We have recently described a novel cDNA, SR13 (Welcher, A. A., U. Suter, M. De Leon, G. J. Snipes, and E. M. Shooter. 1991. Proc. Natl. Acad. Sci. USA. 88:7195-7199), that is repressed after sciatic nerve crush injury and shows homology to both the growth arrest
-specific mRNA, gas3 (Manfioletti, G., M. E. Ruaro, G. Del Sal, L. Philipson, and C. Schneider, 1990. Mol. Cell Biol. 10:2924-2930), and to the myelin protein, PASII (Kitamura, K., M. Suzuki, and K. Uyemura. 1976. Biochim. Biophys. Acta. 455:806-816). In this report, we show that the 22-kD SR13 protein is expressed in the compact portion of essentially all myelinated fibers in the peripheral nervous system. Although SR13 mRNA was found in the central nervous system, no corresponding SR13 protein could be detected by either immunoblot analysis or by immunohistochemistry. Northern and immunoblot analysis of SR13 mRNA and protein expression during development of the peripheral nervous system reveal a pattern similar to other myelin proteins. Furthermore, we demonstrate by in situ mRNA hybridization on tissue sections and on individual nerve fibers that SR13 mRNA is produced predominantly by Schwann cells. We conclude that the SR13 protein is apparently exclusively expressed in the peripheral nervous system where it is a major component of myelin. Thus, we propose the name Peripheral Myelin Protein-22 (PMP-22) for the proteins and cDNA previously designated PASII, SR13, and gas3.
Welcher AA, etal., Proc Natl Acad Sci U S A 1991 Aug 15;88(16):7195-9.
Striking features of the cellular response to sciatic nerve injury are the proliferation of Schwann cells in the distal nerve stump and the downregulation of myelin-specific gene expression. Once the axons regrow, the Schwann cells differentiate again to reform the myelin sheaths. We have isolated a
rat cDNA, SR13, which is strongly downregulated in the initial phase after sciatic nerve injury. This cDNA encodes a glycoprotein that shares striking amino acid similarity with a purified myelin protein and is specifically precipitated by a myelin-specific antiserum. Immunohistochemistry experiments using peptide-specific polyclonal antibodies localize the SR13 protein to the myelin sheath of the sciatic nerve. Computer-aided sequence analysis identified a pronounced homology of SR13 to a growth arrest-specific mRNA (Gas-3) that is expressed in resting but not in proliferating 3T3 mouse fibroblasts. SR13 is similarly downregulated during Schwann cell proliferation in the rat sciatic nerve. The association of the SR13 as well as the Gas-3 mRNA with nonproliferating cells in two different experimental systems suggests a common role for these molecules in maintaining the quiescent cell state.
roximately equal to 11 min), and oligosaccharide processing-dependent manner with the lectin chaperone calnexin (CNX), but not calreticulin nor BiP. In Trembler-J (Tr-J) sciatic nerves, prolonged association of mutant PMP-22 with CNX is found (t(1/2) > 60 min). In 293A cells overexpressing PMP-22(Tr-J), CNX and PMP-22 colocalize in large intracellular structures identified at the electron microscopy level as myelin-like figures with CNX localization in the structures dependent on PMP-22 glucosylation. Similar intracellular myelin-like figures were also present in Schwann cells of sciatic nerves from homozygous Trembler-J mice with no detectable activation of the stress response pathway as deduced from BiP and CHOP expression. Sequestration of CNX in intracellular myelin-like figures may be relevant to the autosomal dominant Charcot-Marie-Tooth-related neuropathies.
these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1beta maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1beta secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.
Weckerle A, etal., J Lipid Res. 2016 Jan;57(1):120-30. doi: 10.1194/jlr.M063453. Epub 2015 Nov 18.
APOL1 gene renal-risk variants are associated with nephropathy and CVD in African Americans; however, little is known about the circulating APOL1 variant proteins which reportedly bind to HDL. We examined whether APOL1 G1 and G2 renal-risk variant serum concentrations or lipoprotein distributions d
iffered from nonrisk G0 APOL1 in African Americans without nephropathy. Serum APOL1 protein concentrations were similar regardless of APOL1 genotype. In addition, serum APOL1 protein was bound to protein complexes in two nonoverlapping peaks, herein referred to as APOL1 complex A (12.2 nm diameter) and complex B (20.0 nm diameter). Neither of these protein complexes associated with HDL or LDL. Proteomic analysis revealed that complex A was composed of APOA1, haptoglobin-related protein (HPR), and complement C3, whereas complex B contained APOA1, HPR, IgM, and fibronectin. Serum HPR was less abundant on complex B in individuals with G1 and G2 renal-risk variant genotypes, relative to G0 (P = 0.0002-0.037). These circulating complexes may play roles in HDL metabolism and susceptibility to CVD.
Human neutrophil serine protease 4 (NSP4), also known as PRSS57, is a recently discovered fourth member of the neutrophil serine proteases family. Although its biological function is not precisely defined, it is suggested to regulate neutrophil response and innate immune reactions. To create optima
l substrates and visualization probes for NSP4 that distinguish it from other NSPs we have employed a Hybrid Combinatorial Substrate Library approach that utilizes natural and unnatural amino acids to explore protease subsite preferences. Library results were validated by synthesizing individual substrates, leading to the identification of an optimal substrate peptide. This substrate was converted to a covalent diphenyl phosphonate probe with an embedded biotin tag. This probe demonstrated high inhibitory activity and stringent specificity and may be suitable for visualizing NSP4 in the background of other NSPs.
Mehlen P, etal., Nature. 1998 Oct 22;395(6704):801-4.
The development of colonic carcinoma is associated with the mutation of a specific set of genes. One of these, DCC (deleted in colorectal cancer), is a candidate tumour-suppressor gene, and encodes a receptor for netrin-1, a molecule involved in axon guidance. Loss of DCC expression in tumours is no
t restricted to colon carcinoma, and, although there is no increase in the frequency of tumour formation in DCC hemizygous mice, reestablishment of DCC expression suppresses tumorigenicity. However, the mechanism of action of DCC is unknown. Here we show that DCC induces apoptosis in the absence of ligand binding, but blocks apoptosis when engaged by netrin-1. Furthermore, DCC is a caspase substrate, and mutation of the site at which caspase-3 cleaves DCC suppresses the pro-apoptotic effect of DCC completely. These results indicate that DCC may function as a tumour-suppressor protein by inducing apoptosis in settings in which ligand is unavailable (for example, during metastasis or tumour growth beyond local blood supply) through functional caspase cascades by a mechanism that requires cleavage of DCC at Asp 1,290.
Mice rendered deficient in the production of interleukin 10 (IL-10-/-) develop a chronic inflammatory bowel disease (IBD) that predominates in the colon and shares histopathological features with human IBD. Our aim was to identify which cell type(s) can mediate colitis in IL-10-/- mice. We detected
an influx of immunoglobulin-positive cells into the colon and the presence of colon-reactive antibodies in the serum of IL-10-/- mice. To assess a pathogenic role for B cells, we generated a B cell-deficient (B-/-) strain of IL-10-/- mice. B-/-IL-10-/- mice acquired a severe colitis analogous to that IL-10-/- mice, implying that B cells were not the primary mediator of IBD in this model. A series of cell transfer experiments was performed to assess a pathogenic role for T cells. When IL-10-/- T cell-enriched lamina propria lymphocytes (LPL) or intraepithelial lymphocytes (IEL) were transferred into immunodeficient recombinase-activating gene (RAG)-2-/- recipients, a mild to severe colitis developed, depending on the cell number transferred. Lymphocytes recovered from the colon of transplanted RAG-2-/- mice with colitis were predominantly alpha beta TCR+CD4+, including a large proportion of CD4+CD8 alpha + cells. These cells were also CD45RB-/low and CD44+, indicative of an activated/memory population. Individual populations of CD4+CD8 alpha-, CD4+CD8 alpha + and CD4-CD8 alpha + T cells were then isolated from the lamina propria compartment of IL-10-/- mice and transferred into RAG-2-/- recipients. Only IL-10-/- CD4-expressing LPL, including both the CD4+CD8 alpha- and CD4+CD8 alpha + populations, induced colitis in recipient mice. Interferon-gamma, but little to no IL-4, was produced by CD4+CD8 alpha- and CD4+CD8 alpha + LPL recovered from the inflamed colons of RAG-2-/- recipients implicating alpha T helper cell 1 (TH1)-mediated response. We thus conclude that colitis in IL-10-/- mice is predominantly mediated by TH1-type alpha beta TCR+ T cells expressing CD4 alone, or in combination with the CD8 alpha molecule.
Chin LS, etal., J Biol Chem 2000 Jan 14;275(2):1191-200.
Synaptosome-associated protein of 25 kDa (SNAP-25) is a presynaptic membrane protein that has been clearly implicated in membrane fusion in both developing and mature neurons, although its mechanisms of action are unclear. We have now identified a novel SNAP-25-interacting protein named SNIP
'font-weight:700;'>SNIP. SNIP is a hydrophilic, 145-kDa protein that comprises two predicted coiled-coil domains, two highly charged regions, and two proline-rich domains with multiple PPXY and PXXP motifs. SNIP is selectively expressed in brain where it co-distributes with SNAP-25 in most brain regions. Biochemical studies have revealed that SNIP is tightly associated with the brain cytoskeleton. Subcellular fractionation and immunofluorescence localization studies have demonstrated that SNIP co-localizes with SNAP-25 as well as the cortical actin cytoskeleton, suggesting that SNIP serves as a linker protein connecting SNAP-25 to the submembranous cytoskeleton. By using deletion analysis, we have mapped the binding domains of SNIP and SNAP-25, and we have demonstrated that the SNIP-SNAP-25 association is mediated via coiled-coil interactions. Moreover, we have shown that overexpression of SNIP or its SNAP-25-interacting domain inhibits Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that SNIP is involved in regulation of neurosecretion, perhaps via its interaction with SNAP-25 and the cytoskeleton.
Tongtawee T, etal., Asian Pac J Cancer Prev. 2015;16(17):7781-4.
BACKGROUND: The commonly held view of the tumor suppressor p53 is as a regulator of cell proliferation, apoptosis and many other biological processes as well as external and internal stress responses. Mdm2 SNIP309 is a negative regulator of p 53. Therefore, thi
s study aimed to determine the correlation between the patterns of Mdm2 SNIP 309 and the inflammation grading of Helicobacter pylori associated gastritis in a Thai population. MATERIALS AND METHODS: A cross-sectional study was carried out from November 2014 through June 2015. Biopsy specimens were obtained from infected patients and infection was proved by positive histology. The gastric mucosa specimens were sent to the Molecular Genetic Unit, Institute of Medicine, Suranaree University of Technology where they were tested by molecular methods to detect the patterns of Mdm2 SNIP 309 using the real-time PCR hybridization probe method. The results were analyzed and compared with the Updated Sydney classification. RESULTS: A total of 100 infected patients were interviewed and gastric mucosa specimens were collected. In this study the percentage of Mdm2 SNIP 309 T/T homozygous and Mdm2 SNIP309 G/T heterozygous was 78% and 19 % respectively whereas Mdm2 SNIP309 G/G homozygous was 3%. Mdm2 SNIP 309 T/T homozygous and Mdm2 SNIP309 G/T heterozygous correlated with mild to moderate inflammation (P<0.01) whereas Mdm2 SNIP309 G/G homozygous correlated with severe inflammation (P<0.01). CONCLUSIONS: Our study found the frequency of Mdm2 SNP309 G/G in our Thai population to be very low, and suggests that this can explain to some extent the low incidence of severe inflammation and gastric cancer changes in the Thai population. Mild to moderate inflammation are the most common pathologic gradings due to the unique genetic polymorphism of Mdm2 SNIP 309 in the Thai population.
SNIP1 (Smad nuclear interacting protein 1) is a widely expressed transcriptional suppressor of the TGF-β signal-transduction pathway which plays a key role in human spliceosome function. Here, we describe extensive genetic studies and clinical findings of a comp
lex inherited neurodevelopmental disorder in 35 individuals associated with a SNIP1 NM_024700.4:c.1097A>G, p.(Glu366Gly) variant, present at high frequency in the Amish community. The cardinal clinical features of the condition include hypotonia, global developmental delay, intellectual disability, seizures, and a characteristic craniofacial appearance. Our gene transcript studies in affected individuals define altered gene expression profiles of a number of molecules with well-defined neurodevelopmental and neuropathological roles, potentially explaining clinical outcomes. Together these data confirm this SNIP1 gene variant as a cause of an autosomal recessive complex neurodevelopmental disorder and provide important insight into the molecular roles of SNIP1, which likely explain the cardinal clinical outcomes in affected individuals, defining potential therapeutic avenues for future research.
Kim RH, etal., Genes Dev 2000 Jul 1;14(13):1605-16.
Members of the transforming growth factor-beta superfamily play critical roles in controlling cell growth and differentiation. Effects of TGF-beta family ligands are mediated by Smad proteins. To understand the mechanism of Smad function, we sought to identify novel interactors of Smads by use of a
yeast two-hybrid system. A 396-amino acid nuclear protein termed SNIP1 was cloned and shown to harbor a nuclear localization signal (NLS) and a Forkhead-associated (FHA) domain. The carboxyl terminus of SNIP1 interacts with Smad1 and Smad2 in yeast two-hybrid as well as in mammalian overexpression systems. However, the amino terminus of SNIP1 harbors binding sites for both Smad4 and the coactivator CBP/p300. Interaction between endogenous levels of SNIP1 and Smad4 or CBP/p300 is detected in NMuMg cells as well as in vitro. Overexpression of full-length SNIP1 or its amino terminus is sufficient to inhibit multiple gene responses to TGF-beta and CBP/p300, as well as the formation of a Smad4/p300 complex. Studies in Xenopus laevis further suggest that SNIP1 plays a role in regulating dorsomedial mesoderm formation by the TGF-beta family member nodal. Thus, SNIP1 is a nuclear inhibitor of CBP/p300 and its level of expression in specific cell types has important physiological consequences by setting a threshold for TGF-beta-induced transcriptional activation involving CBP/p300.
Vulih-Shultzman I, etal., J Pharmacol Exp Ther. 2007 Nov;323(2):438-49. Epub 2007 Aug 24.
Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate essential genes. Because complete ADNP deficiency is embryonic lethal, the outcome of partial ADNP deficiency was examined. ADNP(+/-) mice exhibited cognitive deficits, significant increases in phos
phorylated tau, tangle-like structures, and neurodegeneration compared with ADNP(+/+) mice. Increased tau hyperphosphorylation is known to cause memory impairments in neurodegenerative diseases associated with tauopathies, including the most prevalent Alzheimer's disease. The current results suggest that ADNP is an essential protein for brain function and plays a role in normal cognitive performance. ADNP-deficient mice offer an ideal paradigm for evaluation of cognitive enhancers. NAP (NAPVSIPQ) is a peptide derived from ADNP that interacts with microtubules and provides potent neuroprotection. NAP treatment partially ameliorated cognitive deficits and reduced tau hyperphosphorylation in the ADNP(+/-) mice. NAP is currently in phase II clinical trials assessing effects on mild cognitive impairment.
Kim RH, etal., J Biol Chem 2001 Dec 7;276(49):46297-304. Epub 2001 Sep 20.
SNIP1 is a 396-amino acid nuclear protein shown to be an inhibitor of the TGF-beta signal transduction pathway and to be important in suppressing transcriptional activation dependent on the co-activators CBP and p300. In this report we show that SNIP
t-weight:700;'>SNIP1 potently inhibits the activity of NF-kappa B, which binds the C/H1 domain of CBP/p300, but does not interfere with the activity of transcription factors such as p53, which bind to other domains of p300, or factors such as VP16, which are independent of these co-activators. Inhibition of NF-kappa B activity is a function of the N-terminal domain of SNIP1 and involves competition of SNIP1 and the NF-kappa B subunit, RelA/p65, for binding to p300, similar to the mechanism of inhibition of Smad signaling by SNIP1. Immunohistochemical staining shows that expression of SNIP1 is strictly regulated in development and that it colocalizes, in certain tissues, with nuclear staining for RelA/p65 and for p300, suggesting that they may regulate NF-kappa B activity in vivo in a spatially and temporally controlled manner. These data led us to suggest that SNIP1 may be an inhibitor of multiple transcriptional pathways that require the C/H1 domain of CBP/p300.