RGD Reference Report - Unexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Unexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors.

Authors: Wang, SJ  Wang, KY  Wang, WC  Sihra, TS 
Citation: Wang SJ, etal., J Neurosci Res. 2006 Nov 15;84(7):1528-42.
RGD ID: 1624386
Pubmed: PMID:17016851   (View Abstract at PubMed)
DOI: DOI:10.1002/jnr.21060   (Journal Full-text)

Presynaptic 5-HT(2A) receptor modulation of glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated by using the 5-HT(2A/2C) receptor agonist (+/-)-1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI). DOI potently inhibited 4-aminopyridine (4AP)-evoked glutamate release. Involvement of presynaptic 5-HT(2A) receptors in this modulation of 4AP-evoked release was confirmed by blockade of the DOI-mediated inhibition by the 5-HT(2A) receptor antagonist ketanserin but not by the 5-HT(2C) receptor antagonist RS102221. Inhibition of glutamate release by DOI was associated with a reduction of 4AP-evoked depolarization and downstream elevation of cytoplasmic free calcium concentration ([Ca(2+)](C)) mediated via P/Q- and N-type voltage-dependent Ca(2+) channels (VDCCs). In contrast to the DOI effect on 4AP-evoked release, the agonist had no effect on high external [K(+)] (30 mM)-induced (KCl) stimulation of VDCCs or glutamate release. Likewise, release mediated by direct Ca(2+) entry with Ca(2+) ionophore (ionomycin) or by hypertonic sucrose was unaffected by DOI. Mechanistically, DOI modulation of 4AP-evoked glutamate release appeared to involve a phospholipase C/protein kinase C signaling cascade, insofar as pretreatment of synaptosomes with the phospholipase C inhibitor U73122 or protein kinase C inhibitors Ro320432 or GF109203X all effectively occluded the inhibitory effect of the agonist. Together, these results suggest that presynaptic 5-HT(2A) receptors present on glutamatergic terminals effect an unexpected depression of glutamate release by negatively modulating nerve terminal excitability and downstream VDCC activation through a signaling cascade involving phospholipase C/protein kinase C. These observations invoke presynaptic inhibitory 5-HT(2A) receptor function as a potential target for drugs to mitigate the effects of excessive glutamatergic transmission.



Gene Ontology Annotations    Click to see Annotation Detail View

Biological Process

  
Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
Htr2aRatnegative regulation of synaptic transmission, glutamatergic  IMP  RGD 

Objects Annotated

Genes (Rattus norvegicus)
Htr2a  (5-hydroxytryptamine receptor 2A)


Additional Information