Sun M, etal., Cell Death Dis. 2015 Aug 20;6:e1859. doi: 10.1038/cddis.2015.225.
The origin of rhabdomyosarcoma (RMS) remains controversial. However, specific microRNAs (miRNAs) are downregulated in RMS and it is possible that re-expression of these miRNAs may lead to differentiation. Transforming growth factor-beta1 (TGF-beta1) is known to block differentiation of RMS. We there
fore analyzed miRNA microarrays of RMS cell lines with or without TGF-beta1 knockdown and identified a novel anti-oncogene miR-411-5p. Re-expression of miR-411-5p inhibited RMS cell proliferation in vitro and tumorigenicity in vivo. Using a luciferase reporting system and sequence analysis, the potential target of miR-411-5p was identified as sprouty homolog 4 (SPRY4), which inhibits protein kinase Calpha-mediated activation of mitogen-activated protein kinases (MAPKs), especially p38MAPK phosphorylation. These results revealed an inverse correlation between TGF-beta1/SPRY4 and miR-411-5p levels. SPRY4 small interfering RNA and miR-411-5p both activated p38MAPK phosphorylation and also promoted apoptosis and myogenic differentiation, indicated by increased caspase-3, myosin heavy chain, and myosin expression. SPRY4 and miR-411 mRNA levels correlated with TGF-beta1 expression levels in RMS tissues, which was confirmed by immunohistochemical staining for TGF-beta1, SPRY4, and phosphorylated p38MAPK proteins. Overall, these results indicate that miR-411-5p acts as an RMS differentiation-inducing miRNA prompting p38MAPK activation via directly downregulating SPRY4. These results establish an autoregulatory loop between TGF-beta1/miR-411-5p/SPRY4 and MAPK in RMS, which governs the switch between proliferation and differentiation.
Liu H, etal., Int J Clin Exp Pathol. 2015 Aug 1;8(8):9140-6. eCollection 2015.
Long noncoding RNAs (lncRNAs), a class of ribonucleic molecules, participate in various cellular processes. They are highly expressed in several types of cancer and their expression was related to pathophysiological characteristics of tumor growth, therefore, they can be considered as a promising d
iagnostic tool and a convenient prognostic biomarker. SPRY4-IT1, belonging to a group of intron-retained lncRNAs, was reported to affect tumor development of many types of cancer. However, the expression and the role of SPRY4-IT1 in glioma are still unclear. Therefore, in this study, we examined for the first time the expression and role of SPRY4-IT1 in glioma cells. The results of our study showed that SPRY4-IT1 was up-regulated in human glioma tissues and cell lines. Knockdown of SPRY4-IT1 could inhibit glioma cell growth and migration. Moreover, knockdown of SPRY4-IT1 could inhibit epithelial-mesenchymal transition (EMT) phenotype in glioma cells. Based on these findings, SPRY4-IT1 may be used as a new target for diagnosis and treatment of glioma.
Xiao L, etal., Mol Biol Cell. 2016 Feb 15;27(4):617-26. doi: 10.1091/mbc.E15-10-0703. Epub 2015 Dec 17.
Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the
role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.
Shaverdashvili K, etal., Oncotarget. 2015 Oct 20;6(32):33512-22. doi: 10.18632/oncotarget.5258.
Metastatic melanoma is the deadliest of all skin cancers. Despite progress in diagnostics and treatment of melanoma, the prognosis for metastatic patients remains poor. We previously showed that Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is one of the drivers of melanoma metastasis. Classic
ally, MT1-MMP regulates a verity of cellular functions including cell-to-cell interaction and cell-to-matrix communication. Recently, MT1-MMP has been found to also modulate gene expression. To specifically assess MT1-MMP dependent gene regulation in melanoma, microarray gene expression analysis was performed in a melanoma cell line whose metastatic properties depend on the activity of MT1-MMP. We identified the tumor suppressor gene SPRY4 as a new transcriptional target of MT1-MMP that is negatively regulated by the protease. Knockdown of MT1-MMP enhances SPRY4 expression at the mRNA and protein level. SPRY4 expression inversely correlates with that of MT1-MMP in melanoma samples and importantly, correlates with melanoma patient survival. SPRY4 modulates MT1-MMP dependent cell migration such that inhibition of SPRY4 rescues cell migration that has been impaired by MT1-MMP knock down. MT1-MMP decreases SPRY4 in part through an MMP2/RAC1 axis we previously show promotes cell motility downstream of MT1-MMP. These results identify the tumor suppressor SPRY4 as a novel molecular effector of MT1-MMP affecting melanoma cell motility.
Miraoui H, etal., Am J Hum Genet. 2013 May 2;92(5):725-43. doi: 10.1016/j.ajhg.2013.04.008.
Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ~12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signal
ing and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called "FGF8 synexpression" group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH.