ZFPM2, encoding a zinc finger protein and abundantly expressed in the brain, uterus and smooth muscles, plays important roles in cardiac and gonadal development. Abnormal expression of ZFPM2 in ovarian tumors and neuroblasto
ma has been reported but hitherto its genetic association with cancer and effects on gliomas have not been studied. In the present study, the hexamer insertion-deletion polymorphism rs71305152, located within a large haplotype block spanning intron 1 to intron 3 of ZFPM2, was genotyped in Chinese cohorts of glioma (n = 350), non-glioma cancer (n = 354) and healthy control (n = 463) by direct sequencing and length polymorphism in gel electrophoresis, and ZFPM2 expression in glioma tissues (n = 69) of different grades was quantified by real-time RT-PCR. Moreover, potential natural selection pressure acting on the gene was investigated. Disease-association analysis showed that the overall genotype of rs71305152 was significantly associated with gliomas (P = 0.016), and the heterozygous genotype compared to the combined homozygous genotypes was less frequent in gliomas than in controls (P = 0.005) or non-glioma cancers (P = 0.020). ZFPM2 mRNA expression was negatively correlated with the grades of gliomas (P = 0.002), with higher expression levels in the low-grade gliomas. In the astrocytoma subtype, higher ZFPM2 expression was also correlated with the rs71305152 heterozygous genotype (P = 0.028). In addition, summary statistics tests gave highly positive values, demonstrating that the gene is under the influence of balancing selection. These findings suggest that ZFPM2 is a glioma susceptibility gene, its genotype and expression showing associations with incidence and severity, respectively. Moreover, the balancing selection acting on ZFPM2 may be related to the important roles it has to play in multiple organ development or associated disease etiology.
Pizzuti A, etal., Hum Mutat. 2003 Nov;22(5):372-7.
Two out of 47 patients with sporadic tetralogy of Fallot (TOF), the most common cyanotic conotruncal heart defect (CTD), showed heterozygous missense mutations of the ZFPM2/FOG2 gene. Knockout mice carrying mutations in the ZFPM2
span>/FOG2 gene have similarly been found to exhibit TOF. While both mutant ZFPM2/FOG2 proteins, E30G (c.88A>G) and S657G (c.1968A>G), retain the ability to bind the partner protein GATA4 and repress GATA4 mediated gene activation, the S657G, but not the E30G, mutation is subtly impaired in this function. ZFPM2/FOG2 gene mutations may contribute to some sporadic cases of TOF.
BACKGROUND: ZFPM2 gene plays an important role in heart morphogenesis and development of coronary vessels from epicardium, however, little is known regarding its epigenetic regulation in the pathogenesis of tetralogy of fallot (TOF). METHODS:
b>The methylation levels of ZFPM2 gene were measured by MassArray (Sequenom, San Diego, CA) and bisulfite sequencing polymerase chain reaction (PCR) (BSP). Real-time PCR was performed to analyze the mRNA levels for ZFPM2 gene in the myocardium of TOF. RESULTS: The methylation levels in the CpG island shore of ZFPM2 promoter were significantly higher in patients with TOF, with a median of 80.32% (interquartile range (IQR): 73.54-85.75%, N = 42), as compared to 59.63% in controls (IQR: 44.79-73.83%; P = 0.0186, N = 6). No significant difference was observed in the methylation status at the CpG island of ZFPM2 promoter. The ZFPM2 mRNA levels were significantly lower in patients with TOF compared to that in the controls (P < 0.05). The aberrant methylation values of ZFPM2 were negatively associated with significant changes in its mRNA level (r = -0.40, P = 0.008, N = 42). CONCLUSION: Aberrant methylation status at the promoter CpG island shore of ZFPM2 gene may be associated with its gene transcription regulation in the TOF patients.
Bashamboo A, etal., Hum Mol Genet. 2014 Jul 15;23(14):3657-65. doi: 10.1093/hmg/ddu074. Epub 2014 Feb 18.
In recent years, considerable advances have been made in our understanding of genetics of mammalian gonad development; however, the underlying genetic aetiology in the majority of patients with 46,XY disorders of sex development (DSD) still remains unknown. Based on mouse models, it has been hypothe
sized that haploinsufficiency of the Friend of GATA 2 (FOG2) gene could lead to 46,XY gonadal dysgenesis on specific inbred genetic backgrounds. Using whole exome sequencing, we identified independent missense mutations in FOG2 in two patients with 46,XY gonadal dysgenesis. One patient carried a non-synonymous heterozygous mutation (p.S402R), while the other patient carried a heterozygous p.R260Q mutation and a homozygous p.M544I mutation. Functional studies indicated that the failure of testis development in these cases could be explained by the impaired ability of the mutant FOG2 proteins to interact with a known regulator of early testis development, GATA4. This is the first example of mutations in the coding sequence of FOG2 associated with 46,XY DSD in human and adds to the list of genes in the human known to be associated with DSD.
BACKGROUND: UK Biobank is the world's largest repository for phenotypic and genotypic information for individuals of European ancestry. Here, we leverage UK Biobank to understand the inherited basis for venous thromboembolism (VTE), a leading cause of cardiovascular mortality. METHO
DS AND RESULTS: We identified 3290 VTE cases and 116 868 controls through billing code-based phenotyping. We performed a genome-wide association study for VTE with ≈9 000 000 imputed single-nucleotide polymorphisms. We performed a phenome-wide association study for a genetic risk score of 10 VTE-associated variants. To assess whether obesity is a causal factor for VTE, we performed Mendelian randomization analysis using a genetic risk score instrument composed of 68 body mass index-associated variants. The genome-wide association study for VTE replicated previous findings at the F5, F2, ABO, F11, and FGG loci. We identified 1 new locus-ZFPM2 rs4602861-at genome-wide significance (odds ratio, 1.11; 95% confidence interval, 1.07-1.15; P=4.9×10-10) and a new independent variant at the F2 locus (rs3136516; odds ratio, 1.10; 95% confidence interval, 1.06-1.13; P=7.60×10-9). In a phenome-wide association study, a 10 single-nucleotide polymorphism VTE genetic risk score was associated with coronary artery disease (odds ratio, 1.08; 95% confidence interval, 1.05-1.10 per unit increase in VTE odds; P=1.08×10-9). In a Mendelian randomization analysis, genetically elevated body mass index (a 1 SD increase) was associated with 57% higher risk of VTE (odds ratio, 1.57; 95% confidence interval, 1.08-1.97; P=0.003). CONCLUSIONS: For common diseases such as VTE, biobanks provide potential to perform genetic discovery, explore the phenotypic consequences for disease-associated variants, and test causal inference.