| 598120783 | Dominant mutations in RP1L1 are responsible for occult macular dystrophy. | Akahori M, etal., Am J Hum Genet. 2010 Sep 10;87(3):424-9. doi: 10.1016/j.ajhg.2010.08.009. | Occult macular dystrophy (OMD) is an inherited macular dystrophy characterized by progressive loss of macular function but normal ophthalmoscopic appearance. Typical OMD is characterized by a central cone dysfunction leading to a loss of vision despite normal ophthalmoscopic appearance, normal fluor escein angiography, and normal full-field electroretinogram (ERGs), but the amplitudes of the focal macular ERGs and multifocal ERGs are significantly reduced at the central retina. Linkage analysis of two OMD families was performed by the SNP High Throughput Linkage analysis system (SNP HiTLink), localizing the disease locus to chromosome 8p22-p23. Among the 128 genes in the linkage region, 22 genes were expressed in the retina, and four candidate genes were selected. No mutations were found in the first three candidate genes, methionine sulfoxide reductase A (MSRA), GATA binding 4 (GATA4), and pericentriolar material 1 (PCM1). However, amino acid substitution of p.Arg45Trp in retinitis pigmentosa 1-like 1 (RP1L1) was found in three OMD families and p.Trp960Arg in a remaining OMD family. These two mutations were detected in all affected individuals but in none of the 876 controls. Immunohistochemistry of RP1L1 in the retina section of cynomolgus monkey revealed expression in the rod and cone photoreceptor, supporting a role of RP1L1 in the photoreceptors that, when disrupted by mutation, leads to OMD. Identification of RP1L1 mutations as causative for OMD has potentially broader implications for understanding the differential cone photoreceptor functions in the fovea and the peripheral retina. | 20826268 | 2010-09-10 |
| 598116582 | Phenotype Variations Caused by Mutations in the RP1L1 Gene in a Large Mainly German Cohort. | Zobor D, etal., Invest Ophthalmol Vis Sci. 2018 Jun 1;59(7):3041-3052. doi: 10.1167/iovs.18-24033. | PURPOSE: Mutations in the retinitis pigmentosa-1-like-1 (RP1L1) gene are the major cause of autosomal dominant occult macular dystrophy (OCMD), while recessive mutations have been linked to autosomal recessive retinitis pigmentosa (arRP). We present the clinical phenotype of a large German OCMD cohort, as well as four RP patients. METHODS: A total of 42 OCMD patients (27 families) and 4 arRP patients (3 families) with genetically confirmed mutations in RP1L1 were included. Genomic DNA was analyzed by targeted analysis of the c.133C>T;p.R45W mutation for all RP or macular dystrophy-related genes. All patients underwent ophthalmologic examination including psychophysical tests, electrophysiology, fundus autofluorescence (FAF), and spectral domain optical coherence tomography (SD-OCT). Follow-up time was up to 12 years. RESULTS: In 25 OCMD index patients genomic testing revealed the heterozygous mutation c.133C>T;p.R45W in RP1L1; one patient was homozygous for the mutation. Two OCMD patients displayed the variants c.3599G>A;p.G1200D and c.2849G>A;p.R950H, respectively, in a heterozygous state. All OCMD patients showed characteristic clinical findings and typical microstructural photoreceptor changes. Two arRP patients displayed the novel homozygous mutations c.3022C>T;p.Q1008* and c.1107G>A;p.W369*, respectively, while two RP-siblings carried the two heterozygous mutations c.455G>A;p.R152Q and c.5959C>T;p.Q1987*, the first also being novel. All arRP cases were mild with disease onset ≈30 years and preserved ERG-responses. CONCLUSIONS: OCMD phenotype showed consistent clinical findings including classical microstructural changes on SD-OCT. An important hallmark of RP1L1-related OCMD is the dominant family history with reduced penetrance. Furthermore, novel mutations in association with arRP were identified, outlining the complexity of the protein. | 30025130 | 2018-06-01 |
| 598114891 | Novel homozygous loss-of-function mutations in RP1 and RP1L1 genes in retinitis pigmentosa patients. | Albarry MA, etal., Ophthalmic Genet. 2019 Dec;40(6):507-513. doi: 10.1080/13816810.2019.1703014. Epub 2019 Dec 13. | Background: Retinitis pigmentosa (RP) is a heterogeneous group of ocular dystrophy. It is challenging to identify the underlying genetic defect in individuals with RP due to huge genetic heterogeneity. This study was designed to delineate the genetic defect(s) underlying RP in extended Saudi familie s and to describe the possible disease mechanism.Materials and Methods: Fundus photography and a high definition optical coherence tomography (HD-OCT) were performed in order to detect the earlier stages of macular degeneration. Genomic DNA was extracted followed by genome-wide SNP genotyping and whole exome sequencing (WES). Exome data was filtered to identify the genetic variant(s) of interest.Results: Clinical examination showed that affected individuals manifest key features of RP. The fundus exam shows pale optic disc and bone spicules at the periphery. OCT shows macular degeneration as early as at the age of 4 years. Whole genome scan by SNPs identified multiple homozygous regions. WES identified a 10 bps novel insertion mutation (c.3544_3545insAGAAAAGCTG; p.Ala1182fs) in the RP1 gene in both affected individuals of family A. Affected individual from family B showed a large insertion of 48 nucleotides in the coding part of the RP1L1 gene (c.3955_3956insGGACTAAAGTAATAGAAGGGCTGCAAGAAGAGAGGGTGCAGTTAGAGG; p.Ala1319fs). Sanger sequencing validates the autosomal recessive inheritance of the mutations.Conclusion: The results strongly suggest that the insertion mutations in the RP1 and RP1L1 genes are responsible for the retinal phenotype in affected individuals from two families. Heterozygous individuals are asymptomatic carriers. We propose that the protective allele in other homozygous regions in heterozygous carriers contribute to the phenotypic variability in asymptomatic individuals. | 31833436 | 2019-12-01 |