Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tissue remodeling processes. TIMP-1 is the main native inhibitor of MMPs and it contributes to the development of tissue fibrosis. It is known that ANG II plays a fundamental role in vascular remodeling. In this stu
dy, we investigated whether ANG II modulates TIMP-1 expression in rat aortic smooth muscle cells. In vitro, ANG II induces TIMP-1 mRNA expression in a dose-dependent manner. The maximal increase in TIMP-1 expression was present after 3 h of ANG II stimulation. The ANG II increase in TIMP-1 expression was mediated by the ANG type 1 receptors because it was blocked by losartan. The increase in TIMP-1 expression was present after the first ANG II treatment, whereas repeated treatments (3 and 5 times) did not modify TIMP-1 expression. In vivo, exogenous ANG II was administered to Sprague-Dawley rats (200 ng. kg(-1). min(-1) sc) for 6 and 25 days. Control rats received physiological saline. After treatment, systolic blood pressure was significantly higher (P < 0.01), whereas plasma renin activity was suppressed (P < 0.01), in ANG II-treated rats. ANG II increased TIMP-1 expression in the aorta of ANG II-treated rats both at the mRNA (P < 0.05) and protein levels as evaluated by Western blotting (P < 0.05) and/or immunohistochemistry. Neither histological modifications at the vascular wall nor differences in collagen content in the tunica media were present in both the ANG II- and saline-treated groups. Our data demonstrate that ANG II increases TIMP-1 expression in rat aortic smooth muscle cells. In vivo, both short- and long-term chronic ANG II treatments increase TIMP-1 expression in the rat aorta. TIMP-1 induction by ANG II in aortic smooth muscle cells occurs in the absence of histological changes at the vascular wall.
Do R, etal., Nature. 2015 Feb 5;518(7537):102-6. doi: 10.1038/nature13917. Epub 2014 Dec 10.
Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk
in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (=50 years in males and =60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.
We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of u
p to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q22 near MRPS6-SLC5A3-KCNE2, 6p24 in PHACTR1 and 2q33 in WDR12) and six replicated prior observations (9p21, 1p13 near CELSR2-PSRC1-SORT1, 10q11 near CXCL12, 1q41 in MIA3, 19p13 near LDLR and 1p32 near PCSK9). We tested 554 common copy number polymorphisms (>1% allele frequency) and none met the pre-specified threshold for replication (P < 10(-3)). We identified 8,065 rare CNVs but did not detect a greater CNV burden in cases compared to controls, in genes compared to the genome as a whole, or at any individual locus. SNPs at nine loci were reproducibly associated with myocardial infarction, but tests of common and rare CNVs failed to identify additional associations with myocardial infarction risk.
BACKGROUND: Coronary artery disease (CAD) is the major cause of death in patients with type 2 diabetes mellitus. Although demographic and clinical factors associated with extent of CAD in patients with diabetes mellitus have been described, genetic factors have not. We hypothesized that g
enetic variation in peroxisome proliferator-activated receptor (PPAR) pathway genes, important in diabetes mellitus and atherosclerosis, would be associated with extent of CAD in patients with diabetes mellitus. METHODS AND RESULTS: We genotyped 1043 patients (702 white, 175 blacks) from the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) genetic cohort for 3351 variants in 223 PPAR pathway genes using a custom targeted-genotyping array. Angiographic end points were determined by a core laboratory. In whites, a single variant (rs1503298) in TLL1 was significantly (P=5.5 × 10(-6)) associated with extent of CAD, defined as number of lesions with percent diameter stenosis >=20%, after stringent Bonferroni correction for all 3351 single nucleotide polymorphisms. This association was validated in the diabetic subgroups of 2 independent cohorts, the Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction Patients' Health Status (TRIUMPH) post-myocardial infarction registry and the prospective Family Heart Study (FHS) of individuals at risk for CAD. TLL1rs1503298 was also significantly associated with extent of severe CAD (>=70% diameter stenosis; P=3.7 × 10(-2)) and myocardial jeopardy index (P=8.7 × 10(-4)). In general linear regression modeling, TLL1rs1503298 explained more variance of extent of CAD than the previously determined clinical factors. CONCLUSIONS: We identified a variant in a single PPAR pathway gene, TLL1, that is associated with the extent of CAD independently of clinical predictors, specifically in patients with type 2 diabetes mellitus and CAD. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00006305.
Reininger L, etal., Proc Natl Acad Sci U S A. 1990 Dec;87(24):10038-42.
MRL-lpr/lpr mice spontaneously develop a lupus-like syndrome characterized by immunopathological manifestations such as necrotizing vascular lesions of ear tips and severe glomerulonephritis. Similar skin vascular and glomerular lesions associated with cryoglobulinemia can be induced in normal mice
by injection of a monoclonal antibody (mAb)--6-19 (gamma 3 heavy chain and kappa light chain), exhibiting both cryoglobulin and anti-IgG2a rheumatoid factor (RF) activities--derived from the MRL-lpr/lpr autoimmune mouse. To determine the role of RF and/or IgG3 Fc fragment-associated cryoglobulin activities in 6-19 mAb-induced tissue lesions, a 6-19-J558L hybrid mAb (gamma 3 heavy chain and lambda 1 light chain) was produced by fusion between the 6-19 hybridoma and the J558L myeloma. Here we report that the 6-19-J558L hybrid mAb, which loses the RF activity but retains the cryoglobulin activity, fails to induce skin vascular lesions. However, it is still able to provoke glomerular lesions identical to those caused by the 6-19 mAb. Further, we have observed that the depletion of the corresponding autoantigen, IgG2a, in mice by treatment with anti-IgM antisera from birth also prevents the development of skin but not glomerular lesions. Our results indicate that both RF and cryoglobulin activities of the 6-19 mAb are required for the development of skin vasculitis, but its cryoglobulin activity alone is sufficient to cause glomerular lesions. In addition, cDNA cloning and sequencing of the 6-19 mAb has revealed that the 6-19 kappa light chain variable region amino acid sequence is encoded in a germ-line configuration, suggesting that immunoglobulin variable region germ-line genes could contribute to the generation of pathogenic autoantibodies.
Bluggel M, etal., J Proteome Res. 2011 Apr 1;10(4):1558-70. Epub 2011 Mar 16.
Allergy is an immunological disorder of the upper airways, lung, skin, and the gut with a growing prevalence over the last decades in Western countries. Atopy, the genetic predisposition for allergy, is strongly dependent on familial inheritance and environmental factors. These observations call for
predictive markers of progression from atopy to allergy, a prerequisite to any active intervention in neonates and children (prophylactic interventions/primary prevention) or in adults (immunomodulatory interventions/secondary prevention). In an attempt to identify early biomarkers of the "atopic march" using minimally invasive sampling, CD4+ T cells from 20 adult volunteers (10 healthy and 10 with respiratory allergies) were isolated and quantitatively analyzed and their proteomes were compared in and out of pollen season (+/- antigen exposure). The proteome study based on high-resolution 2D gel electrophoresis revealed three candidate protein markers that distinguish the CD4+ T cell proteomes of normal from allergic individuals when sampled out of pollen season, namely Talin 1, Nipsnap homologue 3A, and Glutamate-cysteine ligase regulatory protein. Three proteins were found differentially expressed between the CD4+ T cell proteomes of normal and allergic subjects when sampled during pollen season: carbonyl reductase, glutathione S-transferase omega 1, and 2,4-dienoyl-CoA reductase. The results were partly validated by Western blotting.