| 263334051 | G790del mutation in DSC2 alone is insufficient to develop the pathogenesis of ARVC in a mouse model. | Hamada Y, etal., Biochem Biophys Rep. 2019 Nov 29;21:100711. doi: 10.1016/j.bbrep.2019.100711. eCollection 2020 Mar. | BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease that causes heart failure and/or sudden cardiac death. Several desmosomal genes (DSC2, PKG, PKP2, DSP, and RyR2) are thought to be the causative gene involved in ARVC. Out of them, DSC2 mutations account for 2% of ARVC genetic abnormalities. This study aimed to clarify the effect of G790del mutation in DSC2 on the arrhythmogenic mechanism and cardiac function in a mouse model. RESULT: Neither the heterozygous +/G790del nor homozygous G790del/G790del mice showed structural and functional defects in the right ventricle (RV) or lethal arrhythmia. The homozygous G790del/G790del 6-month-old mice slightly showed left ventricular (LV) dysfunction. Cell shortening decreased with prolongation of intracellular Ca2+ transient in cardiomyocytes isolated from the homozygous G790del/G790del mice, and spontaneous Ca2+ transients were frequently observed in response to isoproterenol. CONCLUSIONS: G790del mutation in DSC2 was not relevant to the pathogenesis of ARVC, but showed a slight contractile dysfunction and Ca2+ dysregulation in the LV. | 31872082 | 2020-03-01 |
| 1599191 | Mutations in SUFU predispose to medulloblastoma. | Taylor MD, etal., Nat Genet. 2002 Jul;31(3):306-10. Epub 2002 Jun 17. | The sonic hedgehog (SHH) signaling pathway directs the embryonic development of diverse organisms and is disrupted in a variety of malignancies. Pathway activation is triggered by binding of hedgehog proteins to the multipass Patched-1 (PTCH) receptor, which in the absence of hedgehog suppresses the activity of the seven-pass membrane protein Smoothened (SMOH). De-repression of SMOH culminates in the activation of one or more of the GLI transcription factors that regulate the transcription of downstream targets. Individuals with germline mutations of the SHH receptor gene PTCH are at high risk of developmental anomalies and of basal-cell carcinomas, medulloblastomas and other cancers (a pattern consistent with nevoid basal-cell carcinoma syndrome, NBCCS). In keeping with the role of PTCH as a tumor-suppressor gene, somatic mutations of this gene occur in sporadic basal-cell carcinomas and medulloblastomas. We report here that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele. Several of these mutations encode truncated proteins that are unable to export the GLI transcription factor from nucleus to cytoplasm, resulting in the activation of SHH signaling. SUFU is a newly identified tumor-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway through a newly identified mechanism. | 12068298 | 2002-01-01 |
| 598119665 | Identification of a SUFU germline mutation in a family with Gorlin syndrome. | Pastorino L, etal., Am J Med Genet A. 2009 Jul;149A(7):1539-43. doi: 10.1002/ajmg.a.32944. | Gorlin syndrome (GS) is inherited in an autosomal dominant pattern with high-penetrance and is characterized by a range of developmental anomalies and increased risk of developing basal cell carcinoma and medulloblastoma. Between 50% and 85% of patients with GS harbor germ line mutations in the only susceptibility gene identified to date, PTCH1, a key component in the Sonic Hedgehog signaling pathway. Another component in this pathway, SUFU, is known to be involved in susceptibility to medulloblastoma but has never been reported in GS patients to date. We have identified the known c.1022 + 1G>A SUFU germ line splicing mutation in a family that was PTCH1-negative and who had signs and symptoms of GS, including medulloblastoma. This is the first report of a germ line SUFU mutation associated with GS. | 19533801 | 2009-07-01 |
| 11053984 | T396I mutation of mouse Sufu reduces the stability and activity of Gli3 repressor. | Makino S, etal., PLoS One. 2015 Mar 11;10(3):e0119455. doi: 10.1371/journal.pone.0119455. eCollection 2015. | Hedgehog signaling is primarily transduced by two transcription factors: Gli2, which mainly acts as a full-length activator, and Gli3, which tends to be proteolytically processed from a full-length form (Gli3FL) to an N-terminal repressor (Gli3REP). Recent studies using a Sufu 0;'>Sufu knockout mouse have indicated that Sufu is involved in regulating Gli2 and Gli3 activator and repressor activity at multiple steps of the signaling cascade; however, the mechanism of specific Gli2 and Gli3 regulation remains to be elucidated. In this study, we established an allelic series of ENU-induced mouse strains. Analysis of one of the missense alleles, SufuT396I, showed that Thr396 residue of Sufu played a key role in regulation of Gli3 activity. SufuT396I/T396I embryos exhibited severe polydactyly, which is indicative of compromised Gli3 activity. Concomitantly, significant quantitative reductions of unprocessed Gli3 (Gli3FL) and processed Gli3 (Gli3REP) were observed in vivo as well as in vitro. Genetic experiments showed that patterning defects in the limb buds of SufuT396I/T396I were rescued by a constitutive Gli3REP allele (Gli3699), strongly suggesting that SufuT396I reduced the truncated Gli3 repressor. In contrast, SufuT396I qualitatively exhibited no mutational effects on Gli2 regulation. Taken together, the results of this study show that the Thr396 residue of Sufu is specifically required for regulation of Gli3 but not Gli2. This implies a novel Sufu-mediated mechanism in which Gli2 activator and Gli3 repressor are differentially regulated. | 25760946 | 1000-04-01 |
| 11532835 | SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development. | Raducu M, etal., EMBO J. 2016 Jul 1;35(13):1400-16. doi: 10.15252/embj.201593374. Epub 2016 May 27. | Skp1-Cul1-F-box protein (SCF) ubiquitin ligases direct cell survival decisions by controlling protein ubiquitylation and degradation. Sufu (Suppressor of fused) is a central regulator of Hh (Hedgehog) signaling and acts as a tumor suppressor by maintaining the Gli (Glioma-associated oncogene homolog) transcription factors inactive. Although Sufu has a pivotal role in Hh signaling, the players involved in controlling Sufu levels and their role in tumor growth are unknown. Here, we show that Fbxl17 (F-box and leucine-rich repeat protein 17) targets Sufu for proteolysis in the nucleus. The ubiquitylation of Sufu, mediated by Fbxl17, allows the release of Gli1 from Sufu for proper Hh signal transduction. Depletion of Fbxl17 leads to defective Hh signaling associated with an impaired cancer cell proliferation and medulloblastoma tumor growth. Furthermore, we identify a mutation in Sufu, occurring in medulloblastoma of patients with Gorlin syndrome, which increases Sufu turnover through Fbxl17-mediated polyubiquitylation and leads to a sustained Hh signaling activation. In summary, our findings reveal Fbxl17 as a novel regulator of Hh pathway and highlight the perturbation of the Fbxl17-Sufu axis in the pathogenesis of medulloblastoma. | 27234298 | 2016-09-01 |
| 11251600 | Genome-wide single-nucleotide polymorphism analysis revealed SUFU suppression of acute graft-versus-host disease through downregulation of HLA-DR expression in recipient dendritic cells. | Bari R, etal., Sci Rep. 2015 Jun 11;5:11098. doi: 10.1038/srep11098. | Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). To identify recipient risk factors, a genome-wide study was performed including 481,820 single-nucleotide polymorphisms (SNPs). Two GVHD susceptibility loci ( rs17114803 and rs17114808) within the SUFU gene were identified in the discovery cohort (p = 2.85 x 10(-5)). The incidence of acute GVHD among patients homozygous for CC at SUFU rs17114808 was 69%, which was significantly higher than the 8% rate observed in CT heterozygous patients (p = 0.0002). In an independent validation cohort of 100 patients, 50% of the patients with the CC genotype developed GVHD compared to 8% of the patients with either CT or TT genotype (p = 0.01). In comparison to CC dendritic cells, those from CT expressed higher levels of SUFU mRNA and protein, had lower levels of surface HLA-DR, and induced less allogeneic mixed leukocyte response (MLR). Ectopic expression of SUFU in THP-1 derived DCs reduced HLA-DR expression and suppressed MLR, whereas silencing of SUFU enhanced HLA-DR expression and increased MLR. Thus our findings provide novel evidence that recipient SUFU germline polymorphism is associated with acute GVHD and is a novel molecular target for GVHD prevention and treatment. | 26067905 | 1000-06-01 |
| 598119435 | Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects. | De Mori R, etal., Am J Hum Genet. 2017 Oct 5;101(4):552-563. doi: 10.1016/j.ajhg.2017.08.017. Epub 2017 Sep 28. | The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmenta l disorders. SUFU is the main negative regulator of the SHH pathway and is essential during development. Indeed, Sufu knock-out is lethal in mice, and recessive pathogenic variants of this gene have never been reported in humans. Through whole-exome sequencing in subjects with Joubert syndrome, we identified four children from two unrelated families carrying homozygous missense variants in SUFU. The children presented congenital ataxia and cerebellar vermis hypoplasia with elongated superior cerebellar peduncles (mild "molar tooth sign"), typical cranio-facial dysmorphisms (hypertelorism, depressed nasal bridge, frontal bossing), and postaxial polydactyly. Two siblings also showed polymicrogyria. Molecular dynamics simulation predicted random movements of the mutated residues, with loss of the native enveloping movement of the binding site around its ligand GLI3. Functional studies on cellular models and fibroblasts showed that both variants significantly reduced SUFU stability and its capacity to bind GLI3 and promote its cleavage into the repressor form GLI3R. In turn, this impaired SUFU-mediated repression of the SHH pathway, as shown by altered expression levels of several target genes. We demonstrate that germline hypomorphic variants of SUFU cause deregulation of SHH signaling, resulting in recessive developmental defects of the CNS and limbs which share features with both SHH-related disorders and ciliopathies. | 28965847 | 2017-10-05 |
| 11555502 | microRNA-214 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting the suppressor-of-fused protein (Sufu). | Long H, etal., Oncotarget. 2015 Nov 17;6(36):38705-18. doi: 10.18632/oncotarget.5478. | Distant metastasis is the major cause of cancer-related deaths in patients with lung adenocarcinoma (LAD). Emerging evidence reveals that miRNA is critical for tumor metastasis. miR-214 expression has been associated with LAD progression. However, whether and how miR-214 is involved in the developme nt and metastasis of LAD remain unaddressed. Here, we found that the expression of miR-214 was elevated in LAD and correlated positively with LAD metastasis and epithelial-mesenchymal transition (EMT). In addition, we found that miR-214 enhanced the molecular program controlling the EMT of LAD cells and promoted LAD cell metastasis both in vitro and in vivo. This study thus provides the first evidence to show that the miR-214 expression by LAD cells contributes to the EMT and metastasis of LAD. Mechanistically, Sufu was identified as an important miR-214 functional target for the EMT and metastasis of LAD, ectopic expression of Sufu alleviated miR-214 promoted EMT and metastasis. Importantly, the expression of Sufu inversely correlated with the expression of miR-214 and vimentin and positively associated with the expression of E-cadherin in the tumor cells from human LAD patients. Collectively, this study uncovers a previously unappreciated miR-214-Sufu pathway in controlling EMT and metastasis of LAD and suggests that interfering with miR-214 and Sufu could be a viable approach to treat late stage metastatic LAD patients. | 26462018 | 2015-10-01 |
| 11527393 | Multiple Hereditary Infundibulocystic Basal Cell Carcinoma Syndrome Associated With a Germline SUFU Mutation. | Schulman JM, etal., JAMA Dermatol. 2016 Mar;152(3):323-7. doi: 10.1001/jamadermatol.2015.4233. | IMPORTANCE: Multiple hereditary infundibulocystic basal cell carcinoma syndrome (MHIBCC) is a rare genodermatosis in which numerous indolent, well-differentiated basal cell carcinomas develop primarily on the face and genitals, without other features characteristic of basal cell nevus syndrome. The cause is unknown. The purpose of the study was to identify a genetic basis for the syndrome and a mechanism by which the associated tumors develop. OBSERVATIONS: Whole-exome sequencing of 5 tumors and a normal buccal mucosal sample from a patient with MHIBCC was performed. A conserved splice-site mutation in 1 copy of the suppressor of fused gene (SUFU) was identified in all tumor and normal tissue samples. Additional distinct deletions of the trans SUFU allele were identified in all tumor samples, none of which were present in the normal sample. CONCLUSIONS AND RELEVANCE: A germline SUFU mutation was present in a patient with MHIBCC, and additional acquired SUFU mutations underlie the development of infundibulocystic basal cell carcinomas. The downstream location of the SUFU gene within the sonic hedgehog pathway may explain why its loss is associated with relatively well-differentiated tumors and suggests that MHIBCC will not respond to therapeutic strategies, such as smoothened inhibitors, that target upstream components of this pathway. | 26677003 | 2016-08-01 |
| 598120144 | SUFU-associated Gorlin syndrome: Expanding the spectrum between classic nevoid basal cell carcinoma syndrome and multiple hereditary infundibulocystic basal cell carcinoma. | Álvarez-Salafranca M, etal., Australas J Dermatol. 2023 May;64(2):249-254. doi: 10.1111/ajd.14014. Epub 2023 Feb 24. | Basal cell nevus syndrome (BCNS), also known as Gorlin syndrome, is characterized by an aberrant activation of the hedgehog (Hh) pathway, most cases being caused by PTCH1 mutations. However, certain features such as multiple hereditary infundibulocystic basal cell carcinomas (MHIBCC), sclerotic fibr omas, childhood medulloblastoma or meningioma may be relatively specific to a SUFU mutation. We present two patients with MHIBCC, along with a more complex cutaneous and extracutaneous phenotype. MHIBCC syndrome and BCNS may share clinical features and, indeed, both syndromes probably represent different degrees of upregulation in the Hh pathway. | 36825822 | 2023-05-01 |
| 1554323 | The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. | Paces-Fessy M, etal., Biochem J 2004 Mar 1;378(Pt 2):353-62. | Sufu (Suppressor of fused) is a negative regulator of the Hedgehog signal-transduction pathway, interacting directly with the Gli family of transcription factors. However, its function remains poorly understood. In the present study, we determined the expression , tissue distribution and biochemical properties of mSufu (mouse Sufu) protein. We identified several mSufu variants of which some were phosphorylated. A yeast two-hybrid screen with mSufu as bait allowed us to identify several nuclear proteins as potential partners of mSufu. Most of these partners, such as SAP18 (Sin3-associated polypeptide 18), pCIP (p300/CBP-cointegrator protein) and PIAS1 (protein inhibitor of activated signal transduction and activators of transcription 1), are involved in either repression or activation of transcription and two of them, Galectin3 and hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), have a nuclear function in pre-mRNA splicing. We confirmed the mSufu-SAP18 and mSufu-Galectin3 interactions by independent biochemical assays. Using a cell transfection assay, we also demonstrated that mSufu protein (484 amino acids) is predominantly cytoplasmic but becomes mostly nuclear when a putative nuclear export signal is mutated or after treatment of the cells with leptomycin B. Moreover, mSufu is translocated to the nucleus when co-expressed with SAP18, which is normally found in this compartment. In contrast, Galectin3 is translocated to the cytoplasm when it is co-expressed with mSufu. Our findings indicate that mSufu is a shuttle protein that appears to be extremely versatile in its ability to bind different proteins in both the cytoplasm and nucleus. | 14611647 | 2004-10-01 |