RGD Reference Report - Mutation of active site residues of insulin-degrading enzyme alters allosteric interactions. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Mutation of active site residues of insulin-degrading enzyme alters allosteric interactions.

Authors: Song, ES  Daily, A  Fried, MG  Juliano, MA  Juliano, L  Hersh, LB 
Citation: Song ES, etal., J Biol Chem. 2005 May 6;280(18):17701-6. Epub 2005 Mar 3.
RGD ID: 1626704
Pubmed: PMID:15749695   (View Abstract at PubMed)
DOI: DOI:10.1074/jbc.M501896200   (Journal Full-text)

The active site glutamate (Glu(111)) and the active site histidine (His(112)) of insulin-degrading enzyme (IDE) were mutated. These mutant enzymes exhibit, in addition to a large decrease in catalytic activity, a change in the substrate-velocity response from a sigmoidal one seen with the native enzyme (Hill coefficient > 2), to a hyperbolic response. With 2-aminobenzoyl-GGFLRKHGQ-N-(2,4-dinitrophenyl)ethylenediamine as substrate, ATP and triphosphate increase the reaction rate of the wild type enzyme some 50-80-fold. This effect is dampened with glutamate mutants to no effect or less than a 3-fold increase in activity and changed to inhibition with the histidine mutants. Sedimentation equilibrium shows the IDE mutants exhibit a similar oligomeric distribution as the wild type enzyme, being predominantly monomeric, with triphosphate having little if any effect on the oligomeric state. Triphosphate did induce aggregation of many of the IDE mutants. Thus, the oligomeric state of IDE does not correlate with kinetic properties. The His(112) mutants were shown to bind zinc, but with a lower affinity than the wild type enzyme. The glutamate mutants displayed an altered cleavage profile for the peptide beta-endorphin. Wild type IDE cleaved beta-endorphin at Leu(17)-Phe(18) and Phe(18)-Lys(19), whereas the glutamate mutants cleaved at these sites, but in addition at Lys(19)-Asn(20) and at Met(5)-Thr(6). Thus, active site mutations of IDE are suggested to not only reduce catalytic activity but also cause local conformational changes that affect the allosteric properties of the enzyme.



Gene Ontology Annotations    Click to see Annotation Detail View

Biological Process

  
Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
IdeRatamyloid-beta metabolic process  IMP catabolismRGD 
IdeRatproteolysis involved in protein catabolic process  IMP degradation of insulin and beta-endorphin and amyloid-beta peptideRGD 

Molecular Function

  
Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
IdeRatATP binding  IMP  RGD 
IdeRatbeta-endorphin binding  IMP  RGD 
IdeRatinsulin binding  IMP  RGD 
IdeRatmetalloendopeptidase activity  IMP  RGD 
IdeRatzinc ion binding  IMP  RGD 

Objects Annotated

Genes (Rattus norvegicus)
Ide  (insulin degrading enzyme)


Additional Information