Gao PS, etal., Biochem Biophys Res Commun. 2000 Jan 27;267(3):761-3.
Nitric oxide (NO) gas concentrations are higher in expired air in asthmatics. NO is synthesized by three isoforms of NO synthase (NOS) encoded by three distinct genes, NOS1, NOS2, and NOS3. Genome-wide searches have identified linkages to asthma on chromosomes 7
, 12, and 17 where these three genes are localized. No association study, however, has been reported to date. To test whether variants of NOS1, NOS2, and NOS3 relate to asthma, a genetic association study was conducted in a British population (n = 300). Intragenic microsatellite variants of NOS1 were significantly associated with asthma [odds ratio (OR) = 2.08, 95% CI: 1.20-3.57 (95% CI), P = 0.008 (Pc = 0.048)], but not with IgE levels. Neither NOS2 nor NOS3 variants showed any association with asthma nor IgE levels. These findings suggest that NOS1 variants may be a significant contributor to asthma in a British population.
The gene encoding NOS-I (NOS1) displays a complex transcriptional regulation, with nine alternative first exons. Exon 1c and 1f are the most abundant forms in the brain. A functional single nucleotide polymorphism (SNP) in exon 1c and a polymorphism in exon 1f,
consisting of a variable number of tandem repeats (VNTR) originating short (S) and long (L) alleles, were studied in 184 patients with Alzheimer's disease (AD) and 144 gender- and age-matched controls. No differences were found for the Ex1c G-84A. The Ex1f-VNTR S allele was significantly more common in AD (55% versus 44%, P=0.009, OR=1.52) as was the S/S genotype (28% versus 14%, P=0.008; OR=2.37). The S allele showed a highly significant interaction with the ApoE epsilon 4 allele (OR: 10.83). Therefore, short alleles of the NOS1 exon 1f-VNTR are likely to be susceptibility factors for AD, and interact with the epsilon 4 allele to markedly increase the AD risk.
Nakano D, etal., Am J Physiol Renal Physiol. 2008 May;294(5):F1205-11. Epub 2008 Feb 27.
Endothelin-1 (ET-1) plays an important role in the regulation of salt and water excretion in the kidney. Considerable in vitro evidence suggests that the renal medullary ET(B) receptor mediates ET-1-induced inhibition of electrolyte reabsorption by stimulating nitric oxide (NO) production. The prese
nt study was conducted to test the hypothesis that NO synthase 1 (NOS1) and protein kinase G (PKG) mediate the diuretic and natriuretic effects of ET(B) receptor stimulation in vivo. Infusion of the ET(B) receptor agonist sarafotoxin S6c (S6c: 0.45 microg x kg(-1) x h(-1)) in the renal medulla of anesthetized, male Sprague-Dawley rats markedly increased the urine flow (UV) and urinary sodium excretion (UNaV) by 67 and 120%, respectively. This was associated with an increase in medullary cGMP content but did not affect blood pressure. In addition, S6c-induced diuretic and natriuretic responses were absent in ET(B) receptor-deficient rats. Coinfusion of N(G)-propyl-l-arginine (10 microg x kg(-1) x h(-1)), a selective NOS1 inhibitor, suppressed S6c-induced increases in UV, UNaV, and medullary cGMP concentrations. Rp-8-Br-PET-cGMPS (10 microg x kg(-1) x h(-1)) or RQIKIWFQNRRMKWKK-LRK(5)H-amide (18 microg x kg(-1) x h(-1)), a PKG inhibitor, also inhibited S6c-induced increases in UV and UNaV. These results demonstrate that renal medullary ET(B) receptor activation induces diuretic and natriuretic responses through a NOS1, cGMP, and PKG pathway.
Grasemann H, etal., Biochem Biophys Res Commun. 2000 Jun 7;272(2):391-4.
Recent family-based studies have revealed evidence for linkage of chromosomal region 12q to both asthma and high total serum immunoglobulin E (IgE) levels. Among the candidate genes in this region for asthma is neuronal nitric oxide synthase (NOS1). We sought a
genetic association between a polymorphism in the NOS1 gene and the diagnosis of asthma, using a case-control design. Frequencies for allele 17 and 18 of a CA repeat in exon 29 of the NOS1 gene were significantly different between 490 asthmatic and 350 control subjects. Allele 17 was more common in the asthmatics (0.83 vs 0.76, or 1.49 [95% CI 1.17-1.90], P = 0.013) while allele 18 was less common in the asthmatics (0.06 vs 0.12, or 0.49 [95% CI 0.34-0. 69], P = 0.0004). To confirm these results we genotyped an additional 1131 control subjects and found the frequencies of alleles 17 and 18 to be virtually identical to those ascertained in our original control subjects. Total serum IgE was not associated with any allele of the polymorphism. These findings provide support, from case-control association analysis, for NOS1 as a candidate gene for asthma.
Nicotine exerts its addictive influence through the meso-cortico-limbic reward system, where the striatum is essential. Nicotine addiction involves different neurotransmitters, nitric oxide (NO) being especially important, since it triggers the release of the others by positive feedback. In the nerv
ous system, NO is mainly produced by nitric oxide synthase 1 (NOS1). However, other subtypes of synthases can also synthesize NO, and little is known about the specific role of each isoform in the process of addiction. In parallel, NOS activity and nicotine addiction are also affected by stress and sexual dimorphism. To determine the specific role of this enzyme, we analyzed both NOS expression and NO synthesis in the striatum of wild-type and NOS1-knocked out (KO) mice of both sexes in situations of nicotine sensitization and stress. Our results demonstrated differences between the caudate-putamen (CP) and nucleus accumbens (NA). With respect to NOS1 expression, the CP is a dimorphic region (27.5% lower cell density in males), but with a stable production of NO, exclusively due to this isoform. Thus, the nitrergic system of CP may not be involved in stress or nicotine addiction. Conversely, the NA is much more variable and strongly involved in both situations: its NO synthesis displays dimorphic variations at both basal (68.5% reduction in females) and stress levels (65.9% reduction in males), which disappear when nicotine is infused. Thus, the KO animals showed an increase in NO production (21.7%) in the NA, probably by NOS3, in an attempt to compensate the lack of NOS1.
Reif A, etal., J Alzheimers Dis. 2011;23(2):327-33. doi: 10.3233/JAD-2010-101491.
NO synthase, type I (NOS-I) has been suggested to play a role in the etiology of Alzheimer's disease (AD). The gene encoding NOS-I harbors at least nine alternative first exons; in the promoter region of exon 1f, a polymorphic repeat (NOS1 ex1f-VNTR) has been de
scribed which influences gene expression and neuronal transcriptome. We have shown that short alleles of this repeat are associated with AD. Here, we sought to further explore this finding by investigating a longitudinal cohort sample from the Vienna-Transdanube-Aging (VITA) study consisting of 606 subjects enrolled at the age of 75 (of these, genotypes were available for 574 subjects) and followed up for 60 months. The ex1f-VNTR risk genotype was associated with AD in the total sample and at the second follow-up. Thus, either long alleles of NOS1 ex1f-VNTR are protective against disease or conversely, short alleles predispose to earlier onset of disease. As demonstrated, ex1f-VNTR interacted with the apolipoprotein E e4 risk allele (OR in the presence of both risk alleles 3.63; 95% CI: 1.45-9.12). These findings provide further evidence for an association of NOS1 with AD.
Naassila M, etal., Neurosci Lett. 2003 Mar 6;338(3):221-4.
Several works have suggested a potential role for nitric oxide in alcohol-seeking behavior and we have recently shown that the specific blockade of the expression of the neuronal nitric oxide synthase (NOS1) decreases rat ethanol intake. Our previous results hav
e also shown that chronic ethanol exposure has differential effect on the brain NOS activity depending on rat brain area. In the present study, we examine the effects of chronic administration of ethanol on the NOS1-mRNA levels measured with the competitive reverse transcriptase-polymerase chain reaction technique. Chronic administration of ethanol differentially regulated NOS1-mRNA levels depending on rat brain area. Chronic ethanol exposure had no effect on the NOS1-mRNA levels in frontal cortex, but decreased the NOS1-mRNA levels in hippocampus (P<0.01, 39% decrease) and induced a strong increase in striatum (P<0.01, 92% increase). These effects of ethanol were not affected by 7-nitro indazole (25 mg/kg, i.p. daily for 1 week) treatment. These data further support that NOS1 is regulated by chronic exposure to ethanol and that these effects are related to modifications of mRNA levels.
Villmow M, etal., Basic Res Cardiol. 2015 Sep;110(5):506. doi: 10.1007/s00395-015-0506-5. Epub 2015 Jul 15.
Nitric oxide (NO) modulates calcium transients and contraction of cardiomyocytes. However, it is largely unknown whether NO contributes also to alterations in the contractile function of cardiomyocytes during aging. Therefore, we analyzed the putative role of nitric oxide synthases and NO for the a
ge-related alterations of cardiomyocyte contraction. We used C57BL/6 mice, nitric oxide synthase 1 (NOS1)-deficient mice (NOS1(-/-)) and mice with cardiomyocyte-specific NOS1-overexpression to analyze contractions, calcium transients (Indo-1 fluorescence), acto-myosin ATPase activity (malachite green assay), NADPH oxidase activity (lucigenin chemiluminescence) of isolated ventricular myocytes and cardiac gene expression (Western blots, qPCR). In C57BL/6 mice, cardiac expression of NOS1 was upregulated by aging. Since we found a negative regulation of NOS1 expression by cAMP in isolated cardiomyocytes, we suggest that reduced efficacy of beta-adrenergic signaling that is evident in aged hearts promotes upregulation of NOS1. Shortening and relengthening of cardiomyocytes from aged C57BL/6 mice were decelerated, but were normalized by pharmacological inhibition of NOS1/NO. Cardiomyocytes from NOS1(-/-) mice displayed no age-related changes in contraction, calcium transients or acto-myosin ATPase activity. Aging increased cardiac expression of NADPH oxidase subunits NOX2 and NOX4 in C57BL/6 mice, but not in NOS1(-/-) mice. Similarly, cardiac expression of NOX2 and NOX4 was upregulated in a murine model with cardiomyocyte-specific overexpression of NOS1. We conclude that age-dependently upregulated NOS1, putatively via reduced efficacy of beta-adrenergic signaling, induces NADPH oxidases. By increasing nitrosative and oxidative stress, both enzyme systems act synergistically to decelerate contraction of aged cardiomyocytes.
García-Martín E, etal., Headache. 2015 Oct;55(9):1209-17. doi: 10.1111/head.12617. Epub 2015 Aug 18.
BACKGROUND/OBJECTIVES: Many biochemical, pharmacological, neuropathological, and experimental data suggest a possible role of nitric oxide in the pathogenesis of migraine. We investigated the possible association between functional single nucleotide polymorphisms (SNPs) in the neuronal ni
tric oxide synthase gene (NOS1 or nNOS; chromosome 12q24.22) and the risk for migraine. METHODS: We studied the frequency of the of rs7977109 and rs693534 genotypes and allelic variants in 197 patients with migraine and 308 healthy controls using a TaqMan-based qPCR assay. As a secondary analysis, we studied the possible influence of gender, age at onset of migraine, positive family history of migraine, and presence or absence of aura on the genotypes frequency. RESULTS: The frequencies of rs7977109 and rs693534 genotypes and allelic variants were not associated with the risk for migraine with OR for minor alleles¿=¿0.94 (95% CI 0.72-1.23) and¿=¿0.88 (0.68-1.15), respectively, and the lack of association was not influenced by gender, age at onset of migraine, positive family history of migraine, and presence or absence of aura. CONCLUSION: NOS1 rs7977109 and rs693534 genotypes and allelic variants are not associated with the risk for migraine in Caucasian Spanish people.
Hyndman KA, etal., Am J Physiol Renal Physiol. 2011 Apr 13.
We hypothesized that NOS isoforms may be regulated by dynamin (DNM) in the inner medullary collecting duct (IMCD). The aims of this study were to determine which DNM isoforms (DNM1, DNM2, DNM3) are expressed in renal IMCDs, whether DNM interacts with NOS, if a high salt diet alters the interaction o
f DNM and NOS, and whether DNM activates NO production. DNM2 and DNM3 are highly expressed in the rat IMCD, while DNM1 is localized outside of the IMCD. We found that DNM1 interacts with NOS1alpha, NOS1beta, and NOS3 in the inner medulla of male Sprague Dawley rats on a 0.4% salt diet. DNM2 interacts with NOS1alpha, while DNM3 interacts with both NOS1alpha and NOS1beta. DNM2 and DNM3 do not interact with NOS3 in the rat inner medulla. We did not observe any change in the DNM/NOS interactions with rats on a 4% salt diet after 7 days. Furthermore, NOS1alpha interacts with DNM2 in mIMCD3 and COS7 cells transfected with NOS1alpha and DNM2-GFP constructs and the NOS1 reductase domain is necessary for the interaction. Finally, COS7 cells expressing NOS1alpha or NOS1alpha/DNM2-GFP had significantly higher nitrite production compared to DNM2-GFP only. Nitrite production was blocked by the dynamin inhibitor, dynasore, or the dominant negative DNM2K44A. Ionomycin stimulation further increased nitrite production in the NOS1alpha/DNM2-GFP cells compared to NOS1alpha only. In conclusion, DNM and NOS1 interact in the rat renal IMCD and this interaction leads to increased NO production which may influence NO production in the renal medulla.
Paliege A, etal., Am J Physiol Regul Integr Comp Physiol. 2006 Mar;290(3):R694-700.
Macula densa (MD) cells of the juxtaglomerular apparatus (JGA) synthesize type 1 nitric oxide synthase (NOS1) and type 2 cyclooxygenase (COX-2). Both nitric oxide (NO) and prostaglandins have been considered to mediate or modulate the control of renin secretion.
Reactive oxygen species (ROS) produced locally by NADPH oxidase may influence NO bioavailability. We have tested the hypothesis that in hypertension elevated ROS levels may modify the expression of NOS1 and COX-2 in the JGA, thereby interacting with juxtaglomerular signaling. To this end, spontaneously hypertensive rats (SHR) and Wistar-Kyoto control rats (WKY) received the specific NADPH oxidase inhibitor, apocynin, during 3 wk. Renal functional and histochemical parameters, plasma renin activity (PRA), and as a measure of ROS activity, urinary isoprostane excretion (IP) were evaluated. Compared with WKY, IP levels in untreated SHR were 2.2-fold increased, and NOS1 immunoreactiviy (IR) of JGA 1.5-fold increased, whereas COX-2 IR was reduced to 35%, renin IR to 51%, and PRA to 7%. Apocynin treatment reduced IP levels in SHR to 52%, NOS1 IR to 69%, and renin IR to 62% of untreated SHR, whereas renin mRNA, COX-2 IR, glomerular filtration rate, PRA, and systolic blood pressure remained unchanged. WKY revealed no changes under apocynin treatment. These data show that NADPH oxidase is an important contributor to elevated levels of ROS in hypertension. Upregulation of MD NOS1 in SHR may have the potential of blunting the functional impact of ROS at the level of bioavailable NO. Downregulated COX-2 and renin levels in SHR are apparently unrelated to oxidative stress, since apocynin treatment had no effect on these parameters.
Nitric oxide (NO), a gaseous neurotransmitter, has been implicated in the pathogenesis of schizophrenia. Accordingly, several polymorphisms of the gene that codes for the main NO-producing enzyme, the nitric oxide synthase 1 (NOS1), have been found to convey a
risk for schizophrenia. This study examined the role of NOS1 gene polymorphisms in cognitive functions and related neural mechanism. First, with a sample of 580 schizophrenia patients and 720 healthy controls, we found that rs3782206 genotype had main effects on the 1-back task (P=0.005), the 2-back task (P=0.049), the AY condition of the dot-pattern expectancy (DPX) task (P=0.001), and the conflict effect of the attention network (ANT) test (P<0.001 for RT differences and P=0.002 for RT ratio) and interaction effects with diagnosis on the BX condition of the DPX (P=0.009), the AY condition of the DPX (P<0.001), and the Stroop conflict effect (P=0.003 for RT differences and P=0.038 for RT ratio). Simple effect analyses further showed that the schizophrenia risk allele (T) of rs3782206 was associated with poorer performance in five measures for the patients (1-back, P=0.025; BX, P=0.017; AY, P<0.001; ANT conflict effect (RT differences), P=0.005; Stroop conflict effect (RT differences), P=0.019) and three measures for the controls ( for the 2-back task, P=0.042; for the ANT conlict effect (RT differences), P=0.013; for the ANT conflict effect (RT ratios), P=0.028). Then, with a separate sample of 78 healthy controls, we examined the association between rs3782206 and brain activation patterns during the N-back task and the Stroop task. Whole brain analyses found that the risk allele carriers showed reduced activation at the right inferior frontal gyrus (IFG) during both tasks. Finally, we examined functional connectivity seeded from the right IFG to the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex under three conditions (the N-back task, the Stroop task, and the resting state). Results showed reduced connectivity with the DLPFC for the risk allele carriers mainly in the Stroop task and the resting state. Taken together, results of this study strongly suggested a link between NOS1 gene polymorphism at rs3782206 and cognitive functions and their neural underpinnings at the IFG. These results have important implications for our understanding of the neural mechanism underlying the association between NOS1 gene polymorphism and schizophrenia.
Nitric oxide (NO) plays an important role in a number of physiological processes in the airways, including host defense. Although the exact cellular and molecular source of the NO formation in airways is unknown, there is recent evidence that neuronal NO synthase (NOS1
) contributes significantly to NO in the lower airways of cystic fibrosis (CF) patients. NOS1 protein has been shown to be expressed in nasal epithelium, suggesting an involvement of NOS1-derived NO in upper airway biology. We here hypothesized that nasal NO concentrations in CF patients are related to genotype variants in the NOS1 gene. Measurements of nasal NO concentration and pulmonary function were performed in 40 clinically stable CF patients. Genomic DNA from all patients was screened for an intronic AAT-repeat polymorphism in the NOS1 gene using polymerase chain reaction and simple sequence length polymorphism (SSLP) analysis. The allele size at that locus was significantly (P = 0.001) associated with upper airway NO. Mean (+/- SD) nasal NO concentrations were 40.5 +/- 5.2 ppb in CF patients (n = 12) with high repeat numbers (i.e., both alleles > or =12 repeats) and 72.6 +/- 7.4 ppb in patients (n = 28) with low repeat numbers (i.e., at least one allele <12 repeats). Furthermore, in the group of CF patients harboring NOS1 genotypes associated with low nasal NO, colonization of airways with P. aeruginosa was significantly more frequent than in patients with NOS1 genotypes associated high nasal NO concentrations (P = 0.0022). We conclude that (1) the variability in CF nasal NO levels are related to naturally occurring variants in the NOS1 gene, and (2) that nasal NOS1-derived NO affects the susceptibility of CF airways to infection with P. aeruginosa.
Salatino-Oliveira A, etal., J Psychiatr Res. 2016 Apr;75:75-81. doi: 10.1016/j.jpsychires.2016.01.010. Epub 2016 Jan 18.
Several investigations documented that Attention-Deficit/Hyperactivity Disorder (ADHD) is better conceptualized as a dimensional disorder. At the same time, the disorder seems to have different neurobiological underpinnings and phenotypic presentation in children compared to adults. Neurodevelopment
al genes could explain, at least partly these differences. The aim of the present study was to examine possible associations between polymorphisms in SNAP25, MAP1B and NOS1 genes and ADHD symptoms in Brazilian samples of children/adolescents and adults with ADHD. The youth sample consisted of 301 patients whereas the adult sample comprises 485 individuals with ADHD. Diagnoses of ADHD and comorbidities were based on the Diagnostic and Statistical Manual of Mental Disorders-4th edition criteria. The Swanson, Nolan and Pelham Scale-Version IV (SNAP-IV) was applied by psychiatrists blinded to genotype. The total SNAP-IV scores were compared between genotypes. Impulsivity SNAP-IV scores were also compared according to NOS1 genotypes. Adult patients homozygous for the C allele at SNAP25 rs8636 showed significantly higher total SNAP-IV scores (F = 11.215; adjusted P-value = 0.004). Impulsivity SNAP-IV scores were also significantly different according to NOS1 rs478597 polymorphisms in adults with ADHD (F = 6.282; adjusted P-value = 0.026). These associations were not observed in children and adolescents with ADHD. These results suggest that SNAP25 and NOS1 genotypes influence ADHD symptoms only in adults with ADHD. Our study corroborates previous evidences for differences in the genetic contribution to adult ADHD compared with childhood ADHD.
Baig MS, etal., J Exp Med. 2015 Sep 21;212(10):1725-38. doi: 10.1084/jem.20140654. Epub 2015 Aug 31.
The NF-kappaB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-kappaB. Specifically, ... (more)
n style='font-weight:700;'>NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-kappaB transcriptional activity. As a result, NOS1(-/-) mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1(-/-) macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1(-/-) macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1(-/-) cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response.
Immunocytochemistry and microdensitometry applied under standardised conditions were used to evaluate neuronal nitric oxide synthase (NOS1) antigen in segmental motor neurones (MN) of six subjects without neurological disease, nine subjects with sporadic motor n
eurone disease (MND) and five with neurological disease unrelated to MND. No significant segmental differences in levels of NOS1 immunoreactivity occurred between the two control groups, and differences between cervical, thoracic and lumbar MN of the three subject groups were not significant. However, MND patients showed a significantly reduced level of NOS1 immunoreactivity in the Onuf's nucleus (ON); this is discussed in relation to neuroprotection and the relative sparing of ON in MND.
Nitric oxide (NO) has been implicated in the pathogenesis of renal hemodynamic changes in diabetes mellitus. However, the contribution of nitric oxide synthase (NOS) isoforms to intrarenal production of NO in diabetes remains unknown. To explore the role of NOS1
in the control of renal hemodynamics in diabetes, we assessed renal responses to inhibition of NOS1 with S-methyl-L-thiocitrulline (SMTC; administered into the abdominal aorta) in moderately hyperglycemic streptozotocin-diabetic rats (D) and their nondiabetic (C) and normoglycemic diabetic counterparts. The contribution of other NOS isoforms was also evaluated by assessing the responses to nonspecific NOS inhibition [N(G)-nitro-L-arginine methyl ester (L-NAME)] in SMTC-treated diabetic rats. The number of NOS1-positive cells in macula densa of D and C kidneys was also evaluated by immunohistochemistry. D rats demonstrated elevated glomerular filtration rate (GFR) compared with C. SMTC (0.05 mg/kg) normalized GFR in D but had no effect in C. SMTC-induced reduction of renal plasma flow (RPF) was similar in C and D. Normoglycemic diabetic rats demonstrated blunted renal hemodynamic responses to NOS1 inhibition compared with hyperglycemic animals. Mean arterial pressure was stable in all groups. L-NAME induced a further decrease in RPF, but not in GFR, in D rats treated with SMTC. Immunohistochemistry revealed increased numbers of NOS1-positive cells in D. These observations suggest that NOS1-derived NO plays a major role in the pathogenesis of renal hemodynamic changes early in the course of diabetes. NOS1 appears to be the most important isoform in the generation of hemodynamically active NO in this condition.
Wang TN, etal., Pediatr Allergy Immunol. 2010 Nov;21(7):1064-71. doi: 10.1111/j.1399-3038.2009.00981.x.
Asthma is a complex disorder, which is known to be affected by interactions between genetic and environmental factors. The aim of this study was to investigate the three microsatellite polymorphisms of GT repeats in intron 2, AAT repeats in intron 20, and CA repeats in exon 29 of the NOS1
nt-weight:700;'>NOS1 gene in 155 asthmatic children and 301 control children, and the interaction with environmental factors in southern Taiwan. Total serum IgE, phadiatop test and genetic polymorphisms were measured. The genotype frequency of 14/14-AAT repeats of the NOS1 gene was significantly higher in the asthmatic group (p = 0.01). Total IgE concentrations were higher in asthmatic children (p = 0.015) carrying the NOS1 14/14-AAT genotype than in subjects with other polymorphisms. The gene and environmental interaction effects were 3.83-fold, 6.86-fold, and 8.04-fold (all corrected p-values <0.001) between subjects carrying at least one NOS1 14-AAT allele and exposure to cockroaches, high levels of total IgE, and positive response against the phadiatop test in asthmatic children. The findings of this study provide strong evidence that NOS1 gene with 14-AAT tandem repeats has a significant effect in asthmatic children. Environmental factors and atopic status will enhance the asthmatic risk for children who carry NOS1 susceptible allele.
Weichert W, etal., Am J Physiol Renal Physiol 2001 Apr;280(4):F706-14.
This study describes elevated histochemical signals for nitric oxide synthase-1 (NOS1) and cyclooxygenase-2 (COX-2) in juxtaglomerular apparatus (JGA) and adjacent thick ascending limb of the kidney of fawn-hooded hypertensive rats (FHH). Two different age group
s of FHH (8 and 16 wk; FHH8 and FHH16, respectively) were compared with genetically related fawn-hooded rats with normal blood pressure (FHL) that served as controls. Histopathological changes in FHH comprised focal segmental glomerulosclerosis (FSGS), focal matrix overexpression, and a moderate arteriolopathy with hypertrophy of the media, enhanced immunoreactivity for alpha-smooth muscle actin, and altered distribution of myofibrils. Macula densa NOS activity, as expressed by NADPH-diaphorase staining, and NOS1 mRNA abundance were significantly elevated in FHH8 (+153 and +88%; P < 0.05) and FHH16 (+93 and +98%; P < 0.05), respectively. Even higher elevations were registered for COX-2 immunoreactivity in FHH8 (+166%; P < 0.05) and FHH16 (+157%; P < 0.05). The intensity of renin immunoreactivity and renin mRNA expression in afferent arterioles was also elevated in FHH8 (+51 and +166%; P < 0.05) and FHH16 (+105 and +136%; P < 0.05), respectively. Thus we show that coordinate upregulation of tubular NOS1, COX-2, and renin expression precedes, and continues after, the manifestation of glomerulosclerotic damage in FHH. These observations may have implications in understanding the role of local paracrine mediators in glomerular disease.
Li LL, etal., J Neurosci. 2013 May 8;33(19):8185-201. doi: 10.1523/JNEUROSCI.4578-12.2013.
Neuronal nitric oxide synthase (nNOS) and p38MAPK are strongly implicated in excitotoxicity, a mechanism common to many neurodegenerative conditions, but the intermediary mechanism is unclear. NOS1AP is encoded by a gene recently associated with sudden cardiac
death, diabetes-associated complications, and schizophrenia (Arking et al., 2006; Becker et al., 2008; Brzustowicz, 2008; Lehtinen et al., 2008). Here we find it interacts with p38MAPK-activating kinase MKK3. Excitotoxic stimulus induces recruitment of NOS1AP to nNOS in rat cortical neuron culture. Excitotoxic activation of p38MAPK and subsequent neuronal death are reduced by competing with the nNOS:NOS1AP interaction and by knockdown with NOS1AP-targeting siRNAs. We designed a cell-permeable peptide that competes for the unique PDZ domain of nNOS that interacts with NOS1AP. This peptide inhibits NMDA-induced recruitment of NOS1AP to nNOS and in vivo in rat, doubles surviving tissue in a severe model of neonatal hypoxia-ischemia, a major cause of neonatal death and pediatric disability. The highly unusual sequence specificity of the nNOS:NOS1AP interaction and involvement in excitotoxic signaling may provide future opportunities for generation of neuroprotectants with high specificity.
BACKGROUND: The nitric oxide synthase 1 adaptor protein gene (NOS1AP) has previously been recognised as a schizophrenia susceptibility gene due to its role in glutamate neurotransmission. The gene is believed to inhibit nitric oxide (NO) production activated by
the N-methyl-d-aspartate (NMDA) receptor and reduced NO levels have been observed in schizophrenia patients. However, association studies investigating NOS1AP and schizophrenia have produced inconsistent results, most likely because schizophrenia is a clinically heterogeneous disorder. This study aims to investigate the association between NOS1AP variants and defined depression phenotypes of schizophrenia. METHODS: Nine NOS1AP SNPs, rs1415259, rs1415263, rs1858232, rs386231, rs4531275, rs4656355, rs4657178, rs6683968 and rs6704393 were genotyped in 235 schizophrenia subjects screened for various phenotypes of depression. RESULT: One NOS1AP SNP (rs1858232) was associated with the broad diagnosis of schizophrenia and eight SNPs were associated with depression related phenotypes within schizophrenia. The rs1415259 SNP showed strong association with sleep dysregulation phenotypes of depression. CONCLUSION: Results suggest that NOS1AP variants are associated with various forms of depression in schizophrenia and are more prevalent in males. LIMITATION: Schizophrenia is a clinically heterogeneous disease that can vary greatly between different ethnic and geographic populations so our observations should be viewed with caution until they are independently replicated, particularly in larger patient cohorts.
Richier L, etal., J Neurosci. 2010 Mar 31;30(13):4796-805. doi: 10.1523/JNEUROSCI.3726-09.2010.
The formation and function of the neuronal synapse is dependent on the asymmetric distribution of proteins both presynaptically and postsynaptically. Recently, proteins important in establishing cellular polarity have been implicated in the synapse. We therefore performed a proteomic screen with kno
wn polarity proteins and identified novel complexes involved in synaptic function. Specifically, we show that the tumor suppressor protein, Scribble, associates with neuronal nitric oxide synthase (nNOS) adaptor protein (NOS1AP) [also known as C-terminal PDZ ligand of nNOS (CAPON)] and is found both presynaptically and postsynaptically. The Scribble-NOS1AP association is direct and is mediated through the phosphotyrosine-binding (PTB) domain of NOS1AP and the fourth PDZ domain of Scribble. Further, we show that Scribble bridges NOS1AP to a beta-Pix [beta-p21-activated kinase (PAK)-interacting exchange factor]/Git1 (G-protein-coupled receptor kinase-interacting protein)/PAK complex. The overexpression of NOS1AP leads to an increase in dendritic protrusions, in a fashion that depends on the NOS1AP PTB domain. Consistent with these observations, both full-length NOS1AP and the NOS1AP PTB domain influence Rac activity. Together these data suggest that NOS1AP plays an important role in the mammalian synapse.
Auer DR, etal., Biotechnol Lett. 2014 Jun;36(6):1179-85. doi: 10.1007/s10529-014-1473-x. Epub 2014 Feb 22.
Polymorphic non-coding variants at the NOS1AP locus have been associated with the common cardiac, metabolic and neurological traits and diseases. Although, in vitro gene targeting-based cellular and biochemical studies have shed some light on NOS1
weight:700;'>NOS1AP function in cardiac and neuronal tissue, to enhance our understanding of NOS1AP function in mammalian physiology and disease, we report the generation of cre recombinase-conditional Nos1ap over-expression transgenic mice (Nos1ap (Tg)). Conditional transgenic mice were generated by the pronuclear injection method and three independent, single-site, multiple copies integration event-based founder lines were selected. For heart-restricted over-expression, Nos1ap (Tg) mice were crossed with Mlc2v-cre and Nos1ap transcript over-expression was observed in left ventricles from Nos1ap (Tg); Mlc2v-cre F1 mice. We believe that with the potential of conditional over-expression, Nos1ap (Tg) mice will be a useful resource in studying NOS1AP function in various tissues under physiological and disease states.
Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive NOS1AP variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) NOS1AP, but not cDNA construc
ts bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. NOS1AP knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT Nos1ap but not by constructs bearing patient variants. PMR in NOS1AP knockdown podocytes was also rescued by constitutively active CDC42Q61L or the formin DIAPH3 Modeling a NOS1AP patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. Nos1apEx3-/Ex3- mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive NOS1AP variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.
Hyndman KA, etal., Am J Physiol Regul Integr Comp Physiol. 2016 Apr 1;310(7):R570-7. doi: 10.1152/ajpregu.00008.2015. Epub 2016 Jan 20.
Nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) production in collecting ducts is critical for maintaining fluid-electrolyte balance. Rat collecting ducts express both the full-length NOS1alpha and its truncated var
iant NOS1beta, while NOS1beta predominates in mouse collecting ducts. We reported that dynamin-2 (DNM2), a protein involved in excising vesicles from the plasma membrane, and NOS1alpha form a protein-protein interaction that promotes NO production in rat collecting ducts. NOS1beta was found to be highly expressed in human renal cortical/medullary samples; hence, we tested the hypothesis that DNM2 is a positive regulator of NOS1beta-derived NO production. COS7 and mouse inner medullary collecting duct-3 (mIMCD3) cells were transfected with NOS1beta and/or DNM2. Coimmunoprecipitation experiments show that NOS1beta and DNM2 formed a protein-protein interaction. DNM2 overexpression decreased nitrite production (index of NO) in both COS7 and mIMCD-3 cells by 50-75%. mIMCD-3 cells treated with a panel of dynamin inhibitors or DNM2 siRNA displayed increased nitrite production. To elucidate the physiological significance of IMCD DNM2/NOS1beta regulation in vivo, flox control and CDNOS1 knockout mice were placed on a high-salt diet, and freshly isolated IMCDs were treated acutely with a dynamin inhibitor. Dynamin inhibition increased nitrite production by IMCDs from flox mice. This response was blunted (but not abolished) in collecting duct-specific NOS1 knockout mice, suggesting that DNM2 also negatively regulates NOS3 in the mouse IMCD. We conclude that DNM2 is a novel negative regulator of NO production in mouse collecting ducts. We propose that DNM2 acts as a "break" to prevent excess or potentially toxic NO levels under high-salt conditions.
Fifty-six sudden unexplained death (SUD) cases were collected from Chinese Han population, which occurred during daily activities and were autopsy negative in comprehensive postmortem autopsy. The coding exons of potassium channel genes KCNE1, KCNQ1, and nitric oxide synthase gene NOS1
weight:700;'>NOS1AP were sequenced. A synonymous mutation, KCNE1 F54F T>C was identified in 2 SUD cases, which was absent in the control subjects. Neither genotype nor allele frequencies of KCNE1 and KCNQ1 exhibited a significant difference between the SUD and control group. In contrast, the allele frequency (p = 2.7 x 10(-10)) and genotype frequency (p = 5.9 x 10(-7)) of rs3751284, and the genotype frequency (p = 2.9 x 10(-2)) of rs348624 in NOS1AP of SUD were significantly different from that of controls (p < 0.05). Our study suggested that rs3751284 and rs348624 might be susceptibility loci for SUD during daily activities. Larger sample sizes and further molecular studies are needed to confirm or exclude an effect of the NOS1AP SNPs on SUD risk.
Andreasen CH, etal., BMC Med Genet. 2008 Dec 26;9:118. doi: 10.1186/1471-2350-9-118.
BACKGROUND: Several studies in multiple ethnicities have reported linkage to type 2 diabetes on chromosome 1q21-25. Both PKLR encoding the liver pyruvate kinase and NOS1AP encoding the nitric oxide synthase 1 (neuronal) adaptor protein (CAPON) are pos
itioned within this chromosomal region and are thus positional candidates for the observed linkage peak. The C-allele of PKLR rs3020781 and the T-allele of NOS1AP rs7538490 are reported to strongly associate with type 2 diabetes in various European-descent populations comprising a total of 2,198 individuals with a combined odds ratio (OR) of 1.33 [1.16-1.54] and 1.53 [1.28-1.81], respectively. Our aim was to validate these findings by investigating the impact of the two variants on type 2 diabetes and related quantitative metabolic phenotypes in a large study sample of Danes. Further, we intended to expand the analyses by examining the effect of the variants in relation to overweight and obesity. METHODS: PKLR rs3020781 and NOS1AP rs7538490 were genotyped, using TaqMan allelic discrimination, in a combined study sample comprising a total of 16,801 and 16,913 individuals, respectively. The participants were ascertained from four different study groups; the population-based Inter99 cohort (nPKLR = 5,962, nNOS1AP = 6,008), a type 2 diabetic patient group (nPKLR = 1,873, nNOS1AP = 1,874) from Steno Diabetes Center, a population-based study sample (nPKLR = 599, nNOS1AP = 596) from Steno Diabetes Center and the ADDITION Denmark screening study cohort (nPKLR = 8,367, nNOS1AP = 8,435). RESULTS: In case-control studies we evaluated the potential association between rs3020781 and rs7538490 and type 2 diabetes and obesity. No significant associations were observed for type 2 diabetes (rs3020781: pAF = 0.49, OR = 1.02 [0.96-1.10]; rs7538490: pAF = 0.84, OR = 0.99 [0.93-1.06]). Neither did we show association with overweight or obesity. Additionally, the PKLR and the NOS1AP genotypes were demonstrated not to have a major influence on diabetes-related quantitative metabolic phenotypes. CONCLUSION: We failed to provide evidence of an association between PKLR rs3020781 and NOS1AP rs7538490 and type 2 diabetes, overweight, obesity or related quantitative metabolic phenotypes in large-scale studies of Danes.
Treuer AV and Gonzalez DR, Int J Physiol Pathophysiol Pharmacol. 2014 Mar 13;6(1):37-46. eCollection 2014.
NOS1AP gene (nitric oxide synthase 1-adaptor protein) is strongly associated with abnormalities in the QT interval of the electrocardiogram and with sudden cardiac death. To determine the role of NOS1AP in the physiology of
the cardiac myocyte, we assessed the impact of silencing NOS1AP, using siRNA, on [Ca(2+)]i transients in neonatal cardiomyocytes. In addition, we examined the co-localization of NOS1AP with cardiac ion channels, and finally, evaluated the expression of NOS1AP in a mouse model of dystrophic cardiomyopathy. Using siRNA, NOS1AP levels were reduced to ~30% of the control levels (p<0.05). NOS1AP silencing in cardiac myocytes reduced significantly the amplitude of electrically evoked calcium transients (p<0.05) and the degree of S-nitrosylation of the cells (p<0.05). Using confocal microscopy, we evaluated NOS1AP subcellular location and interactions with other proteins by co-localization analysis. NOS1AP showed a high degree of co-localization with the L-type calcium channel and the inwardly rectifying potassium channel Kir3.1, a low degree of co-localization with the ryanodine receptor (RyR2) and alfa-sarcomeric actin and no co-localization with connexin 43, suggesting functionally relevant interactions with the ion channels that regulate the action potential duration. Finally, using immunofluorescence and Western blotting, we observed that in mice with dystrophic cardiomyopathy, NOS1AP was significantly up-regulated (p<0.05). These results suggest for a role of NOS1AP on cardiac arrhythmias, acting on the L-type calcium channel, and potassium channels, probably through S-nitrosylation.
Earle N, etal., J Cardiovasc Electrophysiol. 2015 Dec;26(12):1346-51. doi: 10.1111/jce.12827. Epub 2015 Oct 13.
INTRODUCTION: The accurate prediction of the risk of sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM) remains elusive. Corrected QT interval (QTc) duration is a known risk factor in various cardiac conditions. Single nucleotide polymorphisms (SNPs) have been linked to QTc length, and
to SCD. Here we investigated the role of 21 candidate SNPs in QTc duration and SCD events in patients with HCM. METHODS AND RESULTS: This HCM registry-based study included patients with an ECG, medical history, first SCD event data, and DNA available. Each individual SNP was assessed using logistic regression for associations with 2 outcomes: a prolonged QTc ( >/=440 milliseconds), and first SCD event (SCD, resuscitated cardiac arrest, and appropriate implantable cardioverter defibrillator (ICD) shock for ventricular fibrillation/ventricular tachycardia (VF/VT). In 272 HCM patients, there were 31 SCD events (8 SCD, 9 resuscitated cardiac arrest, 14 ICD shocks for VF/VT; 11%). A QTc >/= 500 milliseconds was associated with SCD events on multivariate analysis (odds ratio [OR] = 4.0, 95% confidence interval [CI], 1.19-12.02, P = 0.016). In 228 Caucasian patients, 2 SNPs in the NOS1AP gene (rs10494366 and rs12143842) were associated with a prolonged QTc after correction for multiple testing. This remained significant after adjustment for current age, sex, and >/=1 SCD risk factor (OR 1.59 per copy of the minor allele, 95% CI 1.08-2.39, P = 0.022, and OR 1.63, 95% CI 1.09-2.49, P = 0.020, respectively). No SNPs were directly associated with SCD events. CONCLUSION: SNPs in the NOS1AP gene influence QTc interval duration but we have not demonstrated a direct association with the risk of SCD.
Carrel D, etal., J Neurosci. 2009 Jun 24;29(25):8248-58.
During neuronal development, neurons form elaborate dendritic arbors that receive signals from axons. Additional studies are needed to elucidate the factors regulating the establishment of dendritic patterns. Our work explored possible roles played by nitric oxide synthase 1 adaptor protein (NOS1
tyle='font-weight:700;'>NOS1AP; also known as C-terminal PDZ ligand of neuronal nitric oxide synthase or CAPON) in dendritic patterning of cultured hippocampal neurons. Here we report that the long isoform of NOS1AP (NOS1AP-L) plays a novel role in regulating dendrite outgrowth and branching. NOS1AP-L decreases dendrite number when overexpressed at any interval between day in vitro (DIV) 0 and DIV 12, and knockdown of NOS1AP-L results in increased dendrite number. In contrast, the short isoform of NOS1AP (NOS1AP-S) decreases dendrite number only when overexpressed during DIV 5-7. Using mutants of NOS1AP-L, we show that neither the PDZ-binding domain nor the PTB domain is necessary for the effects of NOS1AP-L. We have functionally narrowed the region of NOS1AP-L that mediates this effect to the middle amino acids 181-307, a region that is not present in NOS1AP-S. Furthermore, we performed a yeast two-hybrid screen and identified carboxypeptidase E (CPE) as a binding partner for the middle region of NOS1AP-L. Biochemical and cellular studies reveal that CPE mediates the effects of NOS1AP on dendrite morphology. Together, our results suggest that NOS1AP-L plays an important role in the initiation, outgrowth, and maintenance of dendrites during development.