MSX1 and TGFB3 have been proposed as genes in which mutations may contribute to non-syndromic forms of oral clefts; however, an interaction between these genes has not been described. The present study attempts to detect transmission distortion of MSX1 and TGFB3
style='font-weight:700;'>TGFB3 in 217 South American children from their respective mothers. With transmission disequilibrium test analysis, cleft lip with/without cleft palate, cleft lip with palate plus cleft palate only, and all datasets combined showed evidence of association with MSX1 (p = 0.004, p = 0.037, and p = 0.001, respectively). With likelihood ratio test analysis, "cleft lip only" showed association with MSX1 (p = 0.04) and "cleft palate only" with TGFB3 (p = 0.02). A joint analysis of MSX1 and TGFB3 suggested that there may be an interaction between these two loci to increase cleft susceptibility. These results suggest that MSX1 and TGFB3 mutations make a contribution to clefts in South American populations.
Drozdzik M, etal., Sci Rep. 2015 Nov 27;5:17151. doi: 10.1038/srep17151.
Factors affecting the blood-testis barrier function may be involved in testicular damage and male infertility. Two cytokines play an important role in the barrier regulation, namely transforming growth factor beta 3 (TGF-beta3) and tumor necrosis factor (TNF-alpha). The aim of this study was to inv
estigate the potential association between TGF-beta3 (TGFB3) and TNF-alpha (TNF) gene polymorphisms and male infertility. A total of 846 subjects, 423 diagnosed with male infertility and 423 fertile men were enrolled. TGFB3 (rs2268626:T > C, rs3917158:C > T, rs2284792:A > G, rs2268625:T > C, rs3917187:C > T) and TNF (rs1800629:-308G > A) gene polymorphisms were genotyped. No association between TNF genotype and infertility was observed. As for TGFB3, the genotypes distribution was similar in infertile and fertile men. However, rs2284792 minor allele frequency was significantly higher among infertile subjects. Heterozygous rs2284792 AG genotype was associated with increased odds for infertility [OR = 1.40 (95% CI 1.05-1.86), p = 0.021] and similar results were observed for G allele carrier status [OR = 1.40 (95% CI 1.06-1.84), p = 0.017]. Heterozygosity in TGFB3 rs3917158 was also associated with the infertility [OR = 1.37 (95% CI 1.01-1.87), p = 0.041]. The TGFB3 variant genotypes were associated with lower spermatozoa motility parameters in fertile men. The results indicate that variants in TGFB3 gene may be associated with male infertility. However, the findings require further replication and validation.
BACKGROUND: Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have
revealed an important contribution of disturbed transforming growth factor (TGF)-β signaling. OBJECTIVES: This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. METHODS: We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. RESULTS: Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-β signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-β signaling in association with up-regulation of the expression of TGF-β ligands. CONCLUSIONS: Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.
Rienhoff HY, etal., Am J Med Genet A. 2013 Aug;161A(8):2040-6. doi: 10.1002/ajmg.a.36056. Epub 2013 Jul 3.
The transforming growth factor β (TGF-β) family of growth factors are key regulators of mammalian development and their dysregulation is implicated in human disease, notably, heritable vasculopathies including Marfan (MFS, OMIM #154700) and Loeys-Dietz syndromes (LDS, OMIM #609192). We described a s
yndrome presenting at birth with distal arthrogryposis, hypotonia, bifid uvula, a failure of normal post-natal muscle development but no evidence of vascular disease; some of these features overlap with MFS and LDS. A de novo mutation in TGFB3 was identified by exome sequencing. Several lines of evidence indicate the mutation is hypomorphic suggesting that decreased TGF-β signaling from a loss of TGFB3 activity is likely responsible for the clinical phenotype. This is the first example of a mutation in the coding portion of TGFB3 implicated in a clinical syndrome suggesting TGFB3 is essential for both human palatogenesis and normal muscle growth.
Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS) are clinically related autosomal dominant systemic connective tissue disorders. Although mutations in several genes of the TGF-beta signalling and related pathways have been identified in the past (e.g. FBN1, TGFBR1, TGFBR2, SMAD3, TGFB2), there a
re still many individuals with "marfanoid" phenotypes in whom no causative mutations are identified. We performed whole exome sequencing in two of three affected individuals from a family with phenotypic features overlapping MFS and LDS. The two affected children and their affected father had tall stature, arachnodactyly, hyperextensible joints, hypertelorism, bifid uvula, but no cardiac involvement, aortic dilation or eye involvement. We detected a novel heterozygous mutation in TGFB3, c.898C>G, predicting the missense substitution p.Arg300Gly. Sanger sequencing confirmed the mutation and its segregation with the phenotype. The first two TGFB3 mutations were reported previously in two unrelated individuals with marfanoid features: one individual with growth retardation carried a heterozygous loss-of-function mutation (c.1226G>A; p.Cys409Tyr; Rienhoff et al., 2013), whereas a child with overgrowth carried a mutation in the same codon as the mutation identified in the three affected individuals reported here (c.899G>A; p.Arg300Gln; Matyas et al., 2014). The mutations at codon Arg300 presumably lead to increased TGF-beta signalling, suggesting that the short or tall stature seen in patients with TGFB3 mutations may result from opposing effects of mutations on TGF-beta signalling. Thus, we add a novel human TGFB3 mutation, contribute to the clinical delineation of the emerging connective tissue disorder tentatively called Rienhoff syndrome and compare the data with a very recent report (Bertoli-Avella et al., 2015) on TGFB3 mutations associated with aortic aneurysms or dissections.