RGD Reference Report - GapIII, a new brain-enriched member of the GTPase-activating protein family. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

GapIII, a new brain-enriched member of the GTPase-activating protein family.

Authors: Baba, H  Fuss, B  Urano, J  Poullet, P  Watson, JB  Tamanoi, F  Macklin, WB 
Citation: Baba H, etal., J Neurosci Res. 1995 Aug 15;41(6):846-58.
RGD ID: 10047323
Pubmed: PMID:7500386   (View Abstract at PubMed)
DOI: DOI:10.1002/jnr.490410615   (Journal Full-text)

Ras GTPase-activating proteins (GAPs) are negative regulators of ras, which controls proliferation and differentiation in many cells. Ras GAPs have been found in a variety of species from yeast to mammals. We describe here a newly identified mammalian GAP, GapIII, which was obtained by differential screening of a rat oligodendrocyte cDNA library. GapIII putatively encodes a 834 amino acid protein with a predicted molecular weight of 96 kDa, which contains a consensus GAP-related domain (GRD). The protein encoded by this cDNA has high homology with Gap1m, which was recently identified as a putative mammalian homolog of Drosophila Gap1. These proteins contain three structural domains, an N-terminal calcium-dependent phospholipid binding domain, GRD, and a C-terminal PH/Btk domain. Because of the sequence homology and the structural similarities of this protein with Gap1m, we hypothesize that GapIII and Gap1m may be members of a mammalian GAP gene family, separate from p120GAP, neurofibromin (NF1), and IQGAP. To confirm the GapIII protein activity, constructs containing different GapIII-GRD domains were transformed into iral mutant yeast to determine their relative ability to replace IRA1 functionally. Constructs that contained essentially the full-length protein (all three domains), the GRD alone, or the GRD plus PH/Btk domain suppressed heat shock sensitivity of ira1, whereas constructs that contained the GRD with part of the PH/Btk domain had only a weak ability to suppress heat shock sensitivity. These results suggest that the GapIII GRD itself is sufficient to down-regulate ras proteins in yeast. Expression of GapIII mRNA (4.2 kb) was examined by Northern analysis and in situ hybridization. This mRNA was expressed at highest levels in the brain, where its expression increased with development. Lower levels of the mRNA were expressed in the spleen and lung. Among neural cells, GapIII mRNA was expressed in neurons and oligodendrocytes, but not in astrocytes. Interestingly, the expression pattern in brain is reminiscent of type 1 NF1 expression reported by Gutmann et al. (Cell Growth Differ in press, 1995). We propose that in addition to p120GAP and neurofibromin, the GapIII/Gap1m family may be important for modulating ras activity in neurons and oligodendrocytes during normal brain development and in particular in the adult brain.



Gene Ontology Annotations    Click to see Annotation Detail View

Biological Process

  
Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
Rasa3Ratcellular response to heat acts_upstream_of_or_withinIDA PMID:7500386MGI 

Objects Annotated

Genes (Rattus norvegicus)
Rasa3  (RAS p21 protein activator 3)


Additional Information