RGD Reference Report - Lipoteichoic acid induces matrix metalloproteinase-9 expression via transactivation of PDGF receptors and NF-kappaB activation in rat brain astrocytes. - Rat Genome Database
Lipoteichoic acid induces matrix metalloproteinase-9 expression via transactivation of PDGF receptors and NF-kappaB activation in rat brain astrocytes.
Bacterial infections have been shown to be involved in several inflammatory diseases such as brain inflammation. A major factor for these findings is due to the secretion of pro-inflammatory mediators by host cells triggered by the components released from the bacteria. Among these components, lipoteichoic acid (LTA), a component of Gram-positive bacterial cell wall, has been found to be elevated in cerebrospinal fluid of patients suffering from meningitis. Moreover, increased plasma levels of matrix metalloproteinases (MMPs), in particular MMP-9, have been observed in patients with brain inflammatory diseases and may contribute to disease pathology. However, the molecular mechanisms underlying LTA-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) remain poorly defined. Here, the data with zymographic, Western blotting, RT-PCR, and immunofluorescent staining analyses showed that LTA induced MMP-9 expression and activation via a TLR2-activated c-Src-dependent transactivation of PDGFR pathway. Transactivation of PDGFR led to activation of PI3K/Akt and p42/p44 MAPK and then activated the IKK/NF-kappaB cascade. The activated-NF-kappaB translocated into nucleus which bound to kappaB-binding site of MMP-9 promoter, and thereby turned on transcription of MMP-9. Eventually, upregulation of MMP-9 by LTA enhanced cell migration of astrocytes. Taken together, these results suggested that in RBA-1 cells, activation of NF-kappaB by a c-Src-dependent PI3K/Akt-p42/p44 MAPK activation mediated through transactivation of PDGFR is essential for MMP-9 gene upregulation induced by LTA. Understanding the regulation of MMP-9 expression and functional changes by LTA/TLR system on astrocytes may provide potential therapeutic targets of Gram-positive bacterial infection in brain disorders.