| 10450755 | Differential regulation of basolateral Cl-/HCO3- exchangers SLC26A7 and AE1 in kidney outer medullary collecting duct. | Barone S, etal., J Am Soc Nephrol. 2004 Aug;15(8):2002-11. | SLC26A7 is a recently identified Cl(-)/HCO(3)(-) exchanger that co-localizes with AE1 on the basolateral membrane of Alpha intercalated cells (A-IC) in outer medullary collecting duct (OMCD). The purpose of these studies was to determine whether AE1 and SLC26A7 yle='font-weight:700;'>SLC26A7 are differentially regulated in OMCD in pathophysiologic states. Toward this end, the expression and regulation of AE1 and SLC26A7 was examined in water deprivation, a condition known to increase the osmolality of the medulla. Rats were subjected to 3 d of water deprivation while having free access to food. Northern hybridizations demonstrated that in the outer medulla, the mRNA expression of SLC26A7 increased by approximately 300% (P < 0.01 versus control; n = 3), whereas the expression of AE1 decreased by approximately 50% (P < 0.05 versus control, n = 3) in water-deprived rats. Immunoblot analysis studies demonstrated that in the outer medulla, SLC26A7 abundance increased by approximately 3.5-fold (P < 0.02 versus control; n = 3), whereas the AE1 abundance decreased by approximately 55% (P < 0.05 versus control) in water deprivation. The expression of SLC26A7 remained unchanged in the kidney cortex and stomach in water deprivation, indicating the specificity of SLC26A7 upregulation in outer medulla. In situ hybridization indicated the exclusive expression of SLC26A7 in the outer medulla and double immunofluorescence labeling confirmed the co-localization of AE1 and SLC26A7 on the basolateral membrane of A-IC cells in OMCD. It is concluded that AE1 and SLC26A7 are differentially regulated in OMCD in water deprivation. On the basis of these results and previous functional studies indicating the activation of SLC26A7 activity by high osmolality, it is proposed that SLC26A7 may play an important role in bicarbonate reabsorption and or cell volume regulation in OMCD (specifically under hypertonic conditions). | 15284286 | 2004-01-01 |
| 8554499 | Regulation of the basolateral chloride/base exchangers AE1 and SLC26A7 in the kidney collecting duct in potassium depletion. | Barone S, etal., Nephrol Dial Transplant. 2007 Dec;22(12):3462-70. Epub 2007 Sep 5. | In the present study, the effect of potassium depletion on the expression of acid-base transporters in the collecting duct was examined. Toward this end rats were fed a potassium-free diet for 3 weeks. Thereafter, the expression of the basolateral chloride/bicarbonate exchangers AE1 and SLC26A7 ='font-weight:700;'>SLC26A7 and the apical H(+)-ATPase was examined by northern hybridization, immunoblot analysis and immunofluorescence labelling. The mRNA expression of AE1 increased by a robust approximately 500% in the cortex and approximately 70% in the outer medulla, which translated into a huge increase in AE1 protein abundance in the cortex and a moderate increase in the outer medulla in K-depletion. The mRNA expression of SLC26A7 did not change significantly but its protein abundance showed a robust increase in the outer medulla. The expression of SLC26A7 remained undetected in the cortex in K-depleted rats. The post translational increase in SLC26A7 membrane abundance in potassium depletion was recapitulated in vitro using epitope-tagged SLC26A7. H(+)-ATPase displayed enhanced apical plasma membrane immunoreactivity in the OMCD in K-depletion. We suggest that the up-regulation of SLC26A7 and AE1 on the basolateral membrane of A-intercalated cells in the OMCD and CCD, respectively, along with H(+)-ATPase on the apical membrane, contributes to enhanced bicarbonate absorption in the collecting duct in K-depletion. | 17804457 | 2007-05-01 |
| 8553330 | Vasopressin induces expression of the Cl-/HCO3- exchanger SLC26A7 in kidney medullary collecting ducts of Brattleboro rats. | Petrovic S, etal., Am J Physiol Renal Physiol. 2006 May;290(5):F1194-201. Epub 2005 Dec 13. | SLC26A7 is a newly identified basolateral Cl(-)/HCO(3)(-) exchanger specific to alpha-intercalated cells of the outer medullary collecting duct (OMCD). The purpose of the present experiments was to examine the expression of SLC26A7 in kidneys of vasopressin-deficient Brattleboro rats before and after treatment with desamino-Cys(1),d-Arg(8)-vasopressin (dDAVP). Brattleboro rats were treated with dDAVP, a vasopressin analog, for 8 days, and their kidneys were examined for the expression of SLC26A7. The expression of SLC26A7 protein, as examined by immunofluorescence, was undetectable in kidneys of Brattleboro rats. However, treatment with dDAVP induced expression of SLC26A7 protein, restoring it to levels observed in normal rats. These results were verified by Western blot analysis. The mRNA expression of SLC26A7 remained unchanged in response to dDAVP. Immunofluorescent labeling demonstrated abundant levels of anion exchanger type 1 in the OMCD of Brattleboro rats and a mild reduction in response to dDAVP. The abundance of H(+)-ATPase was not affected by dDAVP. The increased SLC26A7 expression directly correlated with enhanced aquaporin-2 expression, which is proportional to increased interstitial osmolarity in the medulla. In conclusion, vasopressin increases the expression of SLC26A7 protein through posttranscriptional mechanisms in the OMCD. The induction of SLC26A7 by vasopressin in OMCD cells of Brattleboro rats is likely an attempt by cells to regulate their cell volume and maintain HCO(3)(-) absorption in a state associated with increased interstitial medullary tonicity. | 16352747 | 2006-05-01 |