Steroidogenic factor 1 (SF-1, Nr5a1, and Ad4bp) is an orphan nuclear receptor required for adrenal and gonad development and endocrine regulation. To extend our understanding of SF-1 function and the mechanisms controlling its expression, a transgenic rescue strategy was employed to locate important transcriptional control regions and to reveal functional roles of the protein. A rat yeast artificial chromosome containing Ftz-F1, the gene encoding SF-1, was used to generate mice with different transgenes that varied in size. Rat SF-1 mRNA expression was assayed to assess each transgene's targeting ability. SF-1-deficient/transgene-positive (SF-1(-/-); tg/+) "rescue" mice were then generated and the animals' developmental and reproductive status was evaluated. The results identified differences in expression patterns and rescue abilities that provided insight into SF-1 transcriptional control and function. Comparing transgene maps and mRNA profiles placed critical transcriptional elements for pituitary and hypothalamic expression to a region 3' to intron 4, whereas examination of rescued mice revealed that an approximately 153-kb region of the Ftz-F1 locus recapitulates most or all activity ascribed to the endogenous allele. A second line of rescued mice was hypomorphic, with males showing defects in androgen-dependent tissues due to abnormal Leydig cell differentiation. Histological analysis of embryonic (e14.5) and adult testes from these mice implicated SF-1 in roles that are distinct in fetal and adult Leydig cells.