RGD Reference Report - A novel DISC1-interacting partner DISC1-Binding Zinc-finger protein: implication in the modulation of DISC1-dependent neurite outgrowth. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

A novel DISC1-interacting partner DISC1-Binding Zinc-finger protein: implication in the modulation of DISC1-dependent neurite outgrowth.

Authors: Hattori, T  Baba, K  Matsuzaki, S  Honda, A  Miyoshi, K  Inoue, K  Taniguchi, M  Hashimoto, H  Shintani, N  Baba, A  Shimizu, S  Yukioka, F  Kumamoto, N  Yamaguchi, A  Tohyama, M  Katayama, T 
Citation: Hattori T, etal., Mol Psychiatry. 2007 Apr;12(4):398-407. Epub 2007 Jan 23.
RGD ID: 5509798
Pubmed: PMID:17389905   (View Abstract at PubMed)
DOI: DOI:10.1038/sj.mp.4001945   (Journal Full-text)

Disrupted-in-schizophrenia 1 (DISC1) is a gene disrupted by a (1;11) (q42.1;q14.3) translocation that segregates with major psychiatric disorders in a Scottish family. To investigate how DISC1 confers susceptibility to psychiatric disorders, we previously identified fasciculation and elongation protein zeta-1 and Kendrin as DISC1-interacting molecules in a yeast two-hybrid screen of a human brain complementary DNA library. Here, we have further identified a novel DISC1-interacting protein, termed DISC1-Binding Zinc-finger protein (DBZ), which has a predicted C(2)H(2)-type zinc-finger motif and coiled-coil domains. DBZ was co-immunoprecipitated with DISC1 in lysates of PC12 cells and rat brain tissue. The domain of DISC1 interacting with DBZ was close to the translocation breakpoint in the DISC1 gene. DBZ messenger RNA (mRNA) was expressed in human brains, but not in peripheral tissues. In situ hybridization revealed high expression of DBZ mRNA in the hippocampus, olfactory tubercle, cerebral cortex and striatum in rats. Because this pattern of localization was similar to that of the pituitary adenylate cyclase (PAC(1)) receptor for pituitary adenylate cyclase-activating polypeptide (PACAP), which has recently been implicated in neuropsychological functions, we examined whether DISC1/DBZ interaction was involved in the PACAP signaling pathway. PACAP upregulated DISC1 expression and markedly reduced the association between DISC1 and DBZ in PC12 cells. A DISC1-binding domain of DBZ reduced the neurite length in PC12 cells after PACAP stimulation and in primary cultured hippocampal neurons. The present results provide some new molecular insights into the mechanisms of neuronal development and neuropsychiatric disorders.

Gene Ontology Annotations    Click to see Annotation Detail View

Molecular Function
TermQualifierEvidenceWithReferenceNotesSourceOriginal Reference(s)
protein binding enablesIPIUniProtKB:Q5PQS25509798PMID:17389905UniProt 
protein binding enablesIPIUniProtKB:Q810H65509798PMID:17389905UniProt 

Objects Annotated

Genes (Rattus norvegicus)
Disc1  (DISC1 scaffold protein)
Zfp365  (zinc finger protein 365)


Additional Information