SETBP1 haploinsufficiency disorder (MIM#616078) is caused by haploinsufficiency of SETBP1 on chromosome 18q12.3, but there has not yet been any systematic evaluation of the major features of this monogenic syndrome, assessin
g penetrance and expressivity. We describe the first comprehensive study to delineate the associated clinical phenotype, with findings from 34 individuals, including 24 novel cases, all of whom have a SETBP1 loss-of-function variant or single (coding) gene deletion, confirmed by molecular diagnostics. The most commonly reported clinical features included mild motor developmental delay, speech impairment, intellectual disability, hypotonia, vision impairment, attention/concentration deficits, and hyperactivity. Although there is a mild overlap in certain facial features, the disorder does not lead to a distinctive recognizable facial gestalt. As well as providing insight into the clinical spectrum of SETBP1 haploinsufficiency disorder, this reports puts forward care recommendations for patient management.
Choi HW, etal., Ann Lab Med. 2015 Jan;35(1):118-22. doi: 10.3343/alm.2015.35.1.118. Epub 2014 Dec 8.
BACKGROUND: Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, b
ut not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. METHODS: Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. RESULTS: Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. CONCLUSIONS: Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.
Juvenile myelomonocytic leukemia (JMML) is an intractable pediatric leukemia with poor prognosis whose molecular pathogenesis is poorly understood, except for somatic or germline mutations of RAS pathway genes, including PTPN11, NF1, NRAS, KRAS and CBL, in the majority of cases. To obtain a complet
e registry of gene mutations in JMML, whole-exome sequencing was performed for paired tumor-normal DNA from 13 individuals with JMML (cases), which was followed by deep sequencing of 8 target genes in 92 tumor samples. JMML was characterized by a paucity of gene mutations (0.85 non-silent mutations per sample) with somatic or germline RAS pathway involvement in 82 cases (89%). The SETBP1 and JAK3 genes were among common targets for secondary mutations. Mutations in the latter were often subclonal and may be involved in the progression rather than the initiation of leukemia, and these mutations associated with poor clinical outcome. Our findings provide new insights into the pathogenesis and progression of JMML.
Abnormal activation of SETBP1 through overexpression or missense mutations is highly recurrent in various myeloid malignancies; however, it is unclear whether such activation alone is able to induce leukemia development. Here we show that Setbp1
ht:700;'>Setbp1 overexpression in mouse bone marrow progenitors through retroviral transduction is capable of initiating leukemia development in irradiated recipient mice. Before leukemic transformation, Setbp1 overexpression significantly enhances the self-renewal of hematopoietic stem cells (HSCs) and expands granulocyte macrophage progenitors (GMPs). Interestingly, Setbp1 overexpression also causes transcriptional repression of critical hematopoiesis regulator gene Runx1 and this effect is crucial for Setbp1-induced transformation. Runx1 repression is induced by Setbp1-mediated recruitment of a nucleosome remodeling deacetylase (NuRD) complex to Runx1 promoters and can be reversed by treatment with histone deacetylase (HDAC) inhibitors Entinostat and Vorinostat. Moreover, treatment with these inhibitors caused efficient differentiation of Setbp1 activation-induced leukemia cells in vitro, and significantly extended the survival of mice transplanted with such leukemias, suggesting that HDAC inhibition could be an effective strategy for treating myeloid malignancies with SETBP1 activation.
Panagopoulos I, etal., Int J Oncol. 2015 Sep;47(3):884-90. doi: 10.3892/ijo.2015.3099. Epub 2015 Jul 21.
Lipomas are the most common soft tissue tumors in adults. They often carry chromosome aberrations involving 12q13~15 leading to rearrangements of the HMGA2 gene in 12q14.3, with breakpoints occurring within or outside of the gene. Here, we present eleven lipomas and one osteochondrolipoma with a n
ovel recurrent chromosome aberration, t(12;18)(q14~15;q12~21). Molecular studies on eight of the tumors showed that full-length HMGA2 transcript was expressed in three and a chimeric HMGA2 transcript in five of them. In three lipomas and in the osteochondrolipoma, exons 1-3 of HMGA2 were fused to a sequence of SETBP1 on 18q12.3 or an intragenic sequence from 18q12.3 circa 10 kbp distal to SETBP1. In another lipoma, exons 1-4 of HMGA2 were fused to an intronic sequence of GRIP1 which maps to chromosome band 12q14.3, distal to HMGA2. The ensuing HMGA2 fusion transcripts code for putative proteins which contain amino acid residues of HMGA2 corresponding to exons 1-3 (or exons 1-4 in one case) followed by amino acid residues corresponding to the fused sequences. Thus, the pattern is similar to the rearrangements of HMGA2 found in other lipomas, i.e., disruption of the HMGA2 locus leaves intact exons 1-3 which encode the AT-hooks domains and separates them from the 3'-terminal part of the gene. The fact that the examined osteochondrolipoma had a t(12;18) and a HMGA2-SETBP1 fusion identical to the findings in the much more common ordinary lipomas, underscores the close developmental relationship between the two tumor types.