Qian G, etal., Biochem Biophys Res Commun. 2016 Jun 3;474(3):491-6. doi: 10.1016/j.bbrc.2016.04.135. Epub 2016 Apr 29.
Ubiquitin-specific peptidase 5 (USP5) has been demonstrated to be critical for the production of Tumor Necrosis Factor-alpha (TNF-alpha), a pivotal mediator for inflammatory responses. Besides, USP5 regulates p53 activation
and DNA repair. However, the mechanism underlying the regulation of USP5, especially its responsible E3 ligase is still unclear. Here we found that Smad ubiquitination regulatory factor 1 (Smurf1) down regulated protein expression of USP5, and the E3 enzyme activity of Smurf1 was required for this function. We also revealed that Smurf1 interacted with USP5 and mediated its degradation via the ubiquitin proteasome pathway. Consequently, Smurf1 inhibited the production of TNF-alpha through down-regulation of USP5. Taken together, our study for the first time clarified that the E3 ligase Smurf1 regulates USP5 protein stability and USP5-mediated TNF-alpha production through the ubiquitin proteasome pathway.
Gadotti VM, etal., Mol Pain. 2015 Mar 14;11:12. doi: 10.1186/s12990-015-0011-8.
BACKGROUND: Cav3.2 channels facilitate nociceptive transmission and are upregulated in DRG neurons in response to nerve injury or peripheral inflammation. We reported that this enhancement of Cav3.2 currents in afferent neurons is mediated by deubiquitination of the channels by the deubiquitinase ... (more)
pan style='font-weight:700;'>USP5, and that disrupting USP5/Cav3.2 channel interactions protected from inflammatory and neuropathic pain. RESULTS: Here we describe the development of a small molecule screening assay for USP5-Cav3.2 disruptors, and report on two hits of a ~5000 compound screen - suramin and the flavonoid gossypetin. In mouse models of inflammatory pain and neuropathic pain, both suramin and gossypetin produced dose-dependent and long-lasting mechanical anti-hyperalgesia that was abolished or greatly attenuated in Cav3.2 null mice. Suramin and Cav3.2/USP5 Tat-disruptor peptides were also tested in models of diabetic neuropathy and visceral pain, and provided remarkable protection. CONCLUSIONS: Overall, our findings provide proof of concept for a new class of analgesics that target T-type channel deubiquitination.
OBJECTIVES: Although a number of genetic forms of cholestasis have been identified, the genetic etiology of disease remains unidentified in a subset of cholestasis patients. METHODS: Whole exome sequencing (WES) was performed in DNA from patients diagnosed with cholestasis, at d
ifferent points on the continuum from progressive familial intrahepatic cholestasis to benign recurrent intrahepatic cholestasis, in whom no disease mutations in known cholestasis genes had been identified. Candidate genes were then assessed in a larger patient sample, by targeted next-generation sequencing (NGS). Disease features at presentation and follow-up were collected from available medical records. RESULTS: By WES, we identified 3 patients with homozygous mutations in USP53. Screening of USP53 in a larger set of patients identified 4 additional patients with homozygous mutations in USP53. Six of the 7 patients had deletion mutations, and 1 had a missense mutation; 3 of the patients were siblings, all bearing a deletion that also disrupted neighboring MYOZ2. Age of onset ranged from early infancy to adolescence. Cholestasis tended to be biochemically mild and intermittent, and responsive to medication. Liver fibrosis was, however, present in all 4 patients who were biopsied, and splenomegaly was apparent in 5 of 7 at last ultrasound. CONCLUSIONS: Two groups recently identified patients with liver disease and mutation in USP53. We have now identified biallelic mutation in USP53 in 7 further patients with cholestasis, from 5 families. Most individuals had evidence of chronic liver disease, and long-term follow-up is recommended.
Kazmierczak M, etal., J Neurosci. 2015 Nov 25;35(47):15582-98. doi: 10.1523/JNEUROSCI.1965-15.2015.
Disordered protein ubiquitination has been linked to neurodegenerative disease, yet its role in inner ear homeostasis and hearing loss is essentially unknown. Here we show that progressive hearing loss in the ethylnitrosourea-generated mambo mouse line is caused by a mutation in Usp5
ight:700;'>Usp53, a member of the deubiquitinating enzyme family. USP53 contains a catalytically inactive ubiquitin-specific protease domain and is expressed in cochlear hair cells and a subset of supporting cells. Although hair cell differentiation is unaffected in mambo mice, outer hair cells degenerate rapidly after the first postnatal week. USP53 colocalizes and interacts with the tight junction scaffolding proteins TJP1 and TJP2 in polarized epithelial cells, suggesting that USP53 is part of the tight junction complex. The barrier properties of tight junctions of the stria vascularis appeared intact in a biotin tracer assay, but the endocochlear potential is reduced in adult mambo mice. Hair cell degeneration in mambo mice precedes endocochlear potential decline and is rescued in cochlear organotypic cultures in low potassium milieu, indicating that hair cell loss is triggered by extracellular factors. Remarkably, heterozygous mambo mice show increased susceptibility to noise injury at high frequencies. We conclude that USP53 is a novel tight junction-associated protein that is essential for the survival of auditory hair cells and normal hearing in mice, possibly by modulating the barrier properties and mechanical stability of tight junctions. SIGNIFICANCE STATEMENT: Hereditary hearing loss is extremely prevalent in the human population, but many genes linked to hearing loss remain to be discovered. Forward genetics screens in mice have facilitated the identification of genes involved in sensory perception and provided valuable animal models for hearing loss in humans. This involves introducing random mutations in mice, screening the mice for hearing defects, and mapping the causative mutation. Here, we have identified a mutation in the Usp53 gene that causes progressive hearing loss in the mambo mouse line. We demonstrate that USP53 is a catalytically inactive deubiquitinating enzyme and a novel component of tight junctions that is necessary for sensory hair cell survival and inner ear homeostasis.
Wang Z, etal., Genes Dev. 2016 Apr 15;30(8):946-59. doi: 10.1101/gad.271841.115.
Dynamic regulation of RNF168-mediated ubiquitylation of histone H2A Lys13,15 (H2AK13,15ub) at DNA double-strand breaks (DSBs) is crucial for preventing aberrant DNA repair and maintaining genome stability. However, it remains unclear which deubiquitylating enzyme (DUB) removes H2AK13,15ub. Here we s
how that USP51, a previously uncharacterized DUB, deubiquitylates H2AK13,15ub and regulates DNA damage response. USP51 depletion results in increased spontaneous DNA damage foci and elevated levels of H2AK15ub and impairs DNA damage response. USP51 overexpression suppresses the formation of ionizing radiation-induced 53BP1 and BRCA1 but not RNF168 foci, suggesting that USP51 functions downstream from RNF168 in DNA damage response. In vitro, USP51 binds to H2A-H2B directly and deubiquitylates H2AK13,15ub. In cells, USP51 is recruited to chromatin after DNA damage and regulates the dynamic assembly/disassembly of 53BP1 and BRCA1 foci. These results show that USP51 is the DUB for H2AK13,15ub and regulates DNA damage response.
Bett JS, etal., Biochem J. 2013 Apr 15;451(2):185-94. doi: 10.1042/BJ20130026.
HIF1A (hypoxia-inducible factor 1alpha) is the master regulator of the cellular response to hypoxia and is implicated in cancer progression. Whereas the regulation of HIF1A protein in response to oxygen is well characterized, less is known about the fate of HIF1A mRNA. In the present study, we have
identified the pseudo-DUB (deubiquitinating enzyme)/deadenylase USP52 (ubiquitin-specific protease 52)/PAN2 [poly(A) nuclease 2] as an important regulator of the HIF1A-mediated hypoxic response. Depletion of USP52 reduced HIF1A mRNA and protein levels and resulted in reduced expression of HIF1A-regulated hypoxic targets due to a 3'-UTR (untranslated region)-dependent poly(A)-tail-length-independent destabilization in HIF1A mRNA. MS analysis revealed an association of USP52 with several P-body (processing body) components and we confirmed further that USP52 protein and HIF1A mRNA co-localized with cytoplasmic P-bodies. Importantly, P-body dispersal by knockdown of GW182 or LSM1 resulted in a reduction of HIF1A mRNA levels. These data uncover a novel role for P-bodies in regulating HIF1A mRNA stability, and demonstrate that USP52 is a key component of P-bodies required to prevent HIF1A mRNA degradation.
PURPOSE: Genetic testing in pediatric cholestasis can be very informative but genetic causes have not been fully characterized. METHODS: Exome sequencing and positional mapping in seven families with cholestatic liver disease and negative clinical testing for known disease genes
. RESULTS: KIF12, which encodes a microtubule motor protein with a tentative role in cell polarity, was found to harbor three homozygous likely deleterious variants in three families with sclerosing cholangitis. KIF12 expression is dependent on HNF-1β, deficiency which is known to cause bile duct dysmorphogenesis associated with loss of KIF12 expression. In another extended family, we mapped an apparently novel syndrome of sclerosing cholangitis, short stature, hypothyroidism, and abnormal tongue pigmentation in two cousins to a homozygous variant in PPM1F (POPX2), a regulator of kinesin-mediated ciliary transport. In the fifth family, a syndrome of normal gamma glutamyltransferase (GGT) cholestasis and hearing loss was found to segregate with a homozygous truncating variant in USP53, which encodes an interactor with TJP2. In the sixth family, we mapped a novel syndrome of transient neonatal cholestasis, intellectual disability, and short stature to a homozygous variant in LSR, an important regulator of liver development. In the last family of three affected siblings, a novel syndrome of intractable itching, hypercholanemia, short stature, and intellectual disability was mapped to a single locus that contains a homozygous truncating variant in WDR83OS (C19orf56), known to interact with ATP13A2 and BSEP. CONCLUSION: Our results expand the genetic heterogeneity of pediatric cholestatic liver disease and highlight the vulnerability of bile homeostasis to a wide range of molecular perturbations.