| 598119093 | Diversity of renal phenotypes in patients with WDR19 mutations: Two case reports. | Yoshikawa T, etal., Nephrology (Carlton). 2017 Jul;22(7):566-571. doi: 10.1111/nep.12996. | WDR19 has been reported as a causative gene of nephronophthisis-related ciliopathies. Patients with WDR19 mutations can show various extrarenal manifestations such as skeletal disorders, Caroli disease, and retinal dystrophy , and typically display nephronophthisis as a renal phenotype. However, there is limited information on the renal phenotypes of patients with WDR19 mutations. We report two Japanese infants with Sensenbrenner syndrome caused by WDR19 mutations who demonstrated different features in renal ultrasound and histopathological results, despite several common extrarenal manifestations. Patient 1 had normal sized and hyperechogenic kidneys with several small cysts and histopathological findings compatible with infantile nephronophthisis. Renal ultrasound of Patient 2 showed enlarged kidneys with diffuse microcysts resembling those of autosomal recessive polycystic kidney disease. Her renal histopathology revealed dysplastic kidney with diffuse glomerular cysts. Genetic testing identified compound heterozygous mutations in WDR19 in both patients (Patient 1: c.953delA, c.3533G > A, Patient 2: c.2645 + 1G > T, c.3533G > A). Our patients suggest that WDR19 mutations can cause dysplastic kidney in addition to nephronophthisis pathologically. In addition, differences in pathology of the kidneys from WDR19 mutations may result in heterogeneous features in renal ultrasound findings. Renal phenotypes from WDR19 mutations may thus be more diverse than previously reported. Extrarenal manifestations and genetic testing can therefore help to diagnosis this disease more precisely. | 28621010 | 2017-07-01 |
| 598120441 | A novel homozygous mutation in WDR19 induces disorganization of microtubules in sperm flagella and nonsyndromic asthenoteratospermia. | Ni X, etal., J Assist Reprod Genet. 2020 Jun;37(6):1431-1439. doi: 10.1007/s10815-020-01770-1. Epub 2020 Apr 23. | BACKGROUND: Asthenoteratospermia with multiple morphological abnormalities in the sperm flagella (MMAF) is a significant cause of male infertility. WDR19 is a core component in the IFT-A complex and has a critical role in intraflagellar transport. However, the role of WDR19 mutations in male infertility has yet to be examined. METHODS AND RESULTS: We performed whole exome sequencing (WES) for 65 asthenoteratospermia individuals and identified a proband who carried a homozygous WDR19 (c.A3811G, p.K1271E) mutation from a consanguineous family. Systematic examinations, including CT scanning and retinal imaging, excluded previous ciliopathic syndromes in the proband. Moreover, semen analysis of this patient showed that the progressive rate decreased to zero, and the sperm flagella showed multiple morphological abnormalities. Scanning and transmission electron microscopy assays indicated that the ultrastructure of sperm flagella in the patient was completely destroyed, while immunofluorescence revealed that WDR19 was absent from the sperm neck and flagella. Moreover, IFT140 and IFT88, predicted to interact with WDR19 directly, were mis-allocated in the WDR19-mutated sperm. Notably, the MMAF subject harboring WDR19 variant and his partner successfully achieved clinical pregnancy through intracytoplasmic sperm injection (ICSI). CONCLUSIONS: We identified WDR19 as a novel pathogenic gene for male infertility caused by asthenoteratospermia in the absence of other ciliopathic phenotypes, and that patients carrying WDR19 variant can have favorable pregnancy outcomes following ICSI. | 32323121 | 2020-06-01 |
| 11552603 | Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. | Bredrup C, etal., Am J Hum Genet. 2011 Nov 11;89(5):634-43. doi: 10.1016/j.ajhg.2011.10.001. Epub 2011 Oct 20. | A subset of ciliopathies, including Sensenbrenner, Jeune, and short-rib polydactyly syndromes are characterized by skeletal anomalies accompanied by multiorgan defects such as chronic renal failure and retinitis pigmentosa. Through exome sequencing we identified compound heterozygous mutations in ... (more)pan style='font-weight:700;'>WDR19 in a Norwegian family with Sensenbrenner syndrome. In a Dutch family with the clinically overlapping Jeune syndrome, a homozygous missense mutation in the same gene was found. Both families displayed a nephronophthisis-like nephropathy. Independently, we also identified compound heterozygous WDR19 mutations by exome sequencing in a Moroccan family with isolated nephronophthisis. WDR19 encodes IFT144, a member of the intraflagellar transport (IFT) complex A that drives retrograde ciliary transport. We show that IFT144 is absent from the cilia of fibroblasts from one of the Sensenbrenner patients and that ciliary abundance and morphology is perturbed, demonstrating the ciliary pathogenesis. Our results suggest that isolated nephronophthisis, Jeune, and Sensenbrenner syndromes are clinically overlapping disorders that can result from a similar molecular cause. | 22019273 | 2011-10-01 |
| 11528287 | Nephronophthisis 13: implications of its association with Caroli disease and altered intracellular localization of WDR19 in the kidney. | Lee JM, etal., Pediatr Nephrol. 2015 Sep;30(9):1451-8. doi: 10.1007/s00467-015-3068-8. Epub 2015 Mar 1. | BACKGROUND: Nephronophthisis 13 (NPHP 13) is associated with mutations in the WDR19 gene, which encodes for a protein in the intraflagellar transport complex. Herein, we describe six additional cases accompanied by Caroli syndrome or disease. METHODS: Targeted exome sequencing covering 96 ciliopathy-related genes was performed for 48 unrelated Korean patients with a clinical suspicion of NPHP. Mutations were confirmed by Sanger sequencing. We evaluated the expression of WDR19 in the biopsied kidney by immunohistochemistry in patients and controls. RESULTS: We detected three (3/48, 6.3 %) unrelated index cases with WDR19 mutations. One of the cases involved two siblings with the same mutation. Later, we detected an additional index case with a similar phenotype of kidney and liver involvement by Sanger sequencing of WDR19. The p.R1178Q mutation was common in all patients. All of the six affected patients from four families progressed to chronic kidney disease. Of note, all six patients had Caroli syndrome or disease. Immunohistochemistry for WDR19 showed localized expression along the luminal borders of the renal tubular epithelium in controls, whereas it showed diffuse cytoplasmic staining in the affected patients. CONCLUSIONS: Caroli disease is a major extra-renal phenotype associated with mutations in WDR19 in the Korean population. In this study, we visually validated the expression pattern of mutant WDR19 protein in the kidneys of NPHP 13 patients. More data are needed to identify the true frequency of p.R1178Q. Functional studies including transfection assay will provide solid grounds for the pathogenicity of each mutation. | 25726036 | 2015-08-01 |
| 11552600 | WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome. | Coussa RG, etal., Clin Genet. 2013 Aug;84(2):150-9. doi: 10.1111/cge.12196. | Autosomal recessive retinitis pigmentosa (arRP) is a clinically and genetically heterogeneous retinal disease that causes blindness. Our purpose was to identify the causal gene, describe the phenotype and delineate the mutation spectrum in a consanguineous Quebec arRP family. We performed Arrayed Primer Extension (APEX) technology to exclude approximately 500 arRP mutations in approximately 20 genes. Homozygosity mapping [single nucleotide polymorphism (SNP) genotyping] identified 10 novel significant homozygous regions. We performed next generation sequencing and whole exome capture. Sanger sequencing provided cosegregation. We screened another 150 retinitis pigmentosa (RP) and 200 patients with Senior-Loken Syndrome (SLS). We identified a novel missense mutation in WDR19, c.2129T>C which lead to a p.Leu710Ser. We found the same mutation in a second Quebec arRP family. Interestingly, two of seven affected members of the original family developed 'sub-clinical' renal cysts. We hypothesized that more severe WDR19 mutations may lead to severe ciliopathies and found seven WDR19 mutations in five SLS families. We identified a new gene for both arRP and SLS. WDR19 is a ciliary protein associated with the intraflagellar transport machinery. We are currently investigating the full extent of the mutation spectrum. Our findings are crucial in expanding the understanding of childhood blindness and identifying new genes. | 23683095 | 2013-10-01 |