Moderate ethanol consumption demonstrates a protective effect against cardiovascular disease and improves insulin sensitivity, possibly through angiogenesis. We investigated whether 1) ethanol would increase skeletal muscle growth factor gene expression and 2) the effects of ethanol on skeletal muscle growth factor gene expression were independent of exercise-induced growth factor gene expression. Female Wistar rats were used. Four groups (saline + rest; saline + exercise; 17 mmol/kg ethanol + rest; and 17 mmol/kg ethanol + exercise) were used to measure the growth factor response to acute exercise and ethanol administration. Vascular endothelial growth factor (VEGF), transforming growth factor-beta(1) (TGF-beta(1)), basic fibroblast growth factor (bFGF), Flt-1, and Flk-1 mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Ethanol increased VEGF, TGF-beta(1), bFGF, and Flt-1 mRNA at rest and after acute exercise. Ethanol increased resting Flk-1 mRNA. Ethanol increased bFGF mRNA independently of exercise. These findings suggest that 1) ethanol can increase skeletal muscle angiogenic growth factor gene expression and 2) the mechanisms responsible for the ethanol-induced increases in VEGF, TGF-beta(1), and Flt-1 mRNA appear to be different from those responsible for exercise-induced regulation. Therefore, these results provide evidence in adult rat tissue that the protective cardiovascular effects of moderate ethanol consumption may result in part through the increase of angiogenic growth factors.