Groen EJ and Gillingwater TH, Trends Mol Med. 2015 Oct;21(10):622-32. doi: 10.1016/j.molmed.2015.08.003.
Neurodegenerative diseases are a leading cause of disability and early death. A common feature of these conditions is disruption of protein homeostasis. Ubiquitin-like modifier activating enzyme 1 (UBA1), the E1 ubiquitin-activating enzyme, sits at the apex of t
he ubiquitin cascade and represents an important regulator of cellular protein homeostasis. Critical contributions of UBA1-dependent pathways to the regulation of homeostasis and degeneration in the nervous system are emerging, including specific disruption of UBA1 in spinal muscular atrophy (SMA) and Huntington's disease (HD). In this review we discuss recent findings that put UBA1 at the centre of cellular homeostasis and neurodegeneration, highlighting the potential for UBA1 to act as a promising therapeutic target for a range of neurodegenerative diseases.
Beck DB, etal., N Engl J Med. 2020 Dec 31;383(27):2628-2638. doi: 10.1056/NEJMoa2026834. Epub 2020 Oct 27.
BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independe
nt of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).
Shaughnessy N, etal., Neuromuscul Disord. 2020 Jan;30(1):35-37. doi: 10.1016/j.nmd.2019.11.004. Epub 2019 Nov 14.
X-linked infantile spinal muscular atrophy (SMAX2), OMIM 301830, is a rare, severe form of spinal muscular atrophy, caused by variants in the Ubiquitin like modifier-activating enzyme 1 (UBA1) gene. Clinical features reported to date include marked hypotonia, ar
eflexia, arthrogryposis, contractures, myopathic facies and tongue fibrillations. Previous reports have included a history of contractures. We report a male patient presenting following a normal pregnancy with typical symptoms of X-linked infantile spinal muscular atrophy including hypotonia, weakness, areflexia and respiratory insufficiency, however contractures were absent. There was a significant family history of neuromuscular disease on the maternal side, with several male relatives all dying before the age of six months. Creatine Kinase was mildly elevated, MRI Brain was normal and neurophysiological testing revealed a diffuse motor neuronopathy. Genetic testing for SMN1 gene was normal. UBA1 sequencing revealed a maternally inherited hemizygous familial variant [c.1681G>A p. (Asp561Asn)], which has not been previously reported.