RGD Reference Report - Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins.

Authors: Dulubova, I  Yamaguchi, T  Arac, D  Li, H  Huryeva, I  Min, SW  Rizo, J  Sudhof, TC 
Citation: Dulubova I, etal., Proc Natl Acad Sci U S A 2003 Jan 7;100(1):32-7.
RGD ID: 629534
Pubmed: PMID:12506202   (View Abstract at PubMed)
PMCID: PMC140874   (View Article at PubMed Central)
DOI: DOI:10.1073/pnas.232701299   (Journal Full-text)

Sec1Munc18-like (SM) proteins functionally interact with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) in membrane fusion, but the mechanisms of these interactions differ. In vertebrates, SM proteins that mediate exocytosis (Munc18-1, 18-2, and 18c) bind to the closed conformation of syntaxins 1-4, which requires the N-terminal H(abc) domains and SNARE motifs of these syntaxins. In contrast, SM proteins that mediate Golgi and endoplasmic reticulum fusion (Sly1 and Vps45) bind only to short N-terminal sequences of syntaxins 5, 16, or 18, independently of their H(abc) domains and SNARE motifs. We now show that Munc18-1, Sly1, and Vps45 interact with cognate syntaxins via similar, autonomously folded N-terminal domains, but the syntaxin 5-binding surface of the Sly1 N-terminal domain is opposite to the syntaxin 1-binding surface of the Munc18-1 N-terminal domain. In transfected cells, the N-terminal domain of Sly1 specifically disrupts the structure of the Golgi complex, supporting the notion that the interaction of Sly1 with syntaxin 5 is essential for fusion. These data, together with previous results, suggest that a relatively small N-terminal domain of SM proteins is dedicated to mechanistically distinct interactions with SNAREs, leaving the remaining large parts of SM proteins free to execute their as yet unknown function as effector domains.




Molecular Function

  
Object Symbol
Species
Term
Qualifier
Evidence
With
Notes
Source
Original Reference(s)
Stxbp1Ratsyntaxin binding  IDA  RGD 


Genes (Rattus norvegicus)
Stxbp1  (syntaxin binding protein 1)