| 598119765 | XYLT1 mutations in Desbuquois dysplasia type 2. | Bui C, etal., Am J Hum Genet. 2014 Mar 6;94(3):405-14. doi: 10.1016/j.ajhg.2014.01.020. Epub 2014 Feb 27. | Desbuquois dysplasia (DBQD) is a severe condition characterized by short stature, joint laxity, and advanced carpal ossification. Based on the presence of additional hand anomalies, we have previously distinguished DBQD type 1 and identified CANT1 (calcium activated nucleotidase 1) mutations as resp onsible for DBQD type 1. We report here the identification of five distinct homozygous xylosyltransferase 1 (XYLT1) mutations in seven DBQD type 2 subjects from six consanguineous families. Among the five mutations, four were expected to result in loss of function and a drastic reduction of XYLT1 cDNA level was demonstrated in two cultured individual fibroblasts. Because xylosyltransferase 1 (XT-I) catalyzes the very first step in proteoglycan (PG) biosynthesis, we further demonstrated in the two individual fibroblasts a significant reduction of cellular PG content. Our findings of XYLT1 mutations in DBQD type 2 further support a common physiological basis involving PG synthesis in the multiple dislocation group of disorders. This observation sheds light on the key role of the XT-I during the ossification process. | 24581741 | 2014-03-06 |
| 11556528 | Complete and partial XYLT1 deletion in a patient with neonatal short limb skeletal dysplasia. | van Koningsbruggen S, etal., Am J Med Genet A. 2016 Feb;170A(2):510-4. doi: 10.1002/ajmg.a.37453. Epub 2015 Nov 24. | We report on a boy with a neonatal short limb skeletal dysplasia with serious medical complications, associated with one intragenic and one complete deletion of XYLT1. XYLT1 mutations have recently been reported as causative in recessive Desbuquois skeletal dysplasia (DBSD), but the skeletal features in our patient do not fit this diagnosis. It is possible that the phenotype of XYLT1 mutations extends to more aspecific types of short limb skeletal dysplasias and not to DBSD alone. | 26601923 | 2016-11-01 |
| 598116151 | Exome sequencing reveals two novel compound heterozygous XYLT1 mutations in a Polish patient with Desbuquois dysplasia type 2 and growth hormone deficiency. | Jamsheer A, etal., J Hum Genet. 2016 Jul;61(7):577-83. doi: 10.1038/jhg.2016.30. Epub 2016 Mar 31. | Desbuquois dysplasia type 2 (DBQD2) is a rare recessively inherited skeletal genetic disorder characterized by severe prenatal and postnatal growth retardation, generalized joint laxity with dislocation of large joints and facial dysmorphism. The condition was recently described to result from autos omal recessive mutations in XYLT1, encoding the enzyme xylosyltransferase-1. In this paper, we report on a Polish patient with DBQD2 who presented with severe short stature of prenatal onset, joint laxity, psychomotor retardation and multiple radiological abnormalities including short metacarpals, advanced bone age and exaggerated trochanters. Endocrinological examinations revealed that sleep-induced growth hormone (GH) release and GH peak in clonidine- and glucagon-induced provocative tests as well as insulin-like growth factor 1 (IGF-1) and IGF-binding protein-3 levels were all markedly decreased, confirming deficiency of GH secretion. Bone age, unlikely to GH deficiency, was significantly advanced. To establish the diagnosis at a molecular level, we performed whole-exome sequencing and bioinformatic analysis in the index patient, which revealed compound heterozygous XYLT1 mutations: c.595C>T(p.Gln199*) and c.1651C>T(p.Arg551Cys), both of which are novel. Sanger sequencing showed that the former mutation was inherited from the healthy mother, whereas the latter one most probably occurred de novo. Our study describes the first case of DBQD2 resulting from compound heterozygous XYLT1 mutation, expands the mutational spectrum of the disease and provides evidence that the severe growth retardation and microsomia observed in DBQD2 patients may result not only from the skeletal dysplasia itself but also from GH and IGF-1 deficiency. | 27030147 | 2016-07-01 |