The protein encoded by this gene belongs to the antizyme inhibitor family, which plays a role in cell growth and proliferation by maintaining polyamine homeostasis within the cell. Antizyme inhibitors are homologs of ornithine decarboxylase (ODC, the key enzyme in polyamine biosynthesis) that have l
ost the ability to decarboxylase ornithine; however, retain the ability to bind to antizymes. Antizymes negatively regulate intracellular polyamine levels by binding to ODC and targeting it for degradation, as well as by inhibiting polyamine uptake. Antizyme inhibitors function as positive regulators of polyamine levels by sequestering antizymes and neutralizing their effect. This gene encodes antizyme inhibitor 1, the first member of this gene family that is ubiquitously expressed, and is localized in the nucleus and cytoplasm. Overexpression of antizyme inhibitor 1 gene has been associated with increased proliferation, cellular transformation and tumorigenesis. Gene knockout studies showed that homozygous mutant mice lacking functional antizyme inhibitor 1 gene died at birth with abnormal liver morphology. RNA editing of this gene, predominantly in the liver tissue, has been linked to the progression of hepatocellular carcinoma. Alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Sep 2014]
Enables protein homodimerization activity. Involved in several processes, including intraciliary transport involved in cilium assembly; protein localization to centrosome; and regulation of centrosome duplication. Located in several cellular components, including ciliary transition zone; intercellul
This gene encodes a protein that is part of a post-splicing multiprotein complex involved in both mRNA nuclear export and mRNA surveillance. mRNA surveillance detects exported mRNAs with truncated open reading frames and initiates nonsense-mediated mRNA decay (NMD). When translation ends upstream fr
om the last exon-exon junction, this triggers NMD to degrade mRNAs containing premature stop codons. This protein is located only in the cytoplasm. When translation ends, it interacts with the protein that is a functional homolog of yeast Upf2p to trigger mRNA decapping. Use of multiple polyadenylation sites has been noted for this gene. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]