muscle cells and collagen, features consistent with a stable plaque phenotype. Finally, CX3CR1(+/-)/apoE(-/-) mice showed the same reduction in atherosclerosis as the CX3CR1(-/-)/apoE(-/-) mice. CONCLUSIONS: The CX3CR1-CX3CL1 pathway seems to play a direct and critical role in monocyte recruitment and atherosclerotic lesion development in a mouse model of human atherosclerosis.
Feng X, etal., Oncotarget. 2015 Jun 20;6(17):15077-94.
The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM
growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of Cx3cr1 from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b+CD45hiCX3CR1lowLy-6ChiLy-6G-F4/80-/low circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1beta expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1beta expression showed shorter survival compared to patients with low IL1beta. IL1beta promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1beta activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1beta signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM.
Lu P, etal., Cornea. 2009 Jun;28(5):562-9. doi: 10.1097/ICO.0b013e3181930bcd.
PURPOSE: The purpose of this study was to investigate the role of infiltrating macrophages in the development of experimental corneal neovascularization. METHODS: Corneal neovascularization was induced by alkali injury in mice deficient in a macrophage-tropic chemokine receptor, CCR2 or CX3CR1
'font-weight:700;'>CX3CR1, or in mice treated with clodronate-liposomes (Cl2MDP-lip), which can selectively deplete monocytes/macrophages. Corneal neovascularization 2 weeks after alkali injury was assessed by immunostaining with anti-CD31 antibody. Intracorneal expression of proangiogenic and antiangiogenic factors was determined by reverse transcription-polymerase chain reaction. RESULTS: CCR2-deficient mice exhibited reduced alkali-induced corneal neovascularization with reduced macrophage infiltration, whereas CX3CR1-deficient mice developed a more severe form of alkali-induced corneal neovascularization with reduced macrophage infiltration. Selective macrophage depletion by Cl2MDP-lip treatment failed to affect alkali-induced corneal neovascularization as evidenced by immunohistochemical analysis using anti-CD31 antibody, whereas intracorneal macrophage infiltration was markedly reduced. Alkali injury enhanced the expression of proangiogenic molecules, including matrix metalloproteinase-2, matrix metalloproteinase-9, and tumor necrosis factor alpha, and antiangiogenic factors, including a disintegrin and metalloprotease with thrombospondin (ADAMTS)-1, thrombospondin-1, and thrombospondin-2. Cl2MDP-lip-treated mice exhibited a reduction in the messenger RNA expression of these molecules. CONCLUSION: Because CCR2- and CX3CR1-expressing macrophages exhibit opposite activities in angiogenesis, depletion of macrophages as a whole may not have apparent effects on alkali-induced corneal neovascularization.
Previously, we reported that nicotine withdrawal (NT) significantly increased pain sensitivity in rats. Recent reports suggest that fractalkine is involved in the spinal cord neuron-to-microglia activation via CX3CR1 signaling. However, its contribution to NT-i
nduced hyperalgesia and the underlying mechanisms have yet to be elucidated. In the present study, a rat model of NT was used to test the changes in CX3CR1 expression in the spinal cord. We also evaluated the effect of the CX3CR1 neutralizing antibody on spinal microglial activity, the expression of phosphorylated p38-mitogen-activated protein kinase (p-p38-MAPK) and heat-induced pain responses. We established a NT model via subcutaneous injection of pure nicotine (3 mg/kg), three times daily for 7 days. The expression of CX3CR1 was studied by Western blot and immunofluorescence staining. Following NT, the rats received daily intrathecal injections of CX3CR1 neutralizing antibody for 3 days. The change in paw withdrawal latency (PWL) was observed. The activation of microglia and the expression of p-p38-MAPK were investigated by Western blot and immunofluorescence staining. The expression of CX3CR1 was significantly increased after NT and co-localized with IBA-1. NT rats treated with CX3CR1 neutralizing antibody showed significantly increased PWL on day 4 after NT. Furthermore, the activation of microglia and the expression of p-p38-MAPK in the spinal cord were suppressed. These results indicate that microglial CX3CR1/p38MAPK pathway is critical for the development of pain hypersensitivity after NT.
BACKGROUND: Fractalkine is a member of the chemokine family that acts as an adhesion molecule and as an extracellular chemoattractant promoting cellular migration. In this study, we analysed the association between the CX3CR1 gene V249I (rs3732379) SNP and renal
allograft function. METHODS: The study enrolled 270 Caucasian kidney allograft recipients. The following parameters were recorded in each case: the recipient's age and gender, delayed graft function (DGF) defined as the need for dialysis in the first 7 days after transplantation, occurrence and number of episodes of acute rejection (AR), and chronic allograft dysfunction (CAD). RESULTS: Delayed graft function was diagnosed in 39.2% of individuals with the CC genotype, 22.7% with CT and 23.5% of those with the TT genotype. The differences were statistically significant (CC vs. TT+CT: OR = 2.17; 95% CI = 1.28-3.70, p = 0.0042). In multivariate analysis the CC genotype was an independent and significant predictor of higher risk of DGF. The distribution of genotypes and alleles of the CX3CR1 gene polymorphism among patients with and without AR as well as CAD did not differ significantly. CONCLUSIONS: The results of this study suggest that the CX3CR1 gene V249I (rs3732379) SNP CC genotype is associated with increased risk of DGF.
Mononuclear phagocytes (MPs) are an essential component of the intestinal immune system. They are comprised of a few dendritic cell and macrophage subsets, all with the common ability to sample extracellular milieu and to discriminate between dangerous and innocuous signals. Despite the commonality
, each MP subset acquires distinct developmental pathways and unique functions, likely to fulfill needs of the tissue in which they reside. Some MP subsets develop from monocytes and are distinguished by their expression of CX3C-chemokine receptor 1 (CX3CR1). This manuscript summarizes our expertise in vivo targeting of intestinal CX3CR1(+) MP subsets. The described tools might be useful for studies of CX3CR1(+) MP function in various murine experimental models, particularly under non-inflammatory conditions.
Hasegawa M, etal., Ann Rheum Dis. 2005 Jan;64(1):21-8.
BACKGROUND: Fractalkine expressed on endothelial cells mediates activation and adhesion of leucocytes expressing its receptor, CX(3)CR1. Soluble fractalkine exhibits chemotactic activity for leucocytes expressing CX(3)CR1. OBJECTIVE: To determine the role of fractalkine and its receptor in systemic
sclerosis (SSc) by assessing their expression levels in patients with this disease. METHODS: The expression of fractalkine and CX(3)CR1 in the skin and lung tissues was immunohistochemically examined. Circulating soluble fractalkine levels were examined by enzyme linked immunosorbent assay (ELISA). Blood samples from patients with SSc were stained for CX(3)CR1 with flow cytometric analysis. RESULTS: CX(3)CR1 levels on peripheral monocytes/macrophages and T cells were found to be raised in patients with diffuse cutaneous SSc. The numbers of cells expressing CX(3)CR1, including monocytes/macrophages, were increased in the lesional skin and lung tissues from patients with diffuse cutaneous SSc. Fractalkine was strongly expressed on endothelial cells in the affected skin and lung tissues. Soluble fractalkine levels were significantly raised in sera and were associated with raised erythrocyte sedimentation rates, digital ischaemia, and severity of pulmonary fibrosis. CONCLUSIONS: Up regulated expression of fractalkine and CX(3)CR1 cooperatively augments the recruitment of mononuclear cells expressing CX(3)CR1 into the affected tissue of SSc, leading to inflammation and vascular injury.
Kikuchi Y, etal., Nephron Exp Nephrol. 2004;97(1):e17-25.
BACKGROUND: Fractalkine is induced on activated endothelial cells and promotes strong adhesion of T cells and monocytes via its receptor CX3CR1. In kidney, fractalkine expression might be induced by high shear stress and play an important role in prolonged glome
rular diseases. We examined whether fractalkine and CX3CR1 upregulation are found in streptozotocin-induced diabetic kidneys. METHODS: Diabetic rats were randomized to receive an angiotensin-converting enzyme inhibitor (temocapril), aminoguanidine or no treatment. Reverse transcription-competitive polymerase chain reaction, Western blot analysis and immunohistochemistry were used. RESULTS: At 4 weeks, fractalkine and CX3CR1 mRNA expression in diabetic kidneys increased compared with that in controls. Fractalkine staining in diabetic kidneys was clearly detected, along with glomerular capillary lumen and peritubular capillaries. A few CX3CR1 positive cell infiltration in diabetic glomeruli were found. Treatment with temocapril or aminoguanidine did not affect these changes. At 8 weeks, fractalkine and CX3CR1 mRNA expression in untreated diabetic kidneys markedly increased compared with that in controls. Membrane-anchored fractalkine protein expression in untreated diabetic rats also increased. The increased expression was suppressed by the treatment with temocapril and aminoguanidine. Increased CX3CR1-positive cell infiltration in diabetic glomeruli was also inhibited by both treatments. Some CX3CR1-positive cells were ED3 positive. CONCLUSIONS: Fractalkine and CX3CR1 upregulation were demonstrated in an early stage of diabetic kidney. These upregulation, as well as urinary albumin excretion, were suppressed by treatments with temocapril and aminoguanidine for 8 weeks. These findings suggest that fractalkine expression and CX3CR1-positive cell infiltration in diabetic kidneys might play an important role for progression of diabetic nephropathy.
OBJECTIVE: Alterations of the chemokine receptor CX3CR1 gene were associated with a reduced risk of myocardial infarction in human and limited atherosclerosis in mice. In this study, we addressed whether CX3CR1 antagonists a
re potential therapeutic tools to limit acute and chronic inflammatory processes in atherosclerosis. APPROACH AND RESULTS: Treatment with F1, an amino terminus-modified CX3CR1 ligand endowed with CX3CR1 antagonist activity, reduced the extent of atherosclerotic lesions in both Apoe(-/-) and Ldlr(-/-) proatherogenic mouse models. Macrophage accumulation in the aortic sinus was reduced in F1-treated Apoe(-/-) mice but the macrophage density of the lesions was similar in F1-treated and control mice. Both in vitro and in vivo F1 treatment reduced CX3CR1-dependent inflammatory monocyte adhesion, potentially limiting their recruitment. In addition, F1-treated Apoe(-/-) mice displayed reduced numbers of blood inflammatory monocytes, whereas resident monocyte numbers remained unchanged. Both in vitro and in vivo F1 treatment reduced CX3CR1-dependent inflammatory monocyte survival. Finally, F1 treatment of Apoe(-/-) mice with advanced atherosclerosis led to smaller lesions than untreated mice but without reverting to the initial phenotype. CONCLUSIONS: The CX3CR1 antagonist F1 is a potent inhibitor of the progression of atherosclerotic lesions by means of its selective impact on inflammatory monocyte functions. Controlling monocyte trafficking and survival may be an alternative or complementary therapy to lipid-lowering drugs classically used in the treatment of atherosclerosis.
Zhao W, etal., FASEB J. 2016 Jan;30(1):380-93. doi: 10.1096/fj.14-270090. Epub 2015 Oct 6.
Adequate inflammatory response predominated by macrophage infiltration is essential to acute skeletal muscle injury repair. The majority of intramuscular macrophages express the chemokine receptor CX3CR1. We studied the role of CX3CR1
CR1 in regulating intramuscular macrophage number and function in acute injury repair by using a loss-of-function approach. Muscle injury repair was delayed in CX3CR1(GFP/GFP) mice as compared with wild-type (WT) controls. CX3CR1 was predominantly expressed by macrophages but not by myogenic cells or capillary endothelia cells in injured muscles. Intramuscular macrophage number and subset composition were not altered by CX3CR1 deficiency. Intramuscular macrophage phagocytosis function was impaired by CX3CR1 deficiency as demonstrated by increased number of necrotic fibers (+115%) and percentage of necrotic area (+204%) at 7 d, increased number of intramuscular neutrophils at 3 (+89%) but not 1 d, reduced number of phagocytosing macrophages (-12%) and phagocytosed beads within macrophages (-15%) in CX3CR1(GFP/GFP) mice as compared with WT controls. The mRNA expression of CD36 (-50%), CD14 (-43%), IGF-1 (-53%), and IL-6 (-40%) was reduced in CX3CR1-deficient macrophages as compared with WT controls. We conclude that CX3CR1 is important to acute skeletal muscle injury repair by regulating macrophage phagocytosis function and trophic growth factor production.
Morimura S, etal., Am J Pathol. 2013 May;182(5):1640-7. doi: 10.1016/j.ajpath.2013.01.023. Epub 2013 Mar 5.
A type III hypersensitivity reaction induced by an immune complex, such as leukocytoclastic vasculitis, is mediated by inflammatory cell infiltration that is highly regulated by multiple adhesion molecules. CX3CL1, a ligand for CX3C chemokine receptor 1 (CX3CR1)
, has recently been identified as a key mediator of leukocyte adhesion that functions without the recruitment of integrins or selectin-mediated rolling. To elucidate the role of CX3CL1 and CX3CR1 in the development of leukocytoclastic vasculitis, the cutaneous and peritoneal reverse Arthus reactions, classic experimental models for immune complex-mediated tissue injury, were examined in mice lacking CX3CR1. CX3CL1 expression in sera and lesional skin of patients with polyarteritis nodosa (PN) and healthy controls was also examined. Edema and hemorrhage were significantly reduced in CX3CR1(-/-) mice compared with wild-type mice. Infiltration of neutrophils and mast cells and expression of IL-6 and tumor necrosis factor-alpha were also decreased in CX3CR1(-/-) mice. CX3CL1 was expressed in endothelial cells during the cutaneous reverse Arthus reactions. Furthermore, serum CX3CL1 levels were significantly higher in patients with PN than in healthy controls. Endothelial cells in lesional skin of patients with PN strongly expressed CX3CL1. These results suggest that interactions between CX3CL1 and CX3CR1 may contribute to the development of leukocytoclastic vasculitis by regulating neutrophil and mast cell recruitment and cytokine expression.
Kezic JM, etal., Invest Ophthalmol Vis Sci. 2013 Jan 30;54(1):854-63. doi: 10.1167/iovs.12-10876.
PURPOSE: Diabetic retinopathy (DR) is a major cause of visual impairment in developed countries. While DR has been described classically as a microvascular disease, recent evidence suggests that changes to retinal microglia are an early feature of retinopathy. In our study, we assessed changes in m
icroglial distribution and morphology in vivo and ex vivo in a mouse model of non-proliferative DR, and further examined effects of age and the absence of the functional chemokine receptor Cx(3)cr1 on the progression of these changes. METHODS: To isolate the effects of the three variables: diabetic status, age, and role of Cx(3)cr1, the Ins2(Akita) mouse was crossed with Cx(3)cr1-eGFP reporter mice. Eyes were assessed clinically in vivo at 10, 20, 30, and 46 weeks of age, and the retinal structure and arrangement of GFP(+) microglia was examined ex vivo using whole mount immunofluorescence staining and confocal microscopy. RESULTS: clinical examination of the fundus, vasculature, or GFP(+) microglial distribution did not reveal any macroscopic changes related to diabetic status: however, ex vivo microscopic analysis revealed alterations in microglial network organization, and evidence of cell shape changes regarded classically as signs of activation, in Ins2(Akita) mice from 10 weeks of age. These changes were exacerbated in older diabetic mice whose microglia lacked Cx(3)cr1 (Ins2(Akita) Cx(3)cr1(gfp/gfp) mice). Diabetic status and Cx(3)cr1 deficiency led to accumulations of Iba-1(+) hyalocytes (vitreal macrophages) and subretinal macrophages. CONCLUSIONS: These data showed that changes to murine retinal microglia occur in response to systemic diabetic status in the absence of overt retinopathy and inflammation. These changes are exaggerated in mice lacking Cx(3)cr1, suggesting fractalkine- Cx(3)cr1 interactions may have a role in early neuronal changes in preproliferative DR.
Arnold L, etal., Nat Commun. 2015 Dec 3;6:8972. doi: 10.1038/ncomms9972.
Muscle injury triggers inflammation in which infiltrating mononuclear phagocytes are crucial for tissue regeneration. The interaction of the CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axis that guides phagocyte infiltration is incompletely understood. Here, we show
that CX3CR1 deficiency promotes muscle repair and rescues Ccl2(-/-) mice from impaired muscle regeneration as a result of altered macrophage function, not infiltration. Transcriptomic analysis of muscle mononuclear phagocytes reveals that Apolipoprotein E (ApoE) is upregulated in mice with efficient regeneration. ApoE treatment enhances phagocytosis by mononuclear phagocytes in vitro, and restores phagocytic activity and muscle regeneration in Ccl2(-/-) mice. Because CX3CR1 deficiency may compensate for defective CCL2-dependant monocyte recruitment by modulating ApoE-dependent macrophage phagocytic activity, targeting CX3CR1 expressed by macrophages might be a powerful therapeutic approach to improve muscle regeneration.
Respiratory syncytial virus (RSV) glycoprotein G mimics fractalkine, a CX(3)C chemokine, which mediates chemotaxis of leukocytes expressing its receptor, CX(3)CR1. The aim of this study was to examine the relationship between RSV infection and expression of perforin and IFN-gamma in CX(3)CR1-express
ing peripheral blood CD8(+) T cells. Samples were collected from infants with RSV bronchiolitis, both in the acute and convalescence phase (n = 12), and from their age- and sex-matched healthy controls (n = 15). Perforin expression and IFN-gamma secretion in CX(3)CR1(+) CD8(+) T cells were assessed by four-color flow cytometry. The NF-kappaB p50 and p65 subunit levels were also determined as markers of RSV-induced inflammation. Study results showed perforin and CX(3)CR1 expression to be significantly lower in the convalescent phase of infected infants than in healthy controls. There was no significant difference in IFN-gamma secretion and NF-kappaB binding activity between two time-points in RSV-infected infants, or when compared with healthy controls. Infants with prolonged wheezing had lower acute-phase CX(3)CR1 levels in peripheral blood. These data indicate existence of an event persisting after acute RSV infection that is able to modulate effector functions of cytotoxic T cells, and also link disease severity with CX(3)CR1 expression.
Wang Y, etal., Biochem Biophys Res Commun. 2016 Feb 19;470(4):845-50. doi: 10.1016/j.bbrc.2016.01.118. Epub 2016 Jan 21.
Horny Goat Weed is a commonly used in Chinese herbal medicine. And it is used in multiple kinds of diseases including cardiovascular diseases. Icariin is the major component isolated from Horny Goat Weed. It is reported to have lipid-lowering effect. In atherosclerosis, icariin attenuate the enhanc
ed prothrombotic state independently of its lipid-lowering effects. However, its detail mechanism is remaining unclear. This study aimed to investigate the effect and mechanism of icariin on atherosclerosis. We performed gene expression profiling on icariin treated LPS-stimulated RAW264.7 and its control cells. Microarray analyses identified a list of genes significantly differentially expressed after icariin treated including downregulation of CX3CR1. Apoe null mice were assigned into 3 groups: control group, diet with 30 mg/kg/d icariin and diet with 60 mg/kg/d icariin. The results showed that icariin treatment significantly reduced lesion area and macrophage infiltration. Also icariin reduced CX3CR1 and CX3CL1 protein levels in the artery wall. In conclusion, icariin could be a potential anti-atherosclerosis agent by downregulating the expression of CX3CR1.
Ryu J, etal., Cardiovasc Res. 2008 May 1;78(2):333-40. Epub 2007 Nov 11.
AIMS: The present study investigated the detailed mechanism by which fractalkine (Fkn), a CX3C chemokine, induces angiogenesis and its functional implication in alleviating ischaemia in vivo. METHODS AND RESULTS: Fkn induced new vessel formation on the excised rat aorta and chick chorioallantoic mem
brane (CAM) through CX3CR1 activation. Immunoblotting analysis, promoter assay and electrophoretic mobility shift assay showed that Fkn upregulated hypoxia-inducible factor-1 alpha (HIF-1alpha) by cultured human aortic endothelial cells (ECs), which in turn induced mRNA and protein levels of vascular endothelial growth factor (VEGF)-A through a p42/44 mitogen-activated protein kinase pathway. In vivo Fkn-induced angiogenesis on CAM was completely blocked by functional inhibition of VEGF receptor 2 kinase insert domain-containing receptor (KDR) and Rho GTPase. C57/BL6 mice with CX3CR1(-/-) bone marrow-derived cells developed angiogenesis in the implanted Fkn-mixed Matrigel plug, suggesting CX3CR1 activation in vascular ECs is sufficient for Fkn-induced angiogenesis in vivo. The condition of rat hindlimb ischaemia, which rapidly stimulated mRNA expression of both Fkn and VEGF-A, was significantly alleviated by the injection of whole-length Fkn protein. CONCLUSION: Fkn-induced activation of CX3CR1 by ECs leads to in vivo angiogenesis through two sequential steps: the induction of HIF-1alpha and VEGF-A gene expression by CX3CR1 activation and the subsequent VEGF-A/KDR-induced angiogenesis. The potent induction of angiogenesis by Fkn can be used as a therapeutic strategy for alleviating peripheral ischaemia.
McDermott DH, etal., Circ Res. 2001 Aug 31;89(5):401-7.
Fractalkine, a chemokine expressed by inflamed endothelium, induces leukocyte adhesion and migration via the receptor CX3CR1, and the CX3CR1 polymorphism V249I affects receptor expression and function. Here we show that this
polymorphism is an independent risk factor for atherosclerotic coronary artery disease (CAD). Genotyping of the CX3CR1-V249I polymorphism was performed in a cohort of 339 white individuals who underwent cardiac catheterization (n=197 with and n=142 without CAD, respectively). In 203 patients, intracoronary acetylcholine 15 microg/min) and sodium nitroprusside (20 microg/min) were administered to test endothelium-dependent and -independent coronary vascular function, respectively. Change in coronary vascular resistance (DeltaCVR) was measured as an index of microvascular dilation. An association was observed between presence of the CX3CR1 I249 allele and reduced prevalence of CAD, independent of established CAD risk factors (odds ratio=0.54 [95% confidence interval, 0.30 to 0.96], P=0.03). Angiographic severity of CAD was also lower in these subjects (P=0.01). Furthermore, endothelium-dependent vasodilation was greater in these individuals compared with individuals homozygous for the CX3CR1-V249 allele (DeltaCVR during acetylcholine = -46+/-3% versus -36+/-3%, respectively, P=0.02), whereas DeltaCVR with sodium nitroprusside was similar in both groups (-55+/-2% versus -53+/-2%, P=0.45). The association between CX3CR1 genotype and endothelial function was independent of established risk factors and presence of CAD by multivariate analysis (P=0.02). Thus, the CX3CR1 I249 allele is associated with decreased risk of CAD and improved endothelium-dependent vasodilation. This suggests that CX3CR1 may be involved in the pathogenesis of CAD.
Li D, etal., Can J Ophthalmol. 2015 Dec;50(6):451-60. doi: 10.1016/j.jcjo.2015.08.010.
OBJECTIVE: Studies investigating the associations between CX3CR1 genetic polymorphisms and age-related macular degeneration (AMD) have reported controversial results. Therefore, this meta-analysis aims to clarify the effects of CX3CR1
3CR1 T280M and V249I polymorphisms on AMD risk. DESIGN: Meta-analysis. PARTICIPANTS: Results from six studies were pooled in the meta-analysis. METHODS: Relevant studies were selected through an extensive search of PubMed, EMBASE, and the Web of Science databases. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random-effects model. RESULTS: Six studies with were included in this systematic review and meta-analysis. There was no significant association between CX3CR1 T280M polymorphism and risk of AMD under all genetic models (TT vs CC/CT: OR = 1.57, 95% CI = 0.87-2.84; CC vs TT/CT: OR = 0.75, 95% CI = 0.54-1.06; TT vs CC: OR = 0.58, 95% CI = 0.30-1.144; CT vs CC: OR = 1.25, 95% CI = 0.91-1.70). The CX3CR1 V249I polymorphism also did not significantly affect the AMD risk (AA vs GG/AG: OR = 1.23, 95% CI = 0.98-1.55; AG/AA vs GG: OR = 0.56, 95% CI = 0.29-1.07; AA vs GG: OR = 1.43, 95% CI = 0.97-2.09; AG vs GG: OR = 1.07, 95% CI = 0.85-1.36). CONCLUSIONS: This meta-analysis suggested that CX3CR1 T280M and V249I polymorphisms may not be associated with an increased risk of AMD based on current published data. Given the limited sample size, the finding on CX3CR1 polymorphisms needs further investigation.
OBJECTIVES: Recent data in human and mice suggest that monocyte chemokine receptors CX3CR1 and CCR2 are involved in the pathogenesis of atherosclerosis. Our previous study showed that hydrogen sulfide, a novel gaseous mediator hampered the progression of atheros
clerosis in fat-fed apoE(-/-) mice with downregulating CX3CR1 and CX3CL1 expressions. However, there is a paucity of information regarding the clinical association between endogenous H2S metabolism and alterations of monocyte chemokine receptors in patients with cardiovascular disease. Therefore, in this study, we investigated circulating monocyte heterogeneity with differential expressions of CCR2 and CX3CR1 and its relevance to plasma H2S level in patients with coronary artery disease (CAD). METHODS: Sixty-three CAD patients with acute coronary syndrome (ACS, n = 46) or stable angina pectoris (SAP, n = 17) undergoing either percutaneous coronary intervention or coronary angiography and eleven non-CAD patients were enrolled in the study. Plasma levels of H2S as well as chemokines (CCL2 and CX3CL1) and expressions of CCR2 and CX3CR1 on peripheral monocytes were measured. RESULTS: It was found that plasma H2S level was significantly reduced, whereas plasma CCL2 and CX3CL1 levels were substantially elevated in patients with ACS, as compared with patients with SAP or non-CAD patients. Furthermore, patients with ACS had significantly higher proportion of CD14(+)CCR2(+)CX3CR1(+) and CD14(+)CCR2(-)CX3CR1(+) monocytes but lower percentage of CD14(+)CCR2(+)CX3CR1(-) monocytes than SAP or non-CAD patients did. Lastly, plasma H2S level showed a significantly negative correlation with the proportion of CD14(+)CCR2(+)CX3CR1(+) monocytes, but not other monocyte subsets. CONCLUSIONS: These data indicate that decreased endogenous H2S production may predispose stable CAD patients to rupture of vulnerable plaque and thus to ACS, probably in relation to circulating monocyte phenotypic transformation with differential expressions of CCR2 and CX3CR1.
PURPOSE: To explore the association of two single nucleotide polymorphisms (SNPs) in the CX3CR1 gene with grades of age-related macular degeneration (AMD) in a population-based setting. METHODS: The Thessaloniki Eye study is a cross-sectional population-based ep
idemiologic study of chronic eye diseases in Thessaloniki, Greece. A total of 371 subjects were included and classified according to their AMD status. Subjects with AMD Grades 0-1 (n = 188) were compared to those with AMD Grades 2-3 (n = 138), to those with AMD Grade 4 (geographic atrophy) (n = 20) and to those with AMD Grade 5 (neovascular AMD) (n = 25) with regard to the presence of CX3CR1 polymorphisms (V249I and T280M). Polychotomous logistic regression analysis adjusted for age, gender, and smoking was conducted and the log-additive allelic model was preferred. RESULTS: Participants with AMD Grade 4 were approximately three times more likely to carry the VI249 and nine times more likely to carry the II249 alleles, compared to those with AMD Grades 0-1, whereas those with AMD Grades 2-3 or Grade 5 did not differ. The T280M polymorphism was not associated with either AMD Grades 2-3 or AMD Grades 4 or 5. CONCLUSION: In this Greek population, after adjusting for known risk factors, increased risk of geographic atrophy (GA) AMD among the carriers of the V249I polymorphism in the CX3CR1 gene was found. Our study failed to reveal any association with the T280M polymorphism reported in previous studies. Additional studies in different ethnic populations using standardized methodology are needed in order to confirm this association.
Sautter NB, etal., J Assoc Res Otolaryngol. 2006 Dec;7(4):361-72. Epub 2006 Oct 31.
Acoustic trauma was recently shown to induce an inflammatory response in the ear characterized by rapid entry of macrophages in the spiral ligament. The current study seeks to elucidate the mechanisms involved in summoning macrophages to the cochlear lateral wall and the role macrophages play in n
oise-induced injury or repair. CCL2 and its primary receptor, CCR2, are the most widely validated effectors of monocyte chemotaxis in vivo. CCL2-/- and CCR2-/- mice have been used extensively in studies of monocyte activation in neuronal injury. However, the function of CCL2 and CCR2 in the cochlea has not been studied. The present study examines the role of CCL2 and CCR2 in acoustic injury. CCL2-/- and CCR2-/- mice on a CX3CR1(+/GFP) background were exposed to octave band noise (8-16 kHz) for 2 h to determine the effect of CCL2 and CCR2 on monocyte migration into the cochlea, threshold shift, and cell survival. We found that threshold shift was unchanged in the two knockout mouse strains when compared to the background strain (CX3CR1(+/GFP)). Surprisingly, we found that monocyte migration was also unchanged, despite the absence of CCL2 or CCR2. However, there was a dramatic increase in noise-induced hair cell death in the CCR2-/- strain. This observation suggests that CCR2, independent of CCL2, plays a protective role in the cochlea after noise, and neither ligand nor receptor is necessary for monocyte migration. Possible mechanisms of neuroprotection by CCR2 are discussed.
Atrophic age-related macular degeneration (AMD) is associated with the subretinal accumulation of mononuclear phagocytes (MPs). Their role in promoting or inhibiting retinal degeneration is unknown. We here show that atrophic AMD is associated with increased intraocular CCL2 levels and subretinal CC
R2(+) inflammatory monocyte infiltration in patients. Using age- and light-induced subretinal inflammation and photoreceptor degeneration in Cx3cr1 knockout mice, we show that subretinal Cx3cr1 deficient MPs overexpress CCL2 and that both the genetic deletion of CCL2 or CCR2 and the pharmacological inhibition of CCR2 prevent inflammatory monocyte recruitment, MP accumulation and photoreceptor degeneration in vivo. Our study shows that contrary to CCR2 and CCL2, CX3CR1 is constitutively expressed in the retina where it represses the expression of CCL2 and the recruitment of neurotoxic inflammatory CCR2(+) monocytes. CCL2/CCR2 inhibition might represent a powerful tool for controlling inflammation and neurodegeneration in AMD.
BACKGROUND: CX3CL1 and its receptor CX3CR1 have been emphasized in atherosclerosis recently. In this study we investigated the role of the chemokines CX3CL1 and their receptor CX3CR1 in atherogenesis and identified whether t
he genetic variations in CX3CL1 and CX3CR1 impacted the atherosclerosis process in coronary artery disease (CAD) or not. METHODS: CX3CL1/CX3CR1 expression in coronary and carotid artery specimens were analysed by immunohistochemistry. CX3CR1 expression on CD4(+) CD28(-) T cells was analysed by flow cytometry. We also screened for CX3CL1/CX3CR1 sequence variations selected from the hapmap database and examined the association between CX3CL1/CX3CR1 and CAD in the Chinese Han population. RESULTS: Immunohistochemical staining of tissue from CAD patients showed increased CX3CL1/CX3CR1 expression in atherosclerotic coronary and carotid artery plaques compared with normal arteries. CX3CL1/CX3CR1 expression was correlated with the severity of the atherosclerosis lesion. Patients with CAD also showed an increased number of CX3CR1(+) CD4(+) CD28(-) T cells. Compared with their corresponding wild-type genotypes, CX3CL1 rs170364 and CX3CR1 rs17793056 were associated with increased susceptibility to CAD. CONCLUSIONS: CX3CL1 and CX3CR1 may contribute to the formation of coronary atherosclerotic plaque in CAD.CX3CL1 rs170364 and CX3CR1 rs17793056 polymorphisms may be independent genetic risk factors for CAD.
Arai M, etal., J Dermatol Sci. 2013 Mar;69(3):250-8. doi: 10.1016/j.jdermsci.2012.10.010. Epub 2012 Oct 24.
BACKGROUND: Skin fibrotic disorders such as systemic sclerosis (SSc) are characterized by an excessive accumulation of extracellular matrix (ECM), and develop under the influence of certain cytokines. We previously established a mouse model of skin fibrosis induced by exogenous application of cytoki
nes. We have revealed that both the number of macrophages and the levels of macrophage chemoattractant protein-1 (MCP-1) mRNA positively correlate with the extent of skin fibrosis. Macrophages can be divided into two subsets, the first expressing CCR2, and the second expressing CX3CR1. OBJECTIVE: To elucidate the role of skin infiltrating macrophages based on CCR2 and CX3CR1 in this cytokine-induced murine fibrosis model. METHODS: We examined the amounts of collagen deposited in granulation tissues, the numbers of macrophages and the levels of several mRNA in wild type (WT) mice, CCR2(-/-) mice, and CX3CR1(-/-) mice during injections of transforming growth factor-beta (TGF-beta) followed by injections of connective tissue growth factor (CTGF). RESULTS: TGF-beta injection increased the expressions of MCP-1, fractalkine, CCR2 and CX3CR1 mRNA in WT mice. The overproduction of collagen induced by TGF-beta was significantly reduced by CCR2 deficiency, while collagen contents induced by CTGF were restored to wild-type levels. In contrast, overproduction of collagen in CX3CR1-deficient mice decreased nearly 50% by both TGF-beta and CTGF stimulations. CONCLUSION: The involvement of CCR2/MCP-1 interaction (CCR2-dependent loop) was during the TGF-beta phase. In contrast, the fractalkine/CX3CR1 interaction contributes to the initiation of fibrosis by TGF-beta and its maintenance by CTGF. Collectively, two subsets of macrophages both cooperatively and independently play important roles in the development of fibrosis.
Briones TL, etal., J Neuroinflammation. 2014 Jan 22;11:13. doi: 10.1186/1742-2094-11-13.
Although neuroinflammation has been studied extensively in animal models of cerebral ischemia, their contrasting functions are still not completely understood. A major participant in neuroinflammation is microglia and microglial activation usually regulated by the chemokine CX3CL1 (fractalkine) and
its receptor, CX3CR1. Here, we examined the involvement of CX3CR1 on ischemia-induced chronic neuroinflammation and cognitive function using small interfering RNA (siRNA). Forty adult male Wistar rats were included in the study and received either ischemia or sham surgery then were randomized to receive either CX3CR1 siRNA or scrambled RNA as control starting at 7 days after reperfusion. Behavioral testing commenced 28 days after siRNA delivery and all rats were euthanized after behavioral testing. Our data showed that: (i) transient global cerebral ischemia significantly decreased fractalkine/CX3CR1 signaling in the hippocampus; (ii) inhibition of CX3CR1 function exacerbated the ischemia-induced chronic increase in microglial activation and pro-inflammatory cytokine levels; (iii) inhibition of CX3CR1 function worsened ischemia-induced chronic cognitive impairment; (iv) inhibition of CX3CR1 function in sham rats resulted in increased IL-1beta expression and impaired behavioral performance. However, no significant effect of CX3CR1 on ischemia-induced neurodegeneration was seen. The present study provides important insight to understanding the involvement of CX3CR1 in chronic neuroinflammation and cognitive impairment.
BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). It is associated with local activation of microglia and astroglia, infiltration of activated macrophages and T cells, active degradation of myelin and damage to axons and neurons. The proposed
role for CX3CL1 (fractalkine) in the control of microglia activation and leukocyte infiltration places this chemokine and its receptor CX3CR1 in a potentially strategic position to control key aspects in the pathological events that are associated with development of brain lesions in MS. In this study, we examine this hypothesis by analyzing the distribution, kinetics, regulation and cellular origin of CX3CL1 and CX3CR1 mRNA expression in the CNS of rats with an experimentally induced MS-like disease, myelin oligodendrocyte glycoprotein (MOG)-induced autoimmune encephalomyelitis (EAE). METHODS: The expression of CX3CL1 and its receptor CX3CR1 was studied with in situ hybridization histochemical detection of their mRNA with radio labeled cRNA probes in combination with immunohistochemical staining of phenotypic cell markers. Both healthy rat brains and brains from rats with MOG EAE were analyzed. In defined lesional stages of MOG EAE, the number of CX3CR1 mRNA-expressing cells and the intensity of the in situ hybridization signal were determined by image analysis. Data were statistically evaluated by ANOVA, followed by Tukey\primes multiple comparison test. RESULTS: Expression of CX3CL1 mRNA was present within neuronal-like cells located throughout the neuraxis of the healthy rat. Expression of CX3CL1 remained unaltered in the CNS of rats with MOG-induced EAE, with the exception of an induced expression in astrocytes within inflammatory lesions. Notably, the brain vasculature of healthy and encephalitic animals did not exhibit signs of CX3CL1 mRNA expression. The receptor, CX3CR1, was expressed by microglial cells in all regions of the healthy brain. Induction of MOG-induced EAE was associated with a distinct accumulation of CX3CR1 mRNA expressing cells within the inflammatory brain lesions, the great majority of which stained positive for markers of the microglia-macrophage lineage. Analysis in time-staged brain lesions revealed elevated levels of CX3CR1 mRNA in microglia in the periplaque zone, as well as a dramatically enhanced accumulation of CX3CR1 expressing cells within the early-active, late-active and inactive, demyelinated lesions. CONCLUSION: Our data demonstrate constitutive and regulated expression of the chemokine CX3CL1 and its receptor CX3CR1 by neurons/astrocytes and microglia, respectively, within the normal and inflamed rat brain. Our findings propose a mechanism by which neurons and reactive astrocytes may control migration and function of the surrounding microglia. In addition, the accumulation of CX3CR1 expressing cells other than microglia within the inflammatory brain lesions indicate a possible role for CX3CL1 in controlling invasion of peripheral leucocytes to the brain.
CX3CR1 is expressed on monocytes, dendritic cells, macrophages, subsets of T lymphocytes, and natural killer cells and functions in diverse capacities such as leukocyte adhesion, migration, and cell survival on ligand binding. Expression of the CX3CL1 gene, whos
e expression product is the sole ligand for CX3CR1, is up-regulated in human lungs with chronic cigarette smoke-induced obstructive lung disease. At present, it is unknown whether CX3CL1 up-regulation is associated with the recruitment and accumulation of immune cells that express CX3CR1. We show that mice chronically exposed to cigarette smoke up-regulate CX3CL1 gene expression, which is associated with an influx of CX3CR1+ cells in the lungs. The increase in CX3CR1+ cells is primarily comprised of macrophages and T lymphocytes and is associated with the development of emphysema. In alveolar macrophages, cigarette smoke exposure increased the expression of both CX3CR1 and CX3CL1 genes. The inducibility of CX3CR1 expression was not solely dependent on a chronic stimulus because lipopolysaccharide up-regulated CX3CR1 in RAW264.7 cells in vitro and in mononuclear phagocytes in vivo. Our findings suggest a mechanism by which macrophages amplify and promote CX3CR1+ cell accumulation within the lungs during both acute and chronic inflammatory stress. We suggest that one function of the CX3CR1-CX3CL1 pathway is to recruit and sustain divergent immune cell populations implicated in the pathogenesis of cigarette smoke-induced emphysema.
Chirkova T, etal., J Gen Virol. 2015 Sep;96(9):2543-56. doi: 10.1099/vir.0.000218. Epub 2015 Jun 25.
Respiratory syncytial virus (RSV) is a major cause of severe pneumonia and bronchiolitis in infants and young children, and causes disease throughout life. Understanding the biology of infection, including virus binding to the cell surface, should help develop antiviral drugs or vaccines. The RSV F
and G glycoproteins bind cell surface heparin sulfate proteoglycans (HSPGs) through heparin-binding domains. The G protein also has a CX3C chemokine motif which binds to the fractalkine receptor CX3CR1. G protein binding to CX3CR1 is not important for infection of immortalized cell lines, but reportedly is so for primary human airway epithelial cells (HAECs), the primary site for human infection. We studied the role of CX3CR1 in RSV infection with CX3CR1-transfected cell lines and HAECs with variable percentages of CX3CR1-expressing cells, and the effect of anti-CX3CR1 antibodies or a mutation in the RSV CX3C motif. Immortalized cells lacking HSPGs had low RSV binding and infection, which was increased markedly by CX3CR1 transfection. CX3CR1 was expressed primarily on ciliated cells, and approximately 50 % of RSV-infected cells in HAECs were CX3CR1+. HAECs with more CX3CR1-expressing cells had a proportional increase in RSV infection. Blocking G binding to CX3CR1 with anti-CX3CR1 antibody or a mutation in the CX3C motif significantly decreased RSV infection in HAECs. The kinetics of cytokine production suggested that the RSV/CX3CR1 interaction induced RANTES (regulated on activation normal T-cell expressed and secreted protein), IL-8 and fractalkine production, whilst it downregulated IL-15, IL1-RA and monocyte chemotactic protein-1. Thus, the RSV G protein/CX3CR1 interaction is likely important in infection and infection-induced responses of the airway epithelium, the primary site of human infection.
Jeong KI, etal., PLoS One. 2015 Jun 24;10(6):e0130517. doi: 10.1371/journal.pone.0130517. eCollection 2015.
Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a significant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin, thereby triggering fu
sion of the viral and cellular membranes. However, a host protein ligand for G has not yet been identified. Here we show that CX3CR1 is expressed in the motile cilia of differentiated human airway epithelial (HAE) cells, and that CX3CR1 co-localizes with RSV particles. Upon infection, the distribution of CX3CR1 in these cells is significantly altered. Complete or partial deletion of RSV G results in viruses binding at least 72-fold less efficiently to cells, and reduces virus replication. Moreover, an antibody targeting an epitope near the G protein's CX3CR1-binding motif significantly inhibits binding of the virus to airway cells. Given previously published evidence of the interaction of G with CX3CR1 in human lymphocytes, these findings suggest a role for G in the interaction of RSV with ciliated lung cells. This interpretation is consistent with past studies showing a protective benefit in immunizing against G in animal models of RSV infection, and would support targeting the CX3CR1-G protein interaction for prophylaxis or therapy. CX3CR1 expression in lung epithelial cells may also have implications for other respiratory diseases such as asthma.
Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung. In people with asthma, a fraction of CD4(+) T cells express the CX3CL1 receptor, CX3CR1, and CX3CL1 expression is increased in airway smooth muscle, lung endothelium and epithelium upon
allergen challenge. Here we found that untreated CX3CR1-deficient mice or wild-type (WT) mice treated with CX3CR1-blocking reagents show reduced lung disease upon allergen sensitization and challenge. Transfer of WT CD4(+) T cells into CX3CR1-deficient mice restored the cardinal features of asthma, and CX3CR1-blocking reagents prevented airway inflammation in CX3CR1-deficient recipients injected with WT T(H)2 cells. We found that CX3CR1 signaling promoted T(H)2 survival in the inflamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice restored asthma. CX3CR1-induced survival was also observed for T(H)1 cells upon airway inflammation but not under homeostatic conditions or upon peripheral inflammation. Therefore, CX3CR1 and CX3CL1 may represent attractive therapeutic targets in asthma.
Dagkalis A, etal., Immunology. 2009 Sep;128(1):25-33. doi: 10.1111/j.1365-2567.2009.03046.x.
The role of CX3CR1 in regulating the function of monocytes and microglia was examined in mice in which CX3CR1 had been replaced by green fluorescent protein (GFP). Induction of experimental autoimmune uveitis (EAU) in these
mice resulted in increased disease severity at day 23 postimmunization with uveitogenic peptide when compared with CX3CR1-positive mice and increased apoptosis of neuronal cells in the inner nuclear layer. Resident microglia within the retina were activated equally as EAU developed in mice with or without CX3CR1, as determined by changes in morphology, suggesting that the microglial cell response did not account for the differences. Although the inflammatory infiltrate had increased in mice without CX3CR1 at day 23 postimmunization, the percentage of natural killer cells in the infiltrate was not changed in these mice. Similarly, increased disease severity at this stage was not associated with an overall increased percentage of macrophages in the retinal inflammatory infiltrate or in increased activation of these cells. The increased recruitment of monocytes to the retina in response to EAU induction in CX3CR1(GFP/GFP) mice compared with CX3CR1(GFP/+) mice was not reflected in increased migration away from vessels, leading to marked clustering of GFP(+) cells around veins and venules in these mice. It is possible that this monocyte/macrophage clustering leads to the increased severity of disease seen in the mice by focusing and so intensifying the inflammatory response.
There is a significant genetic component in age-related macular degeneration (AMD). CX3CR1, which encodes the fractalkine (chemokine, CX3CL1) receptor, has two single nucleotide polymorphisms (SNPs): V249I and T280M. These SNPs are correlated with other aged-rel
ated diseases such as atherosclerosis. We have reported an association of CX3CR1 SNP and AMD. In this study we examined CX3CR1 SNP frequencies and protein expression on archived sections of AMD and normal eyes. We microdissected non-retinal, peripheral retinal and macular cells from archived slides of eyes of AMD patients and normal subjects. CX3CR1 SNP typing was conducted by PCR and restriction fragment length polymorphism analysis. CX3CR1 transcripts from retinal cells were also measured using RT-PCR. CX3CR1 protein expression was evaluated using avidin-biotin complex immunohistochemistry. We successfully extracted DNA from 32/40 AMD cases and 2/2 normal eyes. Among the 32 AMD cases, 18 had neovascular AMD and 14 had non-neovascular AMD. The M280 allele was detected in 19/64 (32 cases x2) with a frequency of 29.7%, which was significantly higher as compared to the frequency in the normal population (11.2%). We detected CX3CR1 expression in the various retinal cells. CX3CR1 transcript and protein levels were diminished in the macular lesions. This study successfully analyzed CX3CR1 SNP and transcript expression in microdissected cells from archived paraffin fixed slides. Our data suggest that the M280 allele, a SNP resulting in aberrant CX3CR1 and CX3CL1 interaction, as well as lowered expression of macular CX3CR1, may contribute to the development of AMD.
Chemokines are important for the recruitment of immune cells into sites of inflammation. To better understand their functional roles during inflammation we have here studied the in vivo expression of receptors for the chemokines CCL3/CCL5/CCL7 (MIP-1alpha/RANTES/MCP-3) and CX3CL1 (fractalkine), CCR
1 and CX3CR1, respectively, in rat myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Combined in situ hybridization and immunohistochemistry demonstrated intensely upregulated CCR1 mRNA expression in early, actively demyelinating plaques, whereas CX3CR1 displayed a more generalized expression pattern. CX3CR1 mRNA expressing cells were identified as microglia on the basis of their cellular morphology and positive GSA/B4 lectin staining. In contrast, CCR1 mRNA was preferentially expressed by ED1+ GSA/B4+ macrophages. The notion of differential chemokine receptor expression in microglia and monocyte-derived macrophages was corroborated at the protein level by extraction and flow cytometric sorting of cells infiltrating the spinal cord using gating for the surface markers CD45, ED-2 and CD11b. These observations suggest a differential receptor expression between microglia and monocyte-derived macrophages and that mainly the latter cell type is responsible for active demyelination. This has great relevance for the possibility of therapeutic intervention in demyelinating diseases such as multiple sclerosis, for example by targeting signaling events leading to monocyte recruitment.
Panek CA, etal., Cell Mol Immunol. 2015 Nov;12(6):669-80. doi: 10.1038/cmi.2014.116. Epub 2014 Dec 15.
Circulating monocytes (Mos) may continuously repopulate macrophage (MAC) or dendritic cell (DC) populations to maintain homeostasis. MACs and DCs are specialized cells that play different and complementary immunological functions. Accordingly, they present distinct migratory properties. Specificall
y, whereas MACs largely remain in tissues, DCs are capable of migrating from peripheral tissues to lymphoid organs. The aim of this work was to analyze the expression of the fractalkine receptor (CX3CR1) during the monocytic differentiation process. Freshly isolated Mos express high levels of both CX3CR1 mRNA and protein. During the Mo differentiation process, CX3CR1 is downregulated in both DCs and MACs. However, MACs showed significantly higher CX3CR1 expression levels than did DC. We also observed an antagonistic CX3CR1 regulation by interferon (IFN)-gamma and interleukin (IL)-4 during MAC activation through the classical and alternative MAC pathways, respectively. IFN-gamma inhibited the loss of CX3CR1, but IL-4 induced it. Additionally, we demonstrated an association between CX3CR1 expression and apoptosis prevention by soluble fractalkine (sCX3CL1) in Mos, DCs and MACs. This is the first report demonstrating sequential and differential CX3CR1 modulation during Mo differentiation. Most importantly, we demonstrated a functional link between CX3CR1 expression and cell survival in the presence of sCX3CL1.
BACKGROUND: Intestinal dendritic cells (DCs) maintain immune homeostasis, only initiating an active immune response against invading pathogens. However, little information is available on the reaction of mononuclear phagocytes (MNP) to intestinal trematode infection, a reaction equally important in
helminth-based therapies. The CD11c(+) CX3CR1(+) F4/80(-) DCs in the ileal lamina propria (LP) of the mouse were proven to migrate to the mesenteric lymph nodes (MLNs). We analyzed all MNP subsets present in the mouse LP and MLNs, under steady-state conditions and during acute Schistosoma mansoni-induced inflammation. Furthermore, we studied the uptake of schistosomal antigens by MNP in vivo in the LP and MLNs. METHODS: Using a combination of immunohistochemistry and multiparametric flow cytometry, we investigated distributional changes of the MNP during acute intestinal schistosomiasis. Next, S. mansoni-derived products, i.e., S. mansoni soluble worm proteins (SmSWP) and S. mansoni soluble egg antigens (SmSEA) were intraperitoneally injected into CX3CR1(+/) (GFP) C57BL/6 mice and antigen uptake was analyzed using confocal microscopy. KEY RESULTS: The CD11c(+) CX3CR1(+) F4/80(-) DCs significantly increased during intestinal schistosomiasis in the LP and MLNs. Only CX3CR1-expressing DC and Mcapital EF, Cyrillic subsets, but not other LP DCs, are involved in both SmSWP and SmSEA antigen uptake and processing. CONCLUSIONS & INFERENCES: The significant upregulation of CD11c(+) CX3CR1(+) F4/80(-) DCs during intestinal schistosomiasis and the restriction of phagocytosis of parasitic antigens to CX3CR1-expresssing MNP indicate a crucial role for this immune cell niche in response to trematodiasis. These findings add insight into the functional specialization of LP immune cells and add to the understanding of cellular mechanisms behind helminth-based therapies.
Microglia and astrocytes are the major source of cytokines in Alzheimer,s disease (AD). CX3CR1 is a delta chemokine receptor found in microglia and its neuronal ligand, Fractalkine, has two isoforms: an anchored-membrane isoform, and a soluble isoform. The reduc
ed soluble fractalkine levels found in the brain (cortex/hippocampus) of aged rats, may be a consequence of neuronal loss. This soluble fractalkine maintains microglia in an appropiate state by interacting with CX3CR1. The ablation of the CX3CR1 gene in mice overexpressing human amyloid precursor protein (APP/PS-1) increased cytokine levels, enhanced Tau pathology and worsened behavioural performance in these mice. However, CX3CR1 deficiency resulted in a gene dose-dependent Aß clearance in the brain, and induced microglial activation. In addition, CX3CR1 deficiency can have benefical effects by preventing neuronal loss in the 3xTg model. In fact, CX3CR1 deficiency increases microglial phagocytosome activity by inducing selective protofibrillar amyloid-beta phagocytosis in microglial cells in transgenic AD models. On the other hand, the fractalkine membrane isoform plays a differential role in amyloid beta clearance and Tau deposition. This anchored membrane FKN signalling might increase amyloid pathology while soluble fractalkine levels could prevent taupathies. However, in human AD, the only published study has reported higher systemic fractalkine levels in AD patients with cognitive impairment. In mouse models, inflammatory activation of microglia accelerates Tau pathology. Studies in transgenic mice with fractalkine null mice suggest that APP/PS-1 mice deficient for the anchored membrane-fractalkine isoform exhibited enhanced neuronal MAPT phosphorylation despite their reduced amyloid burden. The soluble fractalkine overexpression with adenoviral vectors reduced tau pathology and prevented neurodegeneration in a Tg4510 model of taupathy Finally, animals with Aß (1-42) infused by lentivirus (cortex) or mice with the P301L mutation (frontotemporal dementia) had caspase-3 activation (8-fold) and higher proinflammatory TNF alpha levels and p-Tau deposits at 4 weeks postinfusion. Thus, the CX3CR1/Fractalkine axis regulates microglial activation, the clearance of amyloid plaque and plays a role in p-Tau intraneuronal accumulation in rodent models of AD.
Vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) vaccine or RSV G glycoprotein results in enhanced pulmonary disease after live RSV infection. Enhanced pulmonary disease is characterized by pulmonary eosinophilia and is associated with a substantial inflammatory response. W
e show that the absence of the G glycoprotein or G glycoprotein CX3C motif during FI-RSV vaccination or RSV challenge of FI-RSV-vaccinated mice, or treatment with anti-substance P or anti-CX3CR1 antibodies, reduces or eliminates enhanced pulmonary disease, modifies T-cell receptor Vbeta usage, and alters CC and CXC chemokine expression. These data suggest that the G glycoprotein, and in particular the G glycoprotein CX3C motif, is key in the enhanced inflammatory response to FI-RSV vaccination, possibly through the induction of substance P.
Ji JF, etal., Neurosci Lett. 2004 Jan 30;355(3):236-40.
We have studied the expression of chemokine receptors CXCR4, CCR2, CCR5, and CX3CR1 at the mRNA and protein levels in adult neural progenitor cells (NPCs) in neurosphere cultures using RT-PCR and immunocytochemistry methods. NPCs were isolated from the subventri
cular zone of adult rat brain and propagated in vitro as neurospheres. The neurospheres showed immunoactivity of nestin, an intermediate filament marker for NPCs. NPCs in the neurosphere cultures differentiated into NeuN-, GFAP-, or GalC-positive cells in vitro. Using cultured cortical microglial cells as positive control, we demonstrated the mRNA expression of CXCR4, CCR2, CCR5, and CX3CR1 in neurospheres by RT-PCR. Double immunofluorescent staining further confirmed the co-localization of nestin with either CXCR4, CCR2, CCR5, or CX3CR1 on neurospheres. These results suggest that adult NPCs in the neurosphere cultures express chemokine receptors CXCR4, CCR2, CCR5, and CX3CR1.
PURPOSE: To demonstrate the expression and location of CX3C chemokine, fractalkine, and its receptor, CX3CR1, in the iris/ciliary body and thus establish their roles in experimental autoimmune anterior uveitis, an animal model of human acute anterior uveitis. ME
THODS: Uveitis was induced in Lewis rats by injection of melanin associated antigen into the peritoneum and footpad. At defined times, fractalkine and its receptor CX3CR1 mRNA expression in the iris/ciliary body were measured by using a semiquantitative polymerase chain reaction method. Fractalkine in aqueous humor was determined by enzyme linked immunosorbent assay. The cellular sources of fractalkine were determined by immunhistochemical staining. In a separate experiment, NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC; 200 mg/kg/day) was administrated intraperitoneally daily after immunization. The rats were sacrificed on day 14 of immunization. Fractalkine mRNA in iris/ciliary body and fractalkine concentration in aqueous humor were determined after PDTC treatment. RESULTS: Fractalkine mRNA was found to be upregulated in the iris/ciliary body nine days after immunization, preceding clinical disease onset. CX3CR1 mRNA exhibited peak levels at day 14, coincident with disease onset. Fractalkine in aqueous humor showed an expression profile similar to mRNA expression. PDTC (200 mg/kg) markedly inhibited the expression of fractalkine mRNA in the iris/ciliary body, and fractalkine protein in aqueous humor. Immunohistochemical staining revealed that fractalkine was expressed on vascular endothelial cells and infiltrated inflammatory cells. Treatment with PDTC significantly reduced both the number of leukocyte infiltrations in the iris/ciliary body and fractalkine expression on vascular endothelial cells. CONCLUSIONS: The sequential expression of fractalkine may direct distinct CX3CR1 receptor expressing mononuclear cell subsets to inflammatory sites. Fractalkine expression is modulated, at least in part, through the NF-kappaB signaling pathway. These findings provide new insight into the molecular mechanisms of acute anterior uveitis and suggest fractalkine or NF-kappaB as a new drug target for uveitis therapy.
In this study, we investigate the expression of fractalkine (CX3CL1) and the fractalkine receptor (CX3CR1) in the naive rat and mouse central nervous system (CNS). We determine if the expression of this chemokine and its receptor are altered during chronic or ac
ute inflammation in the CNS. In addition, we determine if CX3CL1, which has been reported to be chemoattractant to leukocytes in vitro, is capable of acting as a chemoattractant in the CNS in vivo. Immunohistochemistry was performed using primary antibodies recognizing soluble and membrane-bound CX3CL1 and the N-terminus of the CX3CR1. We found that neurons in the naive rodent brain are immunoreactive for CX3CL1 and CX3CR1, both showing a perinuclear staining pattern. Resident microglia associated with the parenchyma and macrophages in the meninges and choroid plexus constituitively express CX3CR1. In a prion model of chronic neurodegeneration and inflammation, CX3CL1 immunoreactivity is upregulated in astrocytes and CX3CR1 expression is elevated on microglia. In surviving neurons, expression of CX3CL1 appears unaltered relative to normal neurons. There is a decrease in neuronal CX3CR1 expression. Acute inflammatory responses in the CNS, induced by stereotaxic injections of lipopolysaccharide or kainic acid, results in activation of microglia and astrocytes but no detectable changes in the glial expression of CX3CL1 or CX3CR1. The expression of CX3CL1 and CX3CR1 by glial cells during inflammation in the CNS may be influenced by the surrounding cytokine milieu, which has been shown to differ in acute and chronic neuroinflammation.
BACKGROUND: Fractalkine (FKN) induces activation and adhesion of leukocytes expressing its receptor, CX(3)CR1. FKN is released from the cell surface through proteolytic cleavage as soluble FKN (sFKN). OBJECTIVE: We sought to assess FKN and CX(3)CR1 expression in the skin, serum sFKN levels, and CX(
3)CR1 expression on blood leukocytes in patients with atopic dermatitis (AD). METHODS: FKN and CX(3)CR1 expression in the skin was examined immunohistochemically. mRNA expression of FKN, thymus and activation-regulated chemokine, and macrophage-derived chemokine in the skin was assessed by means of real-time RT-PCR. Serum sFKN levels were assessed by using ELISA. Blood leukocytes were stained for CX(3)CR1 by means of flow cytometric analysis. RESULTS: FKN was strongly expressed on endothelial cells in skin lesions of patients with AD and psoriasis but not in normal skin. FKN mRNA levels in AD lesional skin increased to a similar extent to thymus and activation-regulated chemokine and macrophage-derived chemokine mRNA levels. CX(3)CR1-expressing cells in the affected skin of patients with AD or psoriasis increased compared with those in normal skin. Serum sFKN levels were increased in patients with AD but not in patients with psoriasis relative to levels in healthy control subjects. Serum sFKN levels were associated with the disease severity and decreased with the improvement of skin lesions in patients with AD. CX(3)CR1(+) cell frequencies and CX(3)CR1 expression levels were decreased in CD8(+) T cells, monocytes, and natural killer cells from patients with AD, but this was not observed in patients with psoriasis. CONCLUSIONS: These results suggest that through functions in both membrane-bound and soluble forms, FKN plays an important role in the trafficking of CX(3)CR1(+) leukocytes during the inflammation caused by AD.
Fractalkine is a neuronally expressed chemokine that acts through its G-protein-coupled receptor CX3CR1, localized on microglial and immune cells. Fractalkine might be involved in neuroinflammatory processes secondary to neuronal damage, which normally occur in
a time frame of days after ischaemia. We evaluated by in situ hybridization and immunohistochemistry the expression of fractalkine and CX3CR1 in the rat brain, after a transient occlusion of the middle cerebral artery. We found that at 12 h after ischaemia neuronal fractalkine expression was transiently increased in scattered necrotic neurons of the cortex and lost from the ischaemic striatum. At 24 and 48 h after ischaemia, fractalkine immunoreactivity was strongly increased in morphologically intact cortical neurons of the ischaemic penumbra where also the stress-inducible HSP-72 was strongly up-regulated. The intensity of fractalkine immunoreactivity of neurons in the penumbra returned to basal levels at 7 days after ischaemia. Fractalkine synthesis was also induced in endothelial cells of the infarcted area, at 48 h and 7 days after ischaemia. CX3CR1 expression was detected in the activated microglial cells of the ischaemic tissue 24 and 48 h after ischaemia, and became strongly up-regulated in macrophages/phagocytic microglia inside the infarcted tissue 7 days after ischaemia. These data suggest that fractalkine may participate in the activation and chemoattraction of microglia into the infarcted tissue, and contribute to the control of leucocyte trafficking from blood vessels into the injured area.
Fractalkine is a unique chemokine reported to be constitutively expressed by neurons. Its only receptor, CX3CR1, is expressed by microglia. Little is known about the expression of fractalkine and CX3CR1 in spinal cord. Given
that peripheral nerve inflammation and/or injury gives rise to neuropathic pain, and neuropathic pain may be partially mediated by spinal cord glial activation and consequent glial proinflammatory cytokine release, there must be a signal released by affected neurons that triggers the activation of glia. We sought to determine whether there is anatomical evidence implicating spinal fractalkine as such a neuron-to-glia signal. We mapped the regional and cellular localization of fractalkine and CX3CR1 in the rat spinal cord and dorsal root ganglion, under basal conditions and following induction of neuropathic pain, employing both an inflammatory (sciatic inflammatory neuropathy; SIN) as well as a traumatic (chronic constriction injury; CCI) model. Fractalkine immunoreactivity and mRNA were observed in neurons, but not glia, in the rat spinal cord and dorsal root ganglia, and levels did not change following either CCI or SIN. By contrast, CX3CR1 was expressed by microglia in the basal state, and the microglial cellular concentration was up-regulated in a regionally specific manner in response to neuropathy. CX3CR1-expressing cells were identified as microglia by their cellular morphology and positive OX-42 and CD4 immunostaining. The cellular distribution of fractalkine and CX3CR1 in the spinal circuit associated with nociceptive transmission supports a potential role in the mechanisms that contribute to the exaggerated pain state in these models of neuropathy.
Recent research has shown that transplanted bone marrow stromal cells (MSCs) migrate to the injured regions and exert their therapeutic effects in cases of intracranial trauma, stroke, inflammation and degenerative disease. The specific mechanisms involved in their migration to lesions are still to
be fully elucidated. In the present study, a rat model of transient middle cerebral artery occlusion (MCAO) was established. At 24 h after reperfusion, human bone marrow stromal cells (hMSCs) were transplanted by intravenous injection to explore the effects of fractalkine/CX3CR1 on the migration of transplanted MSCs to lesions. In vitro study using real-time PCR and western blot revealed that CX3CR1, the only known receptor of fractalkine, was expressed in cultured hMSCs. The expression of fractalkine in the ischemic brain was significantly increased. The directional migration of transplanted hMSCs to the damaged region was observed through detection of green fluorescence protein (GFP). The results indicated the cells were mainly distributed in the ischemic boundary zone with high fractalkine expression. In a further study, lentivirus-mediated RNA interference of CX3CR1 expression was employed. The results of these experiments indicated that CX3CR1 knock-down dramatically decreased the migration of hMSCs to the ischemic brain. The present study suggests that fractalkine and its specific receptor CX3CR1 are involved in the directional migration of transplanted MSCs to the ischemic damaged brain region.
BACKGROUND: We established the reversible and the prolonged models of mesangial proliferative glomerulonephritis (GN) with anti-Thy 1 antibody 1-22-3. However, the essential factors leading to the prolonged glomerular alterations have not been identified. METHODS: The expressions of several chemokin
es and cytokines were compared in the reversible and the prolonged models. Expression of fractalkine and the number of the fractalkine receptor CX3CR1-positive cells in the glomeruli in the prolonged model were significantly higher than those in the reversible model. Then, the localization of fractalkine and the characteristics of CX3CR1+ cells were analyzed in glomeruli. To elucidate the significance of the fractalkine expression, we analyzed the expression in the model treated with angiotensin II receptor antagonist, candesartan. RESULTS: Immunostaining of fractalkine was detected on endothelial cells on the fifth day, and fractalkine staining also was detected in the mesangial area on day 14. Major parts of the CX3CR1+ cells in the glomeruli were macrophages, especially ED3+ cells. Candesartan treatment ameliorated the glomerular morphological findings at six weeks after disease induction. Although the treatment did not ameliorate the morphological finding at two weeks, decreased expression of fractalkine and CX3CR1+ were already detected at two weeks in rats treated with candesartan. CONCLUSIONS: Fractalkine expression and the recruitment of CX3CR1+ cells in glomeruli might play an important role in the development of the prolonged disease. These expressions could be predictors of the prolonged disease of the mesangial proliferative glomerulonephritis.
Based on the function of chemokine fractalkine (FKN), acting as both adhesion and chemoattractant, FKN plays a role in acute inflammatory response. In this study, we investigated the mechanism of FKN mediated upregulation inflammation in severe acute pancreatitis (SAP) rat models. Western blot, rev
erse transcriptase-polymerase chain reaction, and immunofluorescence demonstrated that FKN and its receptor CX3CR1 were overexpressed in cerulein-stimulated AR42J cells. AG490 and FKN-siRNA inhibited activation of Janus kinase/signal transducers and activators of transcription (Jak/Stat) in cerulein-stimulated AR42J cells. Following exposure AG490 and FKN-siRNA inhibited tumor necrosis factor-alpha expression by enzyme-linked immunosorbent assay and immunohistochemistry in vivo the SAP rat models. These results showed FKN and CX3CR1 were involved inflammatory response in cerulein-stimulated AR42J cells. FKN upregulates inflammation through CX3CR1 and the Jak/Stat pathway in SAP rat models.
Boivin N, etal., J Gen Virol. 2012 Jun;93(Pt 6):1294-304. doi: 10.1099/vir.0.041046-0. Epub 2012 Feb 29.
The role played by resident microglia and by the infiltration of peripheral monocytes/macrophages in the innate immune response during herpes simplex virus type 1 (HSV-1) encephalitis was evaluated in mice deficient for the CCR2 and CX3CR1 receptors. CCR2(-/-),
CX3CR1(-/-) and C57BL/6 wild-type (WT) male mice were infected intranasally with 7x10(5) p.f.u. of an HSV-1 clinical strain and monitored for signs of encephalitis and survival. In addition, brain viral DNA load and cytokine levels were evaluated by RT-PCR and magnetic bead-based immunoassay, respectively. The cellular response was assessed by fluorescence-activated cell sorting of blood and brain leukocytes. Infected CX3CR1(-/-) mice had a significantly lower mean life expectancy than WT mice (P<0.05, log-rank test) and demonstrated an increased infiltration of Ly-6C(high) 'inflammatory' macrophages in the brain (P<0.05). Infected CCR2(-/-) mice had fewer monocytes (P<0.05), with a lower proportion of Ly-6C(high) 'inflammatory' monocytes in the blood than the other groups (P<0.05). Brain viral DNA loads were only slightly higher in knockout mice than in WT mice (P-value not significant). These data suggest that CCR2 and especially CX3CR1 receptors are necessary to initiate a proper immune response during HSV encephalitis. More precisely, CCR2 is crucial for the emigration of monocytes from the bone marrow to the blood, whereas CX3CR1 is mostly implicated in the regulation of infiltrating cells from the blood to the site of infection and in the control of the immune homeostasis of the brain.
AIMS: Insulin resistance (IR) is a major risk factor for cardiovascular disease and atherosclerosis. Life-threatening acute events are mainly due to rupture of unstable plaques, and the role of vascular smooth muscle cells (VSMCs) in this process in IR, Type 2 diabetes mellitus, and metabolic syndro
me (T2DM/MetS) has not been fully addressed. Therefore, the role of VSMC survival in the generation of unstable plaques in T2DM/MetS and the involvement of inflammatory mediators was investigated. METHODS AND RESULTS: Defective insulin receptor substrate 2 (IRS2)-mediated signalling produced insulin-resistant VSMCs with reduced survival, migration, and higher apoptosis than control cells. Silencing of IRS2 or inhibition of the V-akt murine thymomaviral oncogene homologue kinase (AKT)-extracellular signal-regulated kinase (ERK)-dependent pathway in VSMCs augmented expression of the inflammatory chemokine fractalkine (CX3CL1) and its receptor CX3CR1, previously involved in atheroma plaque vulnerability. Interestingly, treatment of VSMCs with CX3CL1 promoted apoptosis in the presence of other stimuli or when the AKT pathway was blocked. Analysis of a mouse model of IR-MetS and accelerated atherosclerosis, apoE-/-Irs2+/- mice, showed reduced VSMC survival, unstable plaques, and up-regulation of CX3CL1/CX3CR1 axis compared with apoE-/- mice. Human studies showed augmented soluble CX3CL1 plasma levels and CX3CR1 expression in monocytes from IR-MetS subjects compared with controls. A positive correlation between insulin levels, homeostatic model assessment (HOMA) index, carotid atherosclerosis, and CX3CR1 mRNA levels was also found in all patients. CONCLUSION: IR increases plaque vulnerability by augmenting the CX3CL1/CX3CR1 axis, which is mechanistically linked to reduced VSMC survival. Thus, modulation of IRS2-dependent signalling emerges as a potential therapeutic strategy to promote VSMC survival and atheroma plaque stability and to reduce inflammatory mediators in IR-MetS.
Lee KM, etal., Eur J Pain. 2010 Aug;14(7):682.e1-12. Epub 2009 Dec 2.
Peripheral nerve injury leading to neuropathic pain induces the upregulation of interleukin (IL)-6 and microglial CX3CR1 expression, and activation of p38 mitogen-activated protein kinase (MAPK) in the spinal cord. Here, we investigated whether IL-6 regulates ... (more)
pan style='font-weight:700;'>CX3CR1 expression through p38 MAPK activation in the spinal cord in rats with chronic constriction injury (CCI) of the sciatic nerve. Similar temporal changes in the expression of IL-6, phosphorylated p38 MAPK and CX3CR1 were observed following CCI. The increases in CX3CR1 expression, p38 MAPK activation and pain behavior after CCI were suppressed by blocking IL-6 action with a neutralizing antibody, while they were enhanced by supplying exogenous recombinant rat IL-6 (rrIL-6). rrIL-6 also induced increases in spinal CX3CR1 expression, p38 MAPK activation and pain behavior in nai ve rats without nerve injury. Furthermore, treatment with the p38 MAPK-specific inhibitor, SB203580, suppressed the increase in CX3CR1 expression induced by CCI or rrIL-6 treatment. Finally, blocking CX3CR1 or p38 MAPK activation prevented the development of mechanical allodynia and thermal hyperalgesia induced by CCI or rrIL-6 treatment. These results suggest a new mechanism of neuropathic pain, in which IL-6 induces microglial CX3CR1 expression in the spinal cord through p38 MAPK activation, enhancing the responsiveness of microglia to fractalkine in the spinal cord, thus playing an important role in neuropathic pain after peripheral nerve injury.
Yin Q, etal., Behav Pharmacol. 2010 Oct;21(7):595-601.
This study was designed to investigate the effect of intrathecal injection of anti-CX3CR1 neutralizing antibody on pain behaviors in the rat tibial bone cancer pain model. Syngeneic Walker 256 mammary gland carcinoma cells were injected into the tibia medullary
cavity to establish the rat model of bone cancer pain. Ambulatory pain, mechanical hindpaw withdrawal threshold, and latency of paw withdrawal to a thermal stimulus were observed. Haematoxylin/eosin staining was used to observe the bone damage on day 21. Intrathecal injection of anti-CX3CR1 neutralizing antibody both delayed the development of ambulatory pain and hyperalgesia and attenuated established pain facilitation, but had no effects on destruction of bone. Our results suggest that intrathecal injection of anti-CX3CR1 neutralizing antibody delayed and attenuated pain facilitation in the rat tibial bone cancer pain model.
Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation-bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis
and proinflammatory factor production, however mechanisms regulating these contributions are not well-defined. In this study, we investigate the role of CX3CR1, a microglia-specific receptor, in regulating microglia-mediated degeneration using the well-established rd10 mouse model of RP. We found that in CX3CR1-deficient (CX3CR1(GFP/GFP) ) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1-sufficient (CX3CR1(GFP/+) ) rd10 littermates. CX3CR1-deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at-risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1-CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1-CX3CR1 signaling is a molecular mechanism capable of modulating microglial-mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479-1491.
Chronic pain associated with inflammation is a major clinical problem, but the underlying mechanisms are incompletely understood. Recently, we reported that GRK2(+/-) mice with a approximately 50% reduction of GRK2 develop prolonged hyperalgesia following a single intraplantar injection of the pro-i
nflammatory cytokine interleukin-1beta (IL-1beta). Here we show that spinal microglia/macrophage GRK2 is reduced during chronic inflammation-induced hyperalgesia. Next, we applied CRE-Lox technology to create mice with low GRK2 in microglia/macrophages/granulocytes (LysM-GRK2(f/+)), or sensory neurons or astrocytes. Only mice deficient in microglial/macrophage/granulocyte GRK2 display prolonged IL-1beta-induced hyperalgesia that lasts up to 8days. Two days after intraplantar IL-1beta, increased microglial/macrophage activity occurs in the lumbar but not thoracic spinal cord of GRK2-deficient mice. Intrathecal pre-treatment with minocycline, an inhibitor of microglia/macrophage activation, accelerates resolution of hyperalgesia independent of genotype and prevents transition to chronic hyperalgesia in GRK2(+/-) mice. Ongoing hyperalgesia in GRK2(+/-) mice is reversed by minocycline administration at days 1 and 2 after IL-1beta injection. Similarly, IL-1beta-induced hyperalgesia in LysM-GRK2(f/+) mice is attenuated by intrathecal administration of anti-CX3CR1 to abrogate fractalkine signaling, the p38 inhibitor SB239063 and the IL-1 antagonist IL-1ra. These data establish that chronic inflammatory hyperalgesia is associated with reduced GRK2 in microglia/macrophages and that low GRK2 in these cells is sufficient to markedly prolong hyperalgesia after a single intraplantar injection of IL-1beta. Ongoing hyperalgesia is maintained by spinal microglial/macrophage activity, fractalkine signaling, p38 activation and IL-1 signaling. We propose that chronic inflammation decreases spinal microglial/macrophage GRK2, which prevents silencing of microglia/macrophage activity and thereby contributes to prolonged hyperalgesia.
Tuo J, etal., Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3827-36.
PURPOSE: Senescent Ccl2(-/-) mice are reported to develop cardinal features of human age-related macular degeneration (AMD). Loss-of-function single-nucleotide polymorphisms within CX3CR1 are also found to be associated with AMD. The authors generated Ccl2(-/-)
/Cx3cr1(-/-) mice to establish a more characteristic and reproducible AMD model. METHODS: Single Ccl2- and Cx3cr1-deficient mice were crossbred to obtain Ccl2(-/-)/Cx3cr1(-/-) mice. Funduscopy, histopathology, retinal A2E quantification, proteomics, RT-PCR gene expression assay, immunochemistry, and Western blotting were used to examine the retina and to evaluate gene expression within the retinal tissue. RESULTS: By 6 weeks of age, all Ccl2(-/-)/Cx3cr1(-/-) mice developed AMD-like retinal lesions, including drusen, retinal pigment epithelium alteration, and photoreceptor degeneration. Furthermore, choroidal neovascularization occurred in 15% of the mice. These degenerative lesions progressed with age. A2E, a major lipofuscin fluorophore that accumulated during AMD progression, was significantly higher in the Ccl2(-/-)/Cx3cr1(-/-) retina than in the wild-type retina. Complement cofactor was higher in the Ccl2(-/-)/Cx3cr1(-/-) RPE. Proteomics data indicated that four proteins were differentially expressed in Ccl2(-/-)/Cx3cr1(-/-) retina compared with control. One of these proteins, ERp29, an endoplasmic reticulum protein, functions as an escort chaperone and in protein folding. CONCLUSIONS: The authors concluded that Ccl2(-/-)/Cx3cr1(-/-) mice develop a broad spectrum of AMD abnormalities with early onset and high penetrance. These observations implicate certain chemokines and endoplasmic reticulum proteins in AMD pathogenesis. Similar to the mechanism of neurodegeneration caused by dysfunction of endoplasmic reticulum proteins, decreased chaperoning may cause misfolded protein accumulation, leading to drusen formation and retinal degeneration.
Harrison JK, etal., J Biol Chem. 2001 Jun 15;276(24):21632-41. Epub 2001 Mar 8.
Fractalkine (FKN/CX3CL1) is a unique member of the chemokine gene family and contains a chemokine domain (CD), a mucin-like stalk, a single transmembrane region, and a short intracellular C terminus. This structural distinction affords FKN the property of mediating capture and firm adhesion of FKN r
eceptor (CX3CR1)-expressing cells under physiological flow conditions. Shed forms of FKN also exist, and these promote chemotaxis of CX3CR1-expressing leukocytes. The goal of the present study was to identify specific residues within the FKN-CD critical for FKN-CX3CR1 interactions. Two residues were identified in the FKN-CD, namely Lys-7 and Arg-47, that are important determinants in mediating an FKN-CX3CR1 interaction. FKN-K7A and FKN-R47A mutants exhibited 30-60-fold decreases in affinity for CX3CR1 and failed to arrest efficiently CX3CR1-expressing cells under physiological flow conditions. However, these mutants had differential effects on chemotaxis of CX3CR1-expressing cells. The FKN-K7A mutant acted as an equipotent partial agonist, whereas the FKN-R47A mutant had marked decreased potency and efficacy in measures of chemotactic activity. These data identify specific structural features of the FKN-CD that are important in interactions with CX3CR1 including steady state binding, signaling, and firm adhesion of CX3CR1-expressing cells.
Chen M, etal., Invest Ophthalmol Vis Sci. 2013 Jan 23;54(1):682-90. doi: 10.1167/iovs.12-10888.
PURPOSE: To investigate the role of the Fractalkine receptor CX3CR1 pathway in oxidative insults-mediated retinal degeneration and immune activation. METHODS: A prooxidant, paraquat (0.75 muM) was injected into the vitreous of C57BL/6J, CX3CR1
700;'>CX3CR1(gpf/+), and CX3CR1(gfp/gfp) mice. Retinal lesions were investigated clinically by topic endoscopic fundus imaging and fluorescence angiography, and pathologically by light- and electron microscopy. Retinal immune gene expression was determined by real-time RT-PCR. Microglial activation and immune cell infiltration were examined by confocal microscopy of retinal flatmounts. RESULTS: Intravitreal injection of paraquat (0.75 muM) resulted in acute retinal capillary nonperfusion within 2 days, which improved from 4 days to 4 weeks postinjection (p.i.). Panretinal degeneration was observed at 4 days p.i. and progressed further at 4 weeks p.i. In the absence of CX3CR1, retinal degeneration was exaggerated and was accompanied by increased TNF-alpha, iNOS, IL-1beta, Ccl2, and Casp-1 gene expression. Confocal microscopy of retinal flatmounts revealed microglial activation and CD44(+)MHC-II(+) monocyte and GR1(+) neutrophil infiltration in paraquat-injected eyes. The number of activated microglia and infiltrating leukocytes was significantly higher in CX3CR1(gfp/gfp) mice than in CX3CR1(gfp/+) mice. CONCLUSIONS: Our results suggest that the CX3CR1 signaling pathway may play an important role in controlling retinal inflammation under oxidative and ischemia/reperfusion conditions. In the absence of CX3CR1, uncontrolled retinal inflammation results in exaggerated retinal degeneration.
Ridderstad Wollberg A, etal., Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5409-14. doi: 10.1073/pnas.1316510111. Epub 2014 Mar 25.
One hallmark of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) is infiltration of leukocytes into the CNS, where chemokines and their receptors play a major mediatory role. CX3CR1 is a chemokine receptor involved in leukocyte adhesio
n and migration and hence a mediator of immune defense reactions. The role of CX3CR1 in MS and EAE pathogenesis however remains to be fully assessed. Here, we demonstrate CX3CR1 mRNA expression on inflammatory cells within active plaque areas in MS brain autopsies. To test whether blocking CNS infiltration of peripheral leukocytes expressing CX3CR1 would be a suitable treatment strategy for MS, we developed a selective, high-affinity inhibitor of CX3CR1 (AZD8797). The compound is active outside the CNS and AZD8797 treatment in Dark Agouti rats with myelin oligodendrocyte glycoprotein-induced EAE resulted in reduced paralysis, CNS pathology, and incidence of relapses. The compound is effective when starting treatment before onset, as well as after the acute phase. This treatment strategy is mechanistically similar to, but more restricted than, current very late antigen-4-directed approaches that have significant side effects. We suggest that blocking CX3CR1 on leukocytes outside the CNS could be an alternative approach to treat MS.
Marasini B, etal., Clin Dev Immunol. 2005 Dec;12(4):275-9.
Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the vascular and tissue damage of several chronic diseases, including systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I and T280M genetic polymorphisms
influence CX3CR1 expression and function. We investigated whether these polymorphisms are associated with PAH secondary to SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography. Homozygosity for 249II as well as the combined presence of 249II and 280MM were significantly more frequent in patients with SSc compared to controls (17 vs 6%, p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75, p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion, the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of patients with SSc-associated PAH suggest a role for the fractalkine system in the pathogenesis of this condition. Further, the 249I allele might be associated with susceptibility to SSc.
BACKGROUND: Fractalkine is a newly identified T-cell and monocyte/macrophage (Mphi) chemokine with a transmembrane domain and is a cell-surface protein on activated endothelium. It can mediate adhesion of cells expressing the fractalkine receptor CX3CR1. These u
nique features make fractalkine well suited for leukocyte recruitment in tissues with high blood flow as in the renal glomerulus. METHODS: Fractalkine expression in glomeruli and response of isolated glomerular inflammatory cells to fractalkine were studied in the Wistar-Kyoto (WKY) crescentic glomerulonephritis model. Antibody was used to confirm the proinflammatory role of fractalkine. RESULTS: Fractalkine was markedly induced in the endothelium of nephritic rat glomeruli, and inflammatory leukocytes infiltrating the glomeruli expressed increased levels of CX3CR1. Anti-CX3CR1 antibody treatment dramatically blocked leukocyte infiltration in the glomeruli, prevented crescent formation, and improved renal function. CONCLUSIONS: Fractalkine plays a central role in leukocyte trafficking at the endothelium in the high-flow glomerular circuit and, in turn, implicates CX3CR1 as a prime drug target for therapeutic intervention of endothelium-related inflammatory diseases.
Lu P, etal., J Immunol. 2008 Mar 15;180(6):4283-91.
Macrophages accumulate during the course of corneal neovascularization, but its mechanisms and roles still remain elusive. To address these points, we herein examined corneal neovascularization after alkali injury in mice deficient in fractalkine receptor/CX3CR1
, which is normally expressed by macrophages. After alkali injury, the mRNA expression of CX3CR1 was augmented along with accumulation of F4/80-positive macrophages and Gr-1-positive neutrophils in the corneas. Compared with wild-type mice, CX3CR1-deficient mice exhibited enhanced corneal neovascularization 2 wk after injury, as evidenced by enlarged CD31-positive areas. Concomitantly, the accumulation of F4/80-positive macrophages, but not Gr-1-positive neutrophils, was markedly attenuated in CX3CR1-deficient mice compared with wild-type mice. The intraocular mRNA expression of vascular endothelial growth factor (VEGF) was enhanced to similar extents in wild-type and CX3CR1-deifient mice after the injury. However, the mRNA expression of antiangiogenic factors, thrombospondin (TSP) 1, TSP-2, and a disintegrin and metalloprotease with thrombospondin (ADAMTS) 1, was enhanced to a greater extent in wild-type than CX3CR1-deificient mice. A double-color immunofluorescence analysis demonstrated that F4/80-positive cells also expressed CX3CR1 and ADAMTS-1 and that TSP-1 and ADAMTS-1 were detected in CX3CR1-positive cells. CX3CL1 enhanced TSP-1 and ADAMTS-1, but not VEGF, expression by peritoneal macrophages. Moreover, topical application of CX3CL1 inhibited corneal neovascularization at 2 wk, along with enhanced intraocular expression of TSP-1 and ADAMTS-1 but not VEGF. Thus, these observations indicate that accumulation of CX3CR1-positive macrophages intraocularly can dampen alkali-induced corneal neovascularization by producing antiangiogenic factors such as TSP-1 and ADAMTS-1 and suggest the potential therapeutic efficacy of using CX3CL1 against alkali-induced corneal neovascularization.
The chemokine fractalkine (FKN) is a critical mediator of spinal neuronal-microglial communication in chronic pain. Mature FKN is enzymatically cleaved from neuronal membranes and activation of its receptor, CX3CR1, which is expressed by microglia, induces phos
phorylation of p38 MAPK. We used CX3CR1 knockout (KO) mice to examine pain behaviour in the absence of FKN signalling. Naive CX3CR1 KO mice had normal responses to acute noxious stimuli. However, KO mice showed deficits in inflammatory and neuropathic nociceptive responses. After intraplantar zymosan, KO mice did not display thermal hyperalgesia, whereas mechanical allodynia developed fully. In the partial sciatic nerve ligation model of neuropathic pain, both mechanical allodynia and thermal hyperalgesia were less severe in KO mice than in wild-types (WT). Dorsal horn Iba1 immunostaining and phosphorylation of p38 MAPK increased after injury in WT controls but not in KO animals. In WT mice, inflammation and nerve injury increased spinal cord CX3CR1 and FKN expression. FKN protein was also increased in KO mice following inflammation but not after neuropathy, suggesting the FKN/CX3CR1 system is differently affected in the two pain models. Loss of FKN/CX3CR1 neuroimmune communication attenuates hyperalgesia and allodynia in a modality-dependent fashion highlighting the complex nature of microglial response in pathological pain models.
Harcourt J, etal., J Immunol. 2006 Feb 1;176(3):1600-8.
Interactions between fractalkine (CX3CL1) and its receptor, CX3CR1, mediate leukocyte adhesion, activation, and trafficking. The respiratory syncytial virus (RSV) G protein has a CX3C chemokine motif that can bind CX3CR1 and
modify CXCL1-mediated responses. In this study, we show that expression of the RSV G protein or the G protein CX3C motif during infection is associated with reduced CX3CR1+ T cell trafficking to the lung, reduced frequencies of RSV-specific, MHC class I-restricted IFN-gamma-expressing cells, and lower numbers of IL-4- and CX3CL1-expressing cells. In addition, we show that CX3CR1+ cells constitute a major component of the cytotoxic response to RSV infection. These results suggest that G protein and the G protein CX3C motif reduce the antiviral T cell response to RSV infection.
Harrison JK, etal., Proc Natl Acad Sci U S A 1998 Sep 1;95(18):10896-901.
A recently identified chemokine, fractalkine, is a member of the chemokine gene family, which consists principally of secreted, proinflammatory molecules. Fractalkine is distinguished structurally by the presence of a CX3C motif as well as transmembrane spanning and mucin-like domains and shows atyp
ical constitutive expression in a number of nonhematopoietic tissues, including brain. We undertook an extensive characterization of this chemokine and its receptor CX3CR1 in the brain to gain insights into use of chemokine-dependent systems in the central nervous system. Expression of fractalkine in rat brain was found to be widespread and localized principally to neurons. Recombinant rat CX3CR1, as expressed in Chinese hamster ovary cells, specifically bound fractalkine and signaled in the presence of either membrane-anchored or soluble forms of fractalkine protein. Fractalkine stimulated chemotaxis and elevated intracellular calcium levels of microglia; these responses were blocked by anti-CX3CR1 antibodies. After facial motor nerve axotomy, dramatic changes in the levels of CX3CR1 and fractalkine in the facial nucleus were evident. These included increases in the number and perineuronal location of CX3CR1-expressing microglia, decreased levels of motor neuron-expressed fractalkine mRNA, and an alteration in the forms of fractalkine protein expressed. These data describe mechanisms of cellular communication between neurons and microglia, involving fractalkine and CX3CR1, which occur in both normal and pathological states of the central nervous system.
Resident macrophages densely populate the normal arterial wall, yet their origins and the mechanisms that sustain them are poorly understood. Here we use gene-expression profiling to show that arterial macrophages constitute a distinct population among macrophages. Using multiple fate-mapping approa
ches, we show that arterial macrophages arise embryonically from CX3CR1(+) precursors and postnatally from bone marrow-derived monocytes that colonize the tissue immediately after birth. In adulthood, proliferation (rather than monocyte recruitment) sustains arterial macrophages in the steady state and after severe depletion following sepsis. After infection, arterial macrophages return rapidly to functional homeostasis. Finally, survival of resident arterial macrophages depends on a CX3CR1-CX3CL1 axis within the vascular niche.
BACKGROUND AND AIMS: Age-related macular degeneration (AMD) is an important cause of visual impairment in elderly persons. AMD is a multifactorial disease in which both environmental and genetic factors have been implicated. Various single nucleotide polymorphisms (SNPs) have been found to be associ
ated with AMD. This study aimed to investigate the association of polymorphisms in CX3CR1, PLEKHA1 and VEGF genes with AMD in Indian patients. METHODS: Genotyping for the CX3CR1 T280M (C>T) and V249I (G>A), PLEKHA1 A320T (G>A) &VEGF +674 (C>T) and +936 (C>T) was performed in 121 AMD patients and 100 controls by polymerase chain reaction, restriction fragment length polymorphism (PCR-RFLP) and sequencing method. RESULTS: The genotype analysis of VEGF gene polymorphisms (+674 and +936) showed a significant association with AMD. Odds ratios for VEGF (+674) and VEGF (+936) were 2.37 and 2.50 with a p value 0.0029 and 0.0358 for the autosomal dominant model. CX3CR1 (T280M and V249I) and PLEKHA1 (A320T) polymorphisms were not found to be associated with AMD. Odds ratios for mutant alleles of T280M and V249I polymorphisms in CX3CR1 gene were 0.95 and 0.83, respectively, compared to the wild-type alleles. Odds ratio for the polymorphism in the PLEKHA1 gene was 0.63. CONCLUSIONS: The present study suggests that both polymorphisms in VEGF gene are risk factors for AMD in the Indian population. Detection of individuals at risk could lead to strategies for prevention, early diagnosis and management of AMD.
Following peripheral nerve transection, CX3CR1 and TGF-beta1 are increased in a time-dependent manner within the injured facial motor nucleus. To explore the relationship between TGF-beta1 and CX3CR1 in the CNS, the effects
of TGF-beta1 on CX3CR1 mRNA, protein and fractalkine-dependent stimulation of signal transduction cascades in primary cultures of rat microglia were examined. TGF-beta1 increased steady state levels of CX3CR1 mRNA, 125I-fractalkine binding sites and blunted fractalkine-stimulated ERK1/2 phosphorylation. The half-life of CX3CR1 mRNA was unaltered by TGF-beta1 and two potential Smad binding elements (SBEs) were identified in the rat CX3CR1 promoter. TGF-beta1 may shift fractalkine-dependent signaling away from activation of ERK1/2 towards other pathways and/or may provide a mechanism for microglia to more strongly adhere to neurons.
Tuo J, etal., FASEB J. 2004 Aug;18(11):1297-9. Epub 2004 Jun 18.
This study examined the association between the sequence variation/expression of CX3CR1, a chemokine receptor, and age-related macular degeneration (AMD). Peripheral blood from 85 AMD patients and 105 subjects without AMD (controls), as well as ocular tissue fr
om 40 pathological sections with AMD and two normal eye sections, were screened for V249I and T280M, two single nucleotide polymorphisms (SNPs) in CX3CR1. An increased prevalence, with the highest odds ratio of 3.57, of the I249 and M280 carriers was found among the AMD cases as compared with the controls. When comparing CX3CR1 expression in the archived eye sections, CX3CR1 transcripts were not detectable in the maculae of AMD eyes bearing T/M280; however, transcripts were detected in the maculae of normal eyes bearing T/T280 or T/M280 as well as in the AMD maculae bearing T/T280. Furthermore, lower CX3CR1 protein expression was observed in the maculae of AMD eyes bearing T/M280 compared with the controls bearing T/T280. The I249 and M280 alleles result in a lowered number of receptor binding sites and a decreased ligand affinity. Our data suggest that a decrease, caused by sequence variation and/or lower CX3CR1 expression, in CX3CR1-induced cellular activities could contribute to AMD development.
Although fractalkine is one of chemokines involved in mediation of neuronal/microglial interaction, it is not known whether fractalkine/CX3CR1-mediated pathogenesis occurs in the rat brain following epileptogenic insults. In order to elucidate the roles of the f
ractalkine/CX3CR1 system in microglial activation and neurodegeneration induced by status epilepticus (SE), we investigated changes in fractalkine/CX3CR1 system within the rat hippocampus following SE. In non-SE induced animals, fractalkine and CX3CR1 immunoreactivity was detected in neurons and microglia, respectively. Following SE, fractalkine immunoreactivity was transiently increased in neurons and astrocytes. CX3CR1 immunoreactivity was also transiently detected in neurons (particularly in CA1 pyramidal cells). Intracerebroventricular infusions of recombinant rat fractalkine aggravated SE-induced neuronal damage, while fractalkine IgG or CX3CR1 IgG infusion alleviated it, compared to saline-infused animals. These findings suggest that fractalkine/CX3CR1 system may play an important role in SE-induced neuronal damages via neuron-microglial interactions.
The risk for cardiovascular morbidity and mortality is increased in chronic kidney disease; in this process micro-inflammation plays an essential role. Responsible mechanisms remain to a large extent unidentified. In this pilot study transcriptome analysis of peripheral blood monocytes was used to i
dentify in an unprejudiced manner which factors could be discriminative for cardiovascular disease in patients with chronic kidney disease on hemodialysis. Forty gender- and age-matched, non-diabetic, non-smoking subjects with CRP < 20 mg/L were recruited: 9 healthy controls, 11 patients with eGFR > 60 mL/min/1.73m2 and a history of cardiovascular event (CVE), 10 patients with chronic kidney disease stage 5 on hemodialysis without previous cardiovascular event (CKD5HD) and 10 with a previous cardiovascular event (CKD5HD/CVE). Monocytes were isolated and their mRNA was submitted to focused transcriptome analysis using a macroarray platform containing ca. 700 genes associated with macrophage functional capacity. The macroarray data indicated 9 genes (8 upregulated and 1 downregulated) with a significant differential expression in CKD5HD/CVE vs. CVE alone, after excluding genes differentially expressed in CKD5HD vs. CONTROL: For FCGR3A (CD16) and CX3CR1 (chemokine receptor) the upregulation vs. control and vs. CVE could be confirmed by quantitative RT-PCR for all CKD5HD patients. Furthermore, CX3CR1 relative expression on monocytes correlated with CRP. Flow cytometric analysis of purified monocytes confirmed a significant increase in the percentage of CD16 positive monocytes in all CKD5HD patients vs. control and CVE. The present study indicates the importance of a specific pro-inflammatory monocyte subpopulation, positive for CD16 and the co-expressed chemokine receptor, CX3CR1, discriminative for CKD5HD patients.