5-Lipoxygenase inhibitor zileuton has been demonstrated to attenuate ischemic brain damage in rats of permanent focal cerebral ischemia in previous work. To further investigate the mechanism underlying zileuton's neuroprotection, adult male Sprague-Dawley rats underwent permanent middle cerebral art
ery occlusion (MCAO), then received treatment with zileuton or vehicle after the onset of ischemia. Neurological deficit, cerebral infarction, and morphological characteristic were measured 6 and 24 h after MCAO. The enzymatic activity of myeloperoxidase (MPO) was assessed 6 and 24 h after MCAO and the lipid peroxidation levels were evaluated by malondialdehyde assay. Expression of nuclear factor-kappa B (NF-kappaB) p65 in rat brain was detected by immunohistochemistry and Western blot. Expression of inducible nitric oxide synthase (iNOS) in rat brain was determined by RT-PCR and Western blot. Nitric oxide production in rat brain was also measured 24 h after MCAO. The concentration of TNF-alpha and IL-1beta in serum were detected by ELISA. Zileuton significantly reduced neurological deficit scores, cerebral infarct volume, MPO activity, and the lipid peroxidation levels. It also inhibited the expression of NF-kappaB and decreased the expression and activity of iNOS in rat brain. In addition, zileuton attenuated the release of TNF-alpha and IL-1beta in serum. Our results suggest that zileuton reduces inflammatory reaction and brain damage in a rat model of permanent focal cerebral ischemia. The neuroprotective effect of zileuton in cerebral ischemia might be associated with the inhibition of inflammatory reaction.
Russo D, etal., J Biol Chem 1998 May 29;273(22):13950-6.
A disulfide bond links Kell and XK red cell membrane proteins. Kell, a type II membrane glycoprotein, carries over 20 blood group antigens, and XK, which spans the membrane 10 times, is lacking in rare individuals with the M
cLeod syndrome. Kell is classified in the neprilysin family of zinc endopeptidases, and XK has structural features that suggest it is a transport protein. Kell has 15 extracellular cysteines, and XK has one in its fifth extracellular loop. Five of the extracellular cysteine residues in Kell are not conserved in the other members of the neprilysin family, and based on the hypothesis that one of the nonconserved cysteines is linked to XK, cysteines 72 and 319 were mutated to serine. The single extracellular cysteine 347 of XK was also mutated. Co-expression of combinations of wild-type and mutant proteins in transfected COS-1 cells showed that Kell C72S did not form a Kell-XK complex with wild-type XK, while wild-type Kell and Kell C319S did. XK C347S was also unable to form a complex with wild-type Kell, indicating that Kell cysteine 72 is linked to XK cysteine 347. Kell C72S was transported to the cell surface, indicating that linkage to XK is not required. In addition, chemical cross-linking of red cell membranes with dithiobispropionimidate indicated that glyceraldehyde-3-phosphate dehydrogenase is a near neighbor of Kell.
Hepatitis B virus (HBV) DNA polymerase transactivated protein 1 (HBVDNAPTP1) is a novel protein upregulated by HBV DNA polymerase, which has been screened by suppression subtractive hybridization technique (SSH) (GenBank Acc. No. AY450389). A vector pcDNA3.1 (-)/myc-His A-HBVDNAPTP1 was constructed
and used to transfect acute monocytic leukemia cell line THP-1. HBVDNAPTP1 expression was detected by Western blot analysis in the cells. A cDNA library of genes downregulated by HBVDNAPTP1 in THP-1 cells was made in pGEM-T Easy using SSH. The cDNAs were sequenced and analyzed with BLAST search against the sequences in GenBank. Some sequences, such as DNA repair protein SWI5 homolog (SWI5) and CTS telomere maintenance complex component 1 (CTC1), might be involved in DNA repair. Protein expression of SWI5 and CTC1 was identified by Western blot in THP-1 cells. HBVDNAPTP1 could downregulate the expression of SWI5 and CTC1 at translation level.
Wee XK, etal., Br J Pharmacol. 2010 Jan 1;159(2):449-61. Epub 2010 Jan 15.
BACKGROUND AND PURPOSE: N-methyl-D-aspartate (NMDA) receptors represent an attractive drug target for the treatment of neurological and neurodegenerative disorders associated with glutamate-induced excitotoxicity. The aim of this study was to map the binding domain of high affinity 5-substituted ben
zimidazole derivatives [N-{2-[(4-benzylpiperidin-1-yl)methyl]benzimidazol-5-yl}methanesulphonamid e (XK1) and N-[2-(4-phenoxybenzyl)benzimidazol-5-yl]methanesulphonamide (XK2)] on the GluN2B subunit of the NMDA receptor. Experimental APPROACH: The pharmacological antagonistic profiles of XK1 and XK2 were assessed using in vitro rat primary cerebrocortical neurones and two-electrode voltage clamp on Xenopus oocytes expressing heterologous GluN1/GluN2B receptors. Direct ligand binding was determined using the recombinant amino-terminal domain (ATD) of GluN2B. KEY RESULTS: XK1 and XK2 effectively protected against NMDA-induced excitotoxicity in rat primary cortical neurones. Low concentrations of XK1 (10 nM) and XK2 (1 nM) significantly reversed neuronal death. Both compounds failed to inhibit currents measured from oocytes heterologously expressing GluN1-1a subunit co-assembled with the ATD-deleted GluN2B subunit. XK1 and XK2 showed specific binding to recombinant protein of GluN2B ATD with low nanomolar affinities. Several residues in the recombinant ATD of GluN2B were identified to be critical for conferring XK1 and XK2 sensitivity. The inhibitory effects of XK1 and XK2 were pH-sensitive, being increased at acidic pH. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that XK1 and XK2 are effective neuroprotective agents in vitro and indicate that 5-substituted benzimidazole derivatives inhibit GluN1/GluN2B receptors via direct binding to the ATD of the GluN2B subunit. These compounds represent valuable alternatives to the classical antagonist ifenprodil as pharmacological tools for studying GluN2B-containing NMDA receptors.
BACKGROUND: Acquisition of resistance to "anoikis" facilitates the survival of cells under independent matrix-deficient conditions, such as cells in tumor progression and the production of suspension culture cells for biomedical engineering. There is evidence suggesting that CD147, an adhesion molec
ule associated with survival of cells in tumor metastasis and cell-cell contacts, plays an important role in resistance to anoikis. However, information regarding the functions of CD147 in mediating cell-cell contacts and anoikis-resistance remains limited and even self-contradictory. RESULTS: An anoikis-resistant clone (HEK293ar), derived from anoikis-sensitive parental Human Embryonic Kidney 293 cells, survived anoikis by the formation of cell-cell contacts. The expression of HAb18G/CD147 (a member of the CD147 family) was upregulated and the protein was located at cell-cell junctions. Upregulation of HAb18G/CD147 in suspended HEK293ar cells suppressed anoikis by mediating the formation of cell-cell adhesions. Anoikis resistance in HEK293ar cells also required E-cadherin-mediated cell-cell contacts. Knock-down of HAb18G/CD147 and E-cadherin inhibited cell-cell contacts formation and increased anoikis sensitivity respectively. When HAb18G/CD147 was downregulated, E-cadherin expression in HEK293ar cells was significantly suppressed; however, knockdown of E-cadherin by E-cadherin siRNA or blocking of E-cadherin binding activity with a specific antibody and EDTA had no significant effect on HAb18G/CD147 expression. Finally, pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K/AKT) inhibitor, disrupted cell-cell contacts and decreased cell number, but this was not the case in cells treated with the extracellular signal-regulated kinase (ERK) inhibitor PD98059. CONCLUSIONS: Our results provide new evidence that HAb18G/CD147-mediated cell-cell contact confers anoikis resistance in an E-cadherin-dependent manner; and cell-cell contact mediated resistance to anoikis implicates PI3K pathway in a highly relevant cell model (HEK293ar). Understanding of the role of HAb18G/CD147 cell-cell contacts in anoikis resistance may help in understanding the survival of cells in anchorage-independent growth, such as cells in tumor metastasis and suspension culture produced for biomedical engineering. Our results also contribute to a better understanding of the biology of HEK293 cell spheroids, a major workhorse for producing human therapeutic agents and viral vaccines.
Tu XK, etal., Inflammation. 2011 Oct;34(5):463-70. doi: 10.1007/s10753-010-9254-8.
Recent work from our laboratory demonstrated that baicalin attenuates inflammatory reaction and cerebral ischemia injury in rats. Toll-like receptor 2 and 4 (TLR2/4) and the downstream nuclear factor-kappa B (NF-κB) signaling pathway, which mediate the inflammatory reaction, are involved in th
e pathophysiological processes of cerebral ischemia. In this study, we investigated whether baicalin inhibits TLR2/4 signaling pathway in a rat model of permanent focal cerebral ischemia. Adult Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (MCAO). Baicalin was administered by intraperitoneally injected twice at 2 and 12 h after the onset of ischemia. Cerebral infarct area and infarct volume were measured 24 h after MCAO. Expression of TLR2/4, NF-κB, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were determined by RT-PCR or western blot. NO and PGE2 production in rat brain were measured 24 h after MCAO. Serum content of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were detected by ELISA. Baicalin reduced cerebral infarct area and infarct volume. Baicalin reduced the expression of TLR2/4 and NF-κB, decreased the expression and activity of iNOS and COX-2 in rat brain. Baicalin also attenuated the serum content of TNF-α and IL-1β. Our results suggest that baicalin inhibits the TLR2/4 signaling pathway in cerebral ischemia, which may be a mechanism underlying the baicalin's neuroprotection.
Zhang XK, etal., Int J Clin Exp Pathol. 2015 May 1;8(5):5035-43. eCollection 2015.
BACKGROUND: BRCA1-associated protein-1 (BAP1) has been investigated the prognostic value for some carcinomas, including mammary carcinoma, pulmonary carcinoma and mesothelioma and so on. However, the status of BAP1 expression and the relationship of that with overall survival were not still estimat
ed in patients with gliomas. Therefore, it was necessary to investigate the effect of BAP1 expression for the survival of patients with gliomas in this study. PATIENTS AND METHODS: Clinicopathological information of 229 patients with gliomas was used to perform the further analysis. We defined the nucleus expression of BAP1 score of median 0 and cytoplasmic expression of BAP1 score of median 100 as the rational cutoff value for survival analysis, respectively. These patients were categorized into the low cytoplasmic expression of BAP1 and the high expression of BAP1 group, presence of nucleus expression and absence of nucleus expression according to the corresponding cutoff point, respectively. The associations of clinicopathological characteristics with overall survival (OS) were investigated by univariate analysis in patients with gliomas. Multivariate analysis was further performed to find the independent prognostic indicator of OS by Cox regression model. RESULTS: Thirty-nine of 229 patients (17.0%) with gliomas had the nucleus expression of BAP1, 213 of 229 patients (93.0%) had the cytoplasmic expression of BAP1, and 28 patients (12.2%) with both cytoplasmic and nucleus expression, 5 cases (2.2%) without neither cytoplasmic nor nucleus expression. Univariate analysis demonstrated that high cytoplasmic expression of BAP1, tumor location, tumor relapse, advanced clinical stage were significant linkage with worse OS (P<0.05). Multivariate analysis revealed that high cytoplasmic expression of BAP1 was a significantly independent biomarker for adverse OS (hazard ratio: 1.516, 95% CI: 1.029-2.234, P=0.035). In stratified analysis, we found that the patients with high cytoplasmic expression of BAP1 had the shorter overall survival than these with low cytoplasmic expression of BAP1 in the 190 patients without nucleus expression of BAP1 (P=0.001). ROC curve analysis showed that cytoplasmic expression of BAP1 was superior to nucleus expression of BAP1 as a predictive factor in patients with gliomas (AUC=0.583, P=0.030 vs. AUC=0.516, P=0.679). CONCLUSIONS: This study suggested that cytoplasmic expression of BAP1 might be served as a valuable predictive biomarker of the prognosis in gliomas. High cytoplasmic expression of BAP1 might be benefit to identify patients who need to carry out further therapy.
Tu XK, etal., Inflammation. 2014 Oct;37(5):1544-51. doi: 10.1007/s10753-014-9881-6.
Toll-like receptors 2 and 4 (TLR2/4) and the downstream nuclear factor-kappa B (NF-κB) signaling pathway, which mediate the inflammatory reaction in cerebral ischemia, were demonstrated to be involved in the extension of cerebral infarction and the aggravation of ischemic brain damage. Reports
showed that curcumin provides neuroprotection against ischemic brain damage. In this study, we investigated whether curcumin inhibits the activation of TLR2/4-NF-κB signaling pathway in rats of permanent focal cerebral ischemia. Adult male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (pMCAO). Curcumin was administered by intraperitoneal injection twice at 2 and 12 h after the onset of ischemia. Neurological deficit scores, cerebral infarct size, morphological characteristic, and cerebral water content were measured after 24 h of pMCAO. The enzymatic activity of myeloperoxidase (MPO) was assessed after 24 h of pMCAO. Expression of TLR2 and TLR4 in ischemic brain was determined by western blot. Expression of NF-κB p65 in ischemic brain was detected by immunohistochemistry and western blot. The release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in blood was examined by ELISA. Curcumin significantly reduced neurological deficit scores, cerebral infarct size, neuronal damage, cerebral water content, and MPO activity. It also inhibited the expression of TLR2/4 and decreased the expression and activity of NF-κB p65 in rat brain. In addition, curcumin attenuated the release of TNF-α and IL-1β in blood. Our results suggest that curcumin reduces inflammatory reaction and brain damage in a rat model of permanent focal cerebral ischemia. The neuroprotective effect and anti-inflammatory property of curcumin in cerebral ischemia might be associated with the inhibition of TLR2/4-NF-κB signaling pathway.
Qu XK, etal., Mol Med Rep. 2015 Sep;12(3):3718-24. doi: 10.3892/mmr.2015.3843. Epub 2015 May 25.
Dilated cardiomyopathy (DCM) is the most common form of primary myocardial disease. It is the most common cause of chronic congestive heart failure and the most frequent reason for heart transplantation in young adults. There is increasing evidence demonstrating that genetic defects are involved in
the pathogenesis of idiopathic DCM. Recent studies have shown that genetically defective LRRC10 predisposes animals to DCM. However, the association of LRRC10 with DCM in humans has not been reported. In the current study, the whole coding region and flanking splice junction sites of the LRRC10 gene were sequenced in 220 unrelated patients with idiopathic DCM. The available relatives of the index patients harboring identified mutations and 200 unrelated ethnically matched healthy individuals used as controls were also genotyped for LRRC10. The functional effect of the LRRC10 mutations was analyzed in silico. As a result, two novel heterozygous LRRC10 mutations, p.L41V and p.L163I, were identified in two families with DCM, respectively, with a mutational prevalence of ~0.91%. Genetic analyses of the pedigrees showed that in each family, the mutation co-segregated with DCM was transmitted as an autosomal dominant trait with complete penetrance. The missense mutations were absent in 400 control chromosomes and the altered amino acids were completely conserved evolutionarily across various species. Functional analysis in silico indicated that the LRRC10 mutations were causative. This study firstly reports the association of LRRC10 mutations with enhanced susceptibility to DCM in humans, which provides novel insight into the molecular mechanism underpinning DCM, and contributes to the development of novel prophylactic and therapeutic strategies for DCM.
Qu XK, etal., Am J Cardiol. 2014 Dec 15;114(12):1891-5. doi: 10.1016/j.amjcard.2014.09.028. Epub 2014 Sep 28.
Bicuspid aortic valve (BAV) is the most common form of congenital cardiovascular defect in humans and is associated with substantial morbidity and mortality. Emerging evidence demonstrates that genetic risk factors play an important role in the pathogenesis of BAV. However, BAV is a genetically hete
rogenous disorder, and the genetic defects underpinning BAV in most patients remain to be identified. In the present study, the coding exons and flanking introns of the NKX2.5 gene, which encodes a homeodomain-containing transcription factor essential for the normal development of the aortic valve, were sequenced in 142 unrelated patients with BAV. The available relatives of the mutation carrier and 200 unrelated healthy subjects used as controls were also genotyped for NKX2.5. The functional characteristics of the mutation were delineated by using a dual-luciferase reporter assay system. As a result, a novel heterozygous NKX2.5 mutation, p.K192X, was identified in a family with BAV transmitted in an autosomal dominant pattern. The nonsense mutation was absent in 400 control chromosomes. Functional analyses revealed that the mutant NKX2.5 had no transcriptional activity compared with its wild-type counterpart. Furthermore, the mutation abolished the synergistic transcriptional activation between NKX2.5 and GATA5, another transcription factor crucial for the aortic valvular morphogenesis. In conclusion, this study is the first to link an NKX2.5 loss-of-function mutation to enhanced susceptibility to human BAV, providing novel insight into the molecular mechanism of BAV and suggesting potential implications for genetic counseling and clinical care of families presenting with BAV.
Huo XK, etal., Phytomedicine. 2018 Mar 15;42:34-42. doi: 10.1016/j.phymed.2018.03.017. Epub 2018 Mar 8.
BACKGROUND: Cholestasis is a clinical syndrome of liver damage that is caused by accumulation of bile acids in the liver and systemic circulation. Farnesoid X receptor (FXR) can regulate synthesis, metabolism, and excretion of bile acids. The rhizomes of Alisma orientale is a well-known t
raditional Chinese medicine to treat edema, obesity, gonorrhea, leukorrhea, diarrhea, hyperlipidemia, and diabetes in China. HYPOTHESIS/PURPOSE: We hypothesized Alisma orientale extract (AOE) to exert hepatoprotective effect against α-naphthylisothiocyanate (ANIT) induced cholestasis in rat. We aimed to investigate the mechanism of AOE. STUDY DESIGN: Male Sprague Dawley rats with intrahepatic cholestasis induced by ANIT were treated with AOE (150, 300, or 600 mg/kg). Rats receiving vehicle (0.5% CMC-Na) served as control. METHODS: 48 h after ANIT administration, rats were sacrificed. Blood was collected to obtain serum and livers were removed for histopathology and protein preparation. Biochemical indicators in serum were determined using commercial kits and triterpenoids were determined by liquid chromatography tandem Qtrap mass spectrometry. Proteomics was analyzed by liquid chromatography tandem ion-trap mass spectrometry. The differently expressed proteins were analyzed via the network database and verified by western blotting. The interaction between triterpenoids and FXR were evaluated by luciferase assay and molecular docking. RESULTS: AOE treatment significantly decreased the serum AST, ALT, TBIL, and intrahepatic TBA and improved the liver pathologic change induced by ANIT. Proteomics analysis indicated that AOE regulated proteins related to bile acid homeostasis via activating farnesoid X receptor (FXR) signaling pathway. Luciferase assay and molecular docking results indicated that triterpenoids could activate FXR, which resulting in ameliorative accumulation of bile acids in the liver by increase of metabolism and transportation for bile acids, and decrease of synthesis for bile acids. CONCLUSION: AOE protected against rat liver injury and cholestasis induced by ANIT by activation of farnesoid X receptor, suggesting that A. orientale could be regarded as a potential hepatoprotective drug.
Guillain-Barré syndrome (GBS) is an immune-mediated inflammatory disease in the peripheral nervous system. Specific biomarkers for the two most common clinical subtypes of GBS, i.e., acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN) are still missing. Th
e distinctive pathological features of AIDP and AMAN may lead to release of such specific biomarkers including glial markers (calcium-binding astroglial protein, S100B) and axonal damage markers [axoskeletal protein, phosphorylated neurofilament heavy protein (pNFH); cytoskeletal protein, tau], etc. To explore the potentials of biochemical markers for differential diagnosis and evaluation of prognosis of clinical subtypes in GBS, we used ELISA to measure the levels of S100B, tau and pNFH in serum and cerebrospinal fluid (CSF) from the patients with AIDP, AMAN, viral encephalitis and other non-inflammatory neurological disorders (OND), respectively. The values of albumin quotient and IgG index in CSF are significantly higher in AIDP and AMAN than in OND. The levels of S100B, tau and pNFH in serum and CSF are elevated in the patients with AIDP and AMAN compared to OND. The concentrations of these proteins are all higher in CSF than in serum. Increased levels of S100B in CSF at the acute phase are positively correlated with the GBS disability scale scores (GDSs) in AIDP, whereas enhanced levels of tau and pNFH in CSF are positively correlated with the GDSs in AMAN. Increased CSF levels of S100B, tau and pNFH at the acute phase may predict a poor prognosis and evaluate the severity of AIDP or AMAN at plateau and the recovery phase. Elevated levels of pNFH in CSF may be used for differentiating between AMAN and AIDP.
Ji XK, etal., Acta Pharmacol Sin. 2015 Mar;36(3):334-42. doi: 10.1038/aps.2014.150. Epub 2015 Feb 9.
AIM: Glycogen synthase kinase 3beta (GSK-3beta) plays a crucial role in hepatic biology, including liver development, regeneration, proliferation and carcinogenesis. In this study we investigated the role of GSK-3beta in regulation of growth of hepatic oval cells in vitro and in liver regeneration i
n partially hepatectomized rats. METHODS: WB-F344 cells, the rat hepatic stem-like epithelial cells, were used as representative of oval cells. Cell viability was examined using a WST-8 assay. The cells were transfected with a recombinant lentivirus expressing siRNA against GSK-3beta (GSK-3betaRNAiLV) or a lentivirus that overexpressed GSK-3beta (GC-GSK-3betaLV). Adult rats underwent partial (70%) hepatectomy, and liver weight and femur length were measured at d 7 after the surgery. The expression of GSK-3beta, phospho-Ser9-GSK-3beta, beta-catenin and cyclin D1 was examined with immunoblotting assays or immunohistochemistry. RESULTS: Treatment of WB-F344 cells with the GSK-3beta inhibitor SB216763 (5 and 10 mumol/L) dose-dependently increased the levels of phospho-Ser9-GSK-3beta, but not the levels of total GSK-3beta, and promoted the cell proliferation. Knockout of GSK-3beta with GSK-3betaRNAiLV increased the cell proliferation, whereas overexpression of GSK-3beta with GC-GSK-3betaLV decreased the proliferation. Both SB216763 and GSK-3betaRNAiLV significantly increased the levels of beta-catenin and cyclin D1 in the cells, whereas GSK-3beta overexpression decreased their levels. In rats with a partial hepatectomy, administration of SB216763 (2 mg/kg, ip) significantly increased the number of oval cells, the levels of phospho-Ser9-GSK-3beta, beta-catenin and cyclin D1 in liver, as well as the ratio of liver weight to femur length at d 7 after the surgery. CONCLUSION: GSK-3beta suppresses the proliferation of hepatic oval cells by modulating the Wnt/beta-catenin signaling pathway.
The targeting protein for Xklp2 (TPX2) is a microtubule- and, cell cycle-associated protein who's overexpression has been reported in various malignancies. In this study, we verified the overexpression of TPX2 in both surgically resected specimens of pancreatic
cancer and multiple pancreatic cancer cell lines. Subsequently, we found that TPX2 siRNA effectively suppressed the proliferation of pancreatic cancer cells in culture, and the direct injection of TPX2 siRNA into subcutaneously implanted pancreatic cancer cells in nude mice revealed antiproliferative effects. These results implied a therapeutic potential of TPX2 siRNA in pancreatic cancer. Among 56 angiogenesis-related factors examined using angiogenesis arrays, the average protein levels of insulin-like growth factor-binding protein-3 (IGFBP-3) were significantly higher in TPX2 siRNA-treated tumors than in the Control siRNA-treated tumors. Moreover, we demonstrated that CD34-positive microvessels were significantly reduced in tumors treated with TPX2 siRNA compared to tumors that treated with Control siRNA. The attenuated expression of CD34 in TPX2 siRNA-treated tumors coincided with the overexpression of IGFBP-3. These results indicated that TPX2 has an impact on tumor angiogenesis in pancreatic cancer. The results also implied that the antiangiogenic effect observed in TPX2 siRNA-treated pancreatic cancer cells may be partly explained by the upregulation of IGFBP-3.