RGD Reference Report - Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina.

Authors: Davies, MH  Eubanks, JP  Powers, MR 
Citation: Davies MH, etal., Mol Vis. 2006 May 10;12:467-77.
RGD ID: 8548878
Pubmed: PMID:16710171   (View Abstract at PubMed)

PURPOSE: The ability of microglial cells (MG) and macrophages (MAC) to release cytokines, induce apoptosis, as well as perform phagocytic functions suggests a possible role in wound healing following oxygen-induced injury. This study was performed to determine the temporal and spatial expression of F4/80 (F4/80+) positive microglia/macrophages (MG/MAC) in areas of retinal damage in the mouse model of oxygen-induced retinopathy. METHODS: C57BL/6 postnatal day 7 (P7) mice were exposed to 75% O2 for 5 days (P12) then allowed to recover in room air. Hyperoxia-exposed (O2) mice (O2 refers to hyperoxia exposure from P7 to P12 only) were sacrificed on P12, P14, P17, and P21 and their eyes were examined. Localization of F4/80+ cells in FITC-dextran-perfused retinas allowed coordinate visualization of retinal vessels and MG/MAC via fluorescence microscopy. BrdU, a cellular proliferation marker, was injected intraperitoneally 1 h prior to sacrifice. Immunostaining was performed for a microglia and macrophage-specific antigen (F4/80) and BrdU. CCL2 (monocyte chemoattractant protein-1; MCP-1) expression was examined by quantitative real time reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS: There was a marked increase (>500%) in MG/MAC in hyperoxia-exposed retinas on P17O2 and P21O2 compared to control retinas. At P17O2, MG/MAC were localized in areas of neovascularization (NV), revealing an intimate relationship between MG/MAC and neovascular tufts. However, P21O2 retinas demonstrated MG/MAC associated with avascular regions in the outer layers of the retina. Immunostaining for F4/80 and BrdU revealed rare co-localization in hyperoxia-exposed retinas. Real time RT-PCR results demonstrated increased expression of CCL2 in P14O2- and P17O2- exposed retinas. CONCLUSIONS: Our results suggest that resident retinal microglia proliferation occurs at a low frequency in response to injury in this model. The substantial increase in total F4/80+ cells in hyperoxia-exposed retinas in conjunction with the upregulation of CCL2 is consistent with recruitment of hematogenous macrophages into the retina. The temporal and spatial localization of MG/MAC adjacent to neovascular tufts suggests these cells are modulating the retinal response to ischemia-induced retinopathy.



RGD Manual Disease Annotations    Click to see Annotation Detail View

  
Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
CCL2HumanOxygen-Induced Retinopathy  ISOCcl2 (Mus musculus)mRNA:increased expression:retina (mouse)RGD 
Ccl2RatOxygen-Induced Retinopathy  ISOCcl2 (Mus musculus)mRNA:increased expression:retina (mouse)RGD 
Ccl2MouseOxygen-Induced Retinopathy  IEP mRNA:increased expression:retina (mouse)RGD 

Objects Annotated

Genes (Rattus norvegicus)
Ccl2  (C-C motif chemokine ligand 2)

Genes (Mus musculus)
Ccl2  (C-C motif chemokine ligand 2)

Genes (Homo sapiens)
CCL2  (C-C motif chemokine ligand 2)

Objects referenced in this article
Gene CCL13 C-C motif chemokine ligand 13 Homo sapiens

Additional Information