Digilio MC, etal., Birth Defects Res A Clin Mol Teratol. 2004 Feb;70(2):95-8.
BACKGROUND: Nonsyndromic hypertrophic cardiomyopathy (HCM) is a primary cardiac disease transmitted as an autosomal dominant trait. Multiple chromosomal loci have been found to be involved in the etiology of this defect. LEOPARD syndrome is a genetic condition characteristically associated with HCM.
Additional features of the syndrome include multiple lentigines, facial anomalies, sensorineural deafness, and growth retardation. Mutations in PTPN11, a gene encoding the protein tyrosine phosphatase SHP-2 located at chromosome 12q24, have been identified in patients with LEOPARD syndrome. CASES: We report here on a patient with HCM presenting with classic clinical features of LEOPARD syndrome, whose father also has HCM, but lacks phenotypic anomalies of the syndrome. Molecular analysis searching for PTPN11 mutations was performed in this family. A missense mutation (836A-->G; Tyr279Cys) in exon 7 of PTPN11 gene was identified in the patient with LEOPARD syndrome, whereas no mutation in PTPN11 gene was detected in the father or in additional family members. CONCLUSIONS: Aggregation of syndromic and nonsyndromic HCM in the same family is an unusual pattern of recurrence. Although genetic heterogeneity of LEOPARD and nonsyndromic HCM is not disputed, the existence of peculiar interactions linking genes causing nonsyndromic HCM and HCM in LEOPARD syndrome can be hypothesized. Different genes can work together, and a more severe cardiac phenotype can be due to additive effects. The involvement of familial susceptibility to specific cardiac malformations based on the presence of common predisposing factors can also be considered. Further molecular studies may shed light on these observations.
Legius E, etal., J Med Genet. 2002 Aug;39(8):571-4.
LEOPARD syndrome is an autosomal dominant disorder with multiple lentigines, congenital cardiac abnormalities, ocular hypertelorism, and retardation of growth. Deafness and genital abnormalities are less frequently found. We report a father and daughter and a third, unrelated patient with LEOPARD sy
ndrome. Recently, missense mutations in the PTPN11 gene located in 12q24 were found to cause Noonan syndrome. All three cases of LEOPARD syndrome reported here have a Y279C mutation in the PTPN11 gene. We hypothesise that some PTPN11 mutations are associated with the typical Noonan syndrome phenotype and that other mutations, such as the Y279C mutation reported here, are associated with both the Noonan syndrome phenotype and with skin pigmentation anomalies, such as multiple lentigines or cafe au lait spots.
PTPN11 gene mutations are common to both patients with Noonan (NS) and LEOPARD syndrome (LS). So far only two recurrent mutations have been identified in LS patients by different research groups, i.e., Tyr279Cys and Thr468Met. In this work we describe the third
PTPN11 mutation that has been found in a single LS patient. The mutation (c.1517A>C) substitutes a proline for a glutamine at amino acid 506 (Gln506Pro) in the phosphatase domain (PTP) of the PTPN11 peptide SHP2. This region is a mutation hotspot. Changes at amino acids 501 to 504 cause NS. Gln506Pro is predicted, by modeling analysis, to seriously disrupt the normal contacts between the regulating N-SH2 and the active PTP domains, leading to hyperactivity of the phosphatase. This report demonstrates that rarer mutations other than Tyr279Cys and Thr468Met can be found in LS patients and the need of screening the whole gene in those negative for the commonest mutations.
Chan G, etal., Cancer Metastasis Rev. 2008 Jun;27(2):179-92. doi: 10.1007/s10555-008-9126-y.
Diverse cellular processes are regulated by tyrosyl phosphorylation, which is controlled by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs). De-regulated tyrosyl phosphorylation, evoked by gain-of-function mutations and/or over-expression of PTKs, contributes to the pathogen
esis of many cancers and other human diseases. PTPs, because they oppose the action of PTKs, had been considered to be prime suspects for potential tumor suppressor genes. Surprisingly, few, if any, tumor suppressor PTPs have been identified. However, the Src homology-2 domain-containing phosphatase Shp2 (encoded by PTPN11) is a bona fide proto-oncogene. Germline mutations in PTPN11 cause Noonan and LEOPARD syndromes, whereas somatic PTPN11 mutations occur in several types of hematologic malignancies, most notably juvenile myelomonocytic leukemia and, more rarely, in solid tumors. Shp2 also is an essential component in several other oncogene signaling pathways. Elucidation of the events underlying Shp2-evoked transformation may provide new insights into oncogenic mechanisms and novel targets for anti-cancer therapy.
Tartaglia M, etal., Br J Haematol. 2005 May;129(3):333-9.
Somatic mutations in PTPN11, the gene encoding the transducer SHP-2, have emerged as a novel class of lesions that upregulate RAS signalling and contribute to leukaemogenesis. In a recent study of 69 children and adolescents with de novo acute myeloid leukaemia
(AML), we documented a non-random distribution of PTPN11 mutations among French-American-British (FAB) subtypes. Lesions were restricted to FAB-M5 cases, where they were relatively common (four of 12 cases). Here, we report on the results of a molecular screening performed on 181 additional unselected patients, enrolled in participating institutions of the Associazione Italiana Ematologia Oncologia Pediatrica-AML Study Group, to provide a more accurate picture of the prevalence, spectrum and distribution of PTPN11 mutations in childhood AML and to investigate their clinical relevance. We concluded that PTPN11 defects do not represent a frequent event in this heterogeneous group of malignancies (4.4%), although they recur in a considerable percentage of patients with FAB-M5 (18%). PTPN11 lesions rarely occur in other subtypes. Within the FAB-M5 group no clear association of PTPN11 mutations with any clinical variable was evident. Nearly two third of the patients with this subtype were found to harbour an activating mutation in PTPN11, NRAS, KRAS2 or FLT3.
Rankin J, etal., Am J Med Genet A. 2013 Aug;161A(8):2027-9. doi: 10.1002/ajmg.a.36005. Epub 2013 Jun 27.
Medulloblastoma is the commonest brain tumor in childhood and in a minority of patients is associated with an underlying genetic disorder such as Gorlin syndrome or familial adenomatous polyposis. Increased susceptibility to certain tumors, including neuroblastoma and some hematological malignancies
, is recognized in disorders caused by mutations in genes encoding components of the RAS signaling pathway which include Noonan syndrome, Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome), Costello syndrome, Cardiofaciocutaneous syndrome, Legius syndrome, and Neurofibromatosis type 1 (NF1), collectively termed RASopathies. Although an association between medulloblastoma and NF1 has been reported, this tumor has not previously been reported in other RASopathies. We present a patient with NSML caused by the recurrent PTPN11 mutation c.1403C > T (p.Thr468Met) in whom medulloblastoma was diagnosed at age 10 years. Medulloblastoma could therefore be part of the tumor spectrum associated with this disorder.
Loh ML, etal., Blood. 2004 Mar 15;103(6):2325-31. Epub 2003 Nov 26.
The PTPN11 gene encodes SHP-2 (Src homology 2 domain-containing protein tyrosine Phosphatase), a nonreceptor tyrosine protein tyrosine phosphatase (PTPase) that relays signals from activated growth factor receptors to p21Ras (Ras) and other signaling molecules.
Mutations in PTPN11 cause Noonan syndrome (NS), a developmental disorder characterized by cardiac and skeletal defects. NS is also associated with a spectrum of hematologic disorders, including juvenile myelomonocytic leukemia (JMML). To test the hypothesis that PTPN11 mutations might contribute to myeloid leukemogenesis, we screened the entire coding region for mutations in 51 JMML specimens and in selected exons from 60 patients with other myeloid malignancies. Missense mutations in PTPN11 were detected in 16 of 49 JMML specimens from patients without NS, but they were less common in other myeloid malignancies. RAS, NF1, and PTPN11 mutations are largely mutually exclusive in JMML, which suggests that mutant SHP-2 proteins deregulate myeloid growth through Ras. However, although Ba/F3 cells engineered to express leukemia-associated SHP-2 proteins cells showed enhanced growth factor-independent survival, biochemical analysis failed to demonstrate hyperactivation of the Ras effectors extracellular-regulated kinase (ERK) or Akt. We conclude that SHP-2 is an important cellular PTPase that is mutated in myeloid malignancies. Further investigation is required to clarify how these mutant proteins interact with Ras and other effectors to deregulate myeloid growth.
Zenker M, etal., Eur J Med Genet. 2007 Jan-Feb;50(1):43-7. Epub 2006 Sep 14.
Noonan syndrome (OMIM 163950) is a common genetic condition with variable clinical expression and genetic heterogeneity. About half of the cases can be accounted to activating mutations in the PTPN11 gene encoding SHP-2. We report on a family with mild, variable
expression of Noonan syndrome in five individuals. Clinical manifestations included short stature, craniofacial anomalies and thorax deformity, but none of the affected family members had a heart defect. Sequencing of the entire coding region of PTPN11 revealed a novel mutation c.1226G-->C in exon 11 predicting the amino acid exchange G409A. This mutation is not located in the previously known mutation clusters. Our observation and the recent report of a mutation affecting a neighbouring residue (T411M) in a family with a variable phenotype suggest that mutations in this particular region of SHP-2 may have effects on the protein that differ from those of the classical mutations.
Noonan syndrome (NS) is characterized by short stature, facial dysmorphisms and congenital heart defects. PTPN11 mutations are the most common cause of NS. Patients with NS have a predisposition for leukemia and certain solid tumors. Data on the incidence of mal
ignancies in NS are lacking. Our objective was to estimate the cancer risk and spectrum in patients with NS carrying a PTPN11 mutation. In addition, we have investigated whether specific PTPN11 mutations result in an increased malignancy risk. We have performed a cohort study among 297 Dutch NS patients with a PTPN11 mutation (mean age 18 years). The cancer histories were collected from the referral forms for DNA diagnostics, and by consulting the Dutch national registry of pathology and the Netherlands Cancer Registry. The reported frequencies of cancer among NS patients were compared with the expected frequencies using population-based incidence rates. In total, 12 patients with NS developed a malignancy, providing a cumulative risk for developing cancer of 23% (95% confidence interval (CI), 8-38%) up to age 55 years, which represents a 3.5-fold (95% CI, 2.0-5.9) increased risk compared with that in the general population. Hematological malignancies occurred most frequently. Two malignancies, not previously observed in NS, were found: a malignant mastocytosis and malignant epithelioid angiosarcoma. No correlation was found between specific PTPN11 mutations and cancer occurrence. In conclusion, this study provides first evidence of an increased risk of cancer in patients with NS and a PTPN11 mutation, compared with that in the general population. Our data do not warrant specific cancer surveillance.
PTPN11, the gene which encodes protein tyrosine phosphatase SHP-2, plays an important role in regulating intracellular signaling. Germline mutations in PTPN11 were first observed in Noonan syndrome, while somatic mutations w
ere identified in hematological myeloid malignancies. Recently, PTPN11 mutations have been reported in children with acute lymphoblastic leukemia (ALL). In the present study, we investigated the prevalence of mutations in PTPN11, RAS and FLT3 in samples from 95 Japanese children with ALL. We observed exon 3 and 8 missense mutations of PTPN11 in 6 children with B precursor ALL. One patient with Down syndrome and ALL had PTPN11 mutation. We also identified RAS mutations in ten patients and FLT3 internal tandem duplication (FLT3/ITD) in one patient. None of the patients had simultaneous mutations in PTPN11 and RAS, while one patient had both PTPN11 and FLT3 mutations. These data suggest that PTPN11 mutation may play an important role for leukemogenesis in a proportion of children with ALL, particularly B precursor ALL.
In this review, we focus on elucidating the cardiac function of germline mutations in the PTPN11 gene, encoding the Src homology-2 (SH2) domain-containing protein tyrosine phosphatase SHP2. PTPN11 mutations cause LEOPARD syn
drome (LS) and Noonan syndrome (NS), two disorders that are part of a newly classified family of autosomal dominant syndromes termed "RASopathies," which are caused by germline mutations in components of the RAS/RAF/MEK/ERK mitogen activating protein kinase pathway. LS and NS mutants have opposing biochemical properties, and yet, in patients, these mutations produce similar cardiac abnormalities. Precisely how LS and NS mutations lead to such similar disease etiology remains largely unknown. Recent complementary in vitro, ex vivo, and in vivo analyses reveal new insights into the functions of SHP2 in normal and pathological cardiac development. These findings also reveal the need for individualized therapeutic approaches in the treatment of patients with LS and NS and, more broadly, patients with the other "RASopathy" gene mutations as well.
Hung CS, etal., J Formos Med Assoc. 2007 Feb;106(2):169-72.
Noonan syndrome (NS) is an autosomal dominant disorder presenting with characteristic facies, short stature, skeletal anomalies, and congenital heart defects. Mutations in protein-tyrosine phosphatase, nonreceptor-type 11 (PTPN11), encoding SHP-2, account for 33
-50% of NS. This study screened for mutations in the PTPN11 gene in 34 Taiwanese patients with NS. Mutation analysis of the 15 coding exons and exon/intron boundaries was performed by polymerase chain reaction and direct sequencing of the PTPN11 gene. We identified 10 different missense mutations in 13 (38%) patients, including a novel missense mutation (855T>G, F285L). These mutations were clustered in exon 3 (n = 6) encoding the N-SH2 domain, exon 4 (n = 2) encoding the C-SH2 domain, and in exons 8 (n = 2) and 13 (n = 3) encoding the PTP domain. In conclusion, this study provides further support that PTPN11 mutations are responsible for Noonan syndrome in Taiwanese patients.
Digilio MC, etal., Am J Hum Genet. 2002 Aug;71(2):389-94. Epub 2002 Jun 7.
Multiple-lentigines (ML)/LEOPARD (multiple lentigines, electrocardiographic-conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness) syndrome is an autosomal dominant condition--characterized by lentigines and cafe au
lait spots, facial anomalies, cardiac defects--that shares several clinical features with Noonan syndrome (NS). We screened nine patients with ML/LEOPARD syndrome (including a mother-daughter pair) and two children with NS who had multiple cafe au lait spots, for mutations in the NS gene, PTPN11, and found, in 10 of 11 patients, one of two new missense mutations, in exon 7 or exon 12. Both mutations affect the PTPN11 phosphotyrosine phosphatase domain, which is involved in <30% of the NS PTPN11 mutations. The study demonstrates that ML/LEOPARD syndrome and NS are allelic disorders. The detected mutations suggest that distinct molecular and pathogenetic mechanisms cause the peculiar cutaneous manifestations of the ML/LEOPARD-syndrome subtype of NS.
Martinelli S, etal., Cancer Genet Cytogenet. 2006 Apr 15;166(2):124-9.
The PTPN11 gene encodes SHP-2, a widely expressed cytoplasmic protein tyrosine phosphatase functioning as a signaling transducer. Germ-line PTPN11 mutations cause Noonan syndrome (NS), a developmental disorder characterized
by an increased risk of malignancies. Recently, a novel class of activating mutations in PTPN11 has been documented as a somatic event in a heterogeneous group of leukemias. Because of the relatively higher prevalence of certain solid tumors in children with NS and the positive modulatory function of SHP-2 in RAS signaling, a wider role for activating PTPN11 mutations in cancer has been hypothesized. Here, we screened a number of solid tumors, including those documented in NS or in which deregulated RAS signaling occurs at significant frequency, for PTPN11 mutations. No disease-associated mutation was identified in rhabdomyosarcoma (n = 13), neuroblastoma (n = 32), melanoma (n = 50), thyroid (n = 85), and colon (n = 48) tumors; a novel missense change, promoting an increased basal phosphatase activity of SHP-2, was observed in one glioma specimen. Our data document that deregulated SHP-2 function does not represent a major molecular event in pediatric and adult tumors, further supporting our previous evidence indicating that the oncogenic role of PTPN11 mutations is cell-context specific.
LEOPARD syndrome (LS) is an autosomal dominant condition with multiple anomalies, including multiple lentigines. LS is caused by mutations in PTPN11, encoding the protein tyrosine phosphatase, SHP-2. We report here 2 unrelated Japanese cases of LS with differen
t PTPN11 mutations (p.Y279C and p.T468P). To elucidate the pathogenesis of multiple lentigines in LS, ultrastructural and immunohistochemical analyses of lentigines and non-lesional skin were performed. Numerous mature giant melanosomes in melanocytes and keratinocytes were observed in lentigines. In addition, the levels of expression of endothelin-1 (ET-1), phosphorylated Akt, mTOR and STAT3 in the epidermis in lentigines were significantly elevated compared with non-lesional skin. In in vitro assays, melanin synthesis in human melanoma cells expressing SHP-2 with LS-associated mutations was higher than in cells expressing normal SHP-2, suggesting that LS-associated SHP-2 mutations might enhance melanin synthesis in melanocytes, and that the activation of Akt/mTOR signalling may contribute to this process.
Chan RJ and Feng GS, Blood. 2007 Feb 1;109(3):862-7. Epub 2006 Oct 19.
Elucidation of the molecular mechanisms underlying carcinogenesis has benefited tremendously from the identification and characterization of oncogenes and tumor suppressor genes. One new advance in this field is the identification of PTPN11 as the first proto-o
ncogene that encodes a cytoplasmic tyrosine phosphatase with 2 Src-homology 2 (SH2) domains (Shp2). This tyrosine phosphatase was previously shown to play an essential role in normal hematopoiesis. More recently, somatic missense PTPN11 gain-of-function mutations have been detected in leukemias and rarely in solid tumors, and have been found to induce aberrant hyperactivation of the Ras-Erk pathway. This progress represents another milestone in the leukemia/cancer research field and provides a fresh view on the molecular mechanisms underlying cell transformation.
BACKGROUND: Tetralogy of Fallot (TOF) is the commonest cyanotic form of congenital heart disease. In 80% of cases, TOF behaves as a complex genetic condition exhibiting significant heritability. As yet, no common genetic variants influencing TOF risk have been robustly identified. M
ETHODS AND RESULTS: Two hundred and seven haplotype-tagging single nucleotide polymorphisms in 22 candidate genes were genotyped in a test cohort comprising 362 nonsyndromic British white patients with TOF together with 717 unaffected parents of patients and 183 unrelated healthy controls. Single nucleotide polymorphisms with suggestive evidence of association in the test cohort (P<0.01) were taken forward for genotyping in an independent replication cohort comprising 392 cases of TOF, 218 unaffected parents of patients, and 1319 controls. Significant association was observed for 1 single nucleotide polymorphism, rs11066320 in the PTPN11 gene, in both the test and the replication cohort. Genotype at rs11066320 was associated with a per-allele odds ratio of 1.34 (95% confidence interval [CI], 1.19 to 1.52; P=2.9 × 10(-6)) in the total cohort of TOF cases and controls; this remained highly significant after Bonferroni correction for 207 analyses (corrected P=0.00061). Genotype at rs11066320 was responsible for a population-attributable risk of TOF of approximately 10%. CONCLUSIONS: Common variation in the linkage disequilibrium block including the PTPN11 gene contributes to the risk of nonsyndromic TOF. Rare mutations in PTPN11 are known to cause the autosomal dominant condition Noonan syndrome, which includes congenital heart disease, by upregulating Ras/mitogen-activated protein kinase (MAPK) signaling. Our results suggest a role for milder perturbations in PTPN11 function in sporadic, nonsyndromic congenital heart disease.
Kitsiou-Tzeli S, etal., Horm Res. 2006;66(3):124-31. Epub 2006 Jun 23.
BACKGROUND: Noonan syndrome NS (OMIM 163950) is an autosomal dominant developmental disorder characterized mainly by typical facial dysmorphism, growth retardation and variable congenital heart defects. In unrelated individuals with sporadic or familial NS, heterozygous missense point mutations in
the gene PTPN11 (OMIM 176876) have been confirmed, with a clustering of mutations in exons 3 and 8, the mutation A922G Asn308Asp accounting for nearly 25% of cases. PATIENT AND METHODS: We report a 7-year-old boy with short stature and some other clinical features of NS, who has been investigated by molecular analysis for the presence of mutations in the PTPN11 gene. RESULT: The de novo mutation A172G in the exon 3 of the PTPN11 gene, predicting an Asn58Asp substitution, has been found. To the best of our knowledge, this specific mutation has only been described once before, but this is the first report of detailed clinical data suggesting a mild phenotype. CONCLUSION: Detailed clinical phenotype in every patient with major or minor features of NS and molecular identification of PTPN11 gene mutation may contribute to a better phenotype-genotype correlation.
Kim J, etal., Ann Dermatol. 2011 May;23(2):232-5. doi: 10.5021/ad.2011.23.2.232. Epub 2011 May 27.
LEOPARD multiple congenital anomaly syndrome inherited in an autosomal dominant manner. LEOPARD is an acronym for Lentigines, Eletrocardiographic conduction defects, Ocular hypertelorism, Pulmonary valve stenosis, Abnormalities of the genitalia, Retardation of growth, and Deafness. Clinical diagnosi
s is primarily based on multiple lentigines, typical facial features, and the presence of hypertrophic cardiomyopathy and/or cafe-au-lait macules. We report a typical case of LEOPARD syndrome with PTPN11 gene mutation associated with lentigines, electrocardiograph abnormality, ocular hypertelorism, pulmonary valve stenosis, growth retardation, and sensorineural hearing loss.
Ferreira LV, etal., Arq Bras Endocrinol Metabol. 2007 Apr;51(3):450-6.
INTRODUCTION: Around 50% of Noonan syndrome (NS) patients present heterozygous mutations in the PTPN11 gene. AIM: To evaluate the frequency of mutations in the PTPN11 in patients with NS, and perform phe
notype-genotype correlation. PATIENTS: 33 NS patients (23 males). METHODS: DNA was extracted from peripheral blood leukocytes, and all 15 PTPN11 exons were directly sequenced. RESULTS: Nine different missense mutations, including the novel P491H, were found in 16 of 33 NS patients. The most frequently observed features in NS patients were posteriorly rotated ears with thick helix (85%), short stature (79%), webbed neck (77%) and cryptorchidism (60%) in boys. The mean height SDS was -2.7 +/- 1.2 and BMI SDS was -1 +/- 1.4. Patients with PTPN11 mutations presented a higher incidence of pulmonary stenosis than patients without mutations (38% vs. 6%, p< 0.05). Patients with and without mutations did not present differences regarding height SDS, BMI SDS, frequency of thorax deformity, facial characteristics, cryptorchidism, mental retardation, learning disabilities, GH peak at stimulation test and IGF-1 or IGFBP-3 SDS. CONCLUSION: We identified missense mutations in 48.5% of the NS patients. There was a positive correlation between the presence of PTPN11 mutations and pulmonary stenosis frequency in NS patients.
Lo FS, etal., Int J Hematol. 2008 Oct;88(3):287-90. doi: 10.1007/s12185-008-0157-5. Epub 2008 Aug 30.
We describe the previously unreported condition of Hodgkin's lymphoma in a patient with Noonan syndrome caused by germ-line mutations (1507G > C, Gly503Arg) in exon 13 of the PTPN11 gene. PTPN11, encoding SHP-2, is the first
identified gene for Noonan syndrome and also the first identified proto-oncogene that encodes a tyrosine phosphatase. This somatic mutation has ever been reported in juvenile myelomonocytic leukemia (JMML). Furthermore, the functional analysis of this mutant SHP-2 has shown it to have enhanced phosphatase activity. Mutational analysis of PTPN11 gene in cancer cells and understanding how SHP-2 contributes to oncogenesis will provide new insight into the pathogenesis of Hodgkin's lymphoma.
Noonan syndrome (NS) is an autosomal dominant disorder characterized by multiple dysmorphic features and a broad spectrum of congenital heart defects. Specific mutations of the PTPN11 gene are associated with 50% of the NS cases and 90% of the multiple lentigin
es/LEOPARD syndrome (ML/LS) cases. These two allelic conditions have several overlapping clinical features. This study describes the association between the Gln510Glu mutation of the PTPN11 gene and lethal progressive hypertrophic cardiomyopathy (HCM) in a newborn with the NS phenotype. The findings confirm the intriguing relationship between site-specific mutations of the PTPN11 gene and rapidly progressive HCM.
Most BRAF (V600E) mutant melanomas are sensitive to selective BRAF inhibitors, but BRAF mutant colon cancers are intrinsically resistant to these drugs because of feedback activation of EGFR. We performed an RNA-interference-based genetic screen in BRAF mutant colon cancer cells to search for phosp
hatases whose knockdown induces sensitivity to BRAF inhibition. We found that suppression of protein tyrosine phosphatase non-receptor type 11 (PTPN11) confers sensitivity to BRAF inhibitors in colon cancer. Mechanistically, we found that inhibition of PTPN11 blocks signaling from receptor tyrosine kinases (RTKs) to the RAS-MEK-ERK pathway. PTPN11 suppression is lethal to cells that are driven by activated RTKs and prevents acquired resistance to targeted cancer drugs that results from RTK activation. Our findings identify PTPN11 as a drug target to combat both intrinsic and acquired resistance to several targeted cancer drugs. Moreover, activated PTPN11 can serve as a biomarker of drug resistance resulting from RTK activation.
Derbent M, etal., Am J Med Genet A. 2010 Nov;152A(11):2768-74. doi: 10.1002/ajmg.a.33713.
Reports on Noonan syndrome (NS) have documented multiple types of coagulation defects and bleeding diathesis, and a wide range of clinical presentations. Early studies suggested that a large proportion of NS patients have coagulation defects, whereas more recent reports indicate low rates of coagulo
pathy. The aim of this study was to evaluate phenotypic characteristics, PTPN11 gene mutations, and hematological and coagulation parameters in 30 clinically diagnosed cases of NS. One of the NS patients had a history of easy bruising; however, his hematological and coagulation tests were normal. None of the other patients had clinical coagulation problems. In the NS group, values for platelet count, activity of factors XI, XII, and protein C were significantly lower than the corresponding means for the control group. However, the results of coagulation tests in the NS group were diagnostically inconclusive and only one patient had clinical signs of coagulopathy. Interestingly, two NS patients had low protein C activity. One of these children had an A1517C mutation and transient myelodysplasia. The other patient had a C1528G mutation in exon 13 that has not been reported previously. Neither of these individuals experienced a thrombotic event or any complication during approximately 3 years of follow-up. For all patients clinically diagnosed with NS, a thorough history of coagulation issues should be taken and first-line coagulation testing should be done to evaluate for bleeding diathesis. However, if these assessments reveal nothing abnormal, complications related to coagulation are unlikely and extensive testing is unnecessary.
We describe the "LEOPARD syndrome (LS) phenotype" associated with the Gln510Glu mutation of the PTPN11 gene in two patients presenting with rapidly progressive severe biventricular obstructive hypertrophic cardiomyopathy and structural abnormalities of the mitra
Oishi K, etal., Hum Mol Genet. 2006 Feb 15;15(4):543-53. Epub 2006 Jan 6.
Mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase SHP-2, causes Noonan syndrome (NS), an autosomal dominant disorder with pleomorphic developmental abnormalities. Certain germline and somatic PTPN11
> mutations cause leukemias. Mutations have gain-of-function (GOF) effects with the commonest NS allele, N308D, being weaker than the leukemia-causing mutations. To study the effects of disease-associated PTPN11 alleles, we generated transgenic fruitflies with GAL4-inducible expression of wild-type or mutant csw, the Drosophila orthologue of PTPN11. All three transgenic mutant CSWs rescued a hypomorphic csw allele's eye phenotype, documenting activity. Ubiquitous expression of two strong csw mutant alleles were lethal, but did not perturb development from some CSW-dependent receptor tyrosine kinase pathways. Ubiquitous expression of the weaker N308D allele caused ectopic wing veins, identical to the EGFR GOF phenotype. Epistatic analyses established that csw(N308D)'s ectopic wing vein phenotype required intact EGF ligand and receptor, and that this transgene interacted genetically with Notch, DPP and JAK/STAT signaling. Expression of the mutant csw transgenes increased RAS-MAP kinase activation, which was necessary but not sufficient for transducing their phenotypes. The findings from these fly models provided hypotheses testable in mammalian models, in which these signaling cassettes are largely conserved. In addition, these fly models can be used for sensitized screens to identify novel interacting genes as well as for high-throughput screening of therapeutic compounds for NS and PTPN11-related cancers.
Ganigara M, etal., Ann Pediatr Cardiol. 2011 Jan;4(1):74-6. doi: 10.4103/0974-2069.79631.
In LEOPARD syndrome, mutations affecting exon 13 of the PTPN11 gene have been correlated with a rapidly progressive severe biventricular obstructive hypertrophic cardiomyopathy (HCM). This is a report of early onset severe HCM in an infant with LEOPARD syndrome
We report a neonate with hypertrophic cardiomyopathy and lethal myeloproliferative disorder with excessively proliferating immature erythroid precursors infiltrating non-hematopoietic organs. Mutational analysis uncovered a germline mutation in the Noonan syndrome/LEOPARD syndrome (NS/LS) gene PTPN11
style='font-weight:700;'>PTPN11. In conclusion, this case report suggests that congenital myeloproliferative disorders in association with germline PTPN11 mutations may affect the erythroid lineage.
Tartaglia M, etal., Nat Genet. 2001 Dec;29(4):465-8.
Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding d
iatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.
Kontaridis MI, etal., J Biol Chem. 2006 Mar 10;281(10):6785-92. Epub 2005 Dec 23.
Multiple lentigines/LEOPARD syndrome (LS) is a rare, autosomal dominant disorder characterized by Lentigines, Electrocardiogram abnormalities, Ocular hypertelorism, Pulmonic valvular stenosis, Abnormalities of genitalia, Retardation of growth, and Deafness. Like the more common Noonan syndrome (NS)
, LS is caused by germ line missense mutations in PTPN11, encoding the protein-tyrosine phosphatase Shp2. Enzymologic, structural, cell biological, and mouse genetic studies indicate that NS is caused by gain-of-function PTPN11 mutations. Because NS and LS share several features, LS has been viewed as an NS variant. We examined a panel of LS mutants, including the two most common alleles. Surprisingly, we found that in marked contrast to NS, LS mutants are catalytically defective and act as dominant negative mutations that interfere with growth factor/Erk-mitogen-activated protein kinase-mediated signaling. Molecular modeling and biochemical studies suggest that LS mutations contort the Shp2 catalytic domain and result in open, inactive forms of Shp2. Our results establish that the pathogenesis of LS and NS is distinct and suggest that these disorders should be distinguished by mutational analysis rather than clinical presentation.
Mutations in the PTPN11 gene are known to cause a large fraction of the cases of Noonan syndrome. The objective of this study was to determine the PTPN11 gene mutation rate in a cohort of clinically well-characterized Brazi
lian patients with Noonan or Noonan-like syndromes and to study the genotype-phenotype correlation. Fifty probands with Noonan syndrome ascertained according to well-established diagnostic criteria, 3 with LEOPARD syndrome, 5 with Noonan-like/multiple giant cell lesion syndrome, and 3 with neurofibromatosis/ Noonan were enrolled in this study. Mutational analysis was performed using denaturing high-performance liquid chromatography (DHPLC) followed by sequencing of amplicons with an aberrant elution profile. We detected missense mutations in the PTPN11 gene in 21 probands with Noonan syndrome (42%), in all 3 patients with LEOPARD syndrome, and in 1 case with Noonan-like/multiple giant cell lesion syndrome. One patient with neurofibromatosis-Noonan syndrome had a mutation in both the PTPN11 and NF1 genes. The only anomalies that reached statistical significance when comparing probands with and without mutations were the hematological abnormalities. Our data confirms that Noonan syndrome is a genetically heterogeneous disorder, with mutations in the PTPN11 gene responsible for roughly 50% of the cases. A definitive genotype-phenotype correlation has not been established, but the T73I mutation seems to predispose to a myeloproliferative disorder. Regarding Noonan-like syndromes, mutation of the PTPN11 gene is the main causal factor in LEOPARD syndrome, and it also plays a role in neurofibromatosis-Noonan syndrome. Noonan- like/multiple giant cell lesion syndrome, part of the spectrum of Noonan syndrome, is also heterogeneous.
We report five cases of multiple giant cell lesions in patients with typical Noonan syndrome. Such association has frequently been referred to as Noonan-like/multiple giant cell (NL/MGCL) syndrome before the molecular definition of Noonan syndrome. Two patients show mutations in PTPN11
ight:700;'>PTPN11 (p.Tyr62Asp and p.Asn308Asp) and three in SOS1 (p.Arg552Ser and p.Arg552Thr). The latter are the first SOS1 mutations reported outside PTPN11 in NL/MGCL syndrome. MGCL lesions were observed in jaws ('cherubism') and joints ('pigmented villonodular synovitis'). We show through those patients that both types of MGCL are not PTPN11-specific, but rather represent a low penetrant (or perhaps overlooked) complication of the dysregulated RAS/MAPK signaling pathway. We recommend discarding NL/MGCL syndrome from the nosology, as this presentation is neither gene-nor allele-specific of Noonan syndrome; these patients should be described as Noonan syndrome with MGCL (of the mandible, the long bone...). The term cherubism should be used only when multiple giant cell lesions occur without any other clinical and molecular evidence of Noonan syndrome, with or without mutations of the SH3BP2 gene.
The LEOPARD syndrome is a complex of multisystemic congenital abnormalities characterized by lentiginosis, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormalities of genitalia, retardation of growth, and deafness (sensorineural). Mutations in PTPN11
e='font-weight:700;'>PTPN11, a gene encoding the protein tyrosine phosphatase SHP-2 located on chromosome 12q24.1, have been identified in 88% of patients with LEOPARD syndrome. A missense mutation (836-->G; Tyr279Cys) in exon 7 of PTPN11 gene was identified in this patient and his mother with LEOPARD syndrome. This mutation is one of the two recurrent mutations most often associated with the syndrome. Leukemia has not previously been reported in patients with LEOPARD syndrome. The authors describe a 13-year-old boy diagnosed with both LEOPARD syndrome and acute myelomonocytic leukemia (AML-M4).
BACKGROUND: Mutations in the PTPN11 gene are the main cause of Noonan syndrome (NS). The presence of some NS features is a frequent finding in children with idiopathic short stature (ISS). These children can represent the milder end of the NS clinical spectrum a
nd PTPN11 is a good candidate for involvement in the pathogenesis of ISS. OBJECTIVE: To evaluate the presence of mutations in PTPN11 in ISS children who presented NS-related signs and in well-characterized NS patients. PATIENTS AND METHODS: We studied 50 ISS children who presented at least two NS-associated signs but did not fulfil the criteria for NS diagnosis. Forty-nine NS patients diagnosed by the criteria of van der Burgt et al. were used to assess the adequacy of these criteria to select patients for PTPN11 mutation screening. The coding region of PTPN11 was amplified by polymerase chain reaction (PCR), followed by direct sequencing. RESULTS: No mutations or polymorphisms were found in the coding region of the PTPN11 gene in ISS children. Nineteen of the 49 NS patients (39%) presented mutations in PTPN11. No single characteristic enabled us to distinguish between NS patients with or without PTPN11 mutations. CONCLUSION: Considering that no mutations were found in the present cohort with NS-related signs, it is unlikely that mutations would be found in unselected ISS children. The van der Burgt et al. criteria are adequate in attaining NS diagnosis and selecting patients for molecular studies. Mutations in the PTPN11 gene are commonly involved in the pathogenesis of NS but are not a common cause of ISS.
OBJECTIVE: Since gastric cancer (GC) cells exhibited higher grades of SHP-2 encoded by PTPN11 than normal cells, it would be intriguing to explore whether PTPN11 single nucleotide polymorphisms (SNPs) would influe
nce chemotherapy effectiveness and GC prognosis among a Chinese population. METHODS: Altogether 430 late-stage GC patients and 960 healthy controls matched with age and sex were incorporated. Three PTPN11 SNPs (i.e. rs7958372, rs12229892 and rs2301756) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Chemotherapies of cisplatin and 5-fluorouracil were performed for 4 cycles. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using the logistic regression. Survival curves were plotted with Kaplan-Meier method and the COX proportional hazard model was used to analyze independent factors for GC prognosis. RESULTS: For rs12229892, AA and GA genotypes would cause 1.60-fold increase of GC risk in comparison to homozygote GG (OR = 1.60; 95% CI = 1.23-2.07; P < 0.001). The A allele of rs2301756 was significantly associated with a decrease in the risk of GC when compared with G allele (OR = 0.81; 95% CI = 0.65-0.99; P = 0.043). Results from both 2-cycle and 4-cycle chemotherapy suggested that chemotherapy was significantly more effective for GA and AA genotypes of rs2301756 compared with homozygote GG (P < 0.001). Besides, the joint impact of rs12229892 (AA) and environmental factors (i.e. smoking, family history, intake of processed food and H .pylori infection) on GC risk was considered as positive interaction, while that of rs2301756 (AA) and the above parameters was deemed as negative interaction. Finally, differentiation degree, axillary lymph node metastasis, rs12229892 and rs2301756 appeared as independent risk factors for GC development (all P < 0.05). CONCLUSION: Since rs2301756 polymorphism of PTPN11 was associated with reduced risk of GC and better effects of chemotherapy on GC, it can be considered as a predictor of GC prognosis and the treatment target for GC.
Tartaglia M, etal., Am J Hum Genet. 2006 Feb;78(2):279-90. Epub 2005 Dec 7.
Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our pre
viously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations.
Noonan syndrome (NS) is characterized by short stature, characteristic facial features, and heart defects. Recently, missense mutations of PTPN11, the gene encoding protein tyrosine phosphatase (PTP) SHP-2, were identified in patients with NS. Further, somatic m
utations in PTPN11 were detected in childhood leukemia. Recent studies showed that the phosphatase activities of five mutations identified in NS and juvenile myelomonocytic leukemia (JMML) were increased. However, the functional properties of the other mutations remain unidentified. In this study, in order to clarify the differences between the mutations identified in NS and leukemia, we examined the phosphatase activity of 14 mutants of SHP-2. We identified nine mutations, including a novel F71I mutation, in 16 of 41 NS patients and two mutations, including a novel G503V mutation, in three of 29 patients with leukemia. Immune complex phosphatase assays of individual mutants transfected in COS7 cells showed that ten mutants identified in NS and four mutants in leukemia showed 1.4-fold to 12.7-fold increased activation compared with wild-type SHP-2. These results suggest that the pathogenesis of NS and leukemia is associated with enhanced phosphatase activity of mutant SHP-2. A comparison of the phosphatase activity in each mutant and a review of previously reported cases showed that high phosphatase activity observed in mutations at codons 61, 71, 72, and 76 was significantly associated with leukemogenesis.
Athota JP, etal., BMC Med Genet. 2020 Mar 12;21(1):50. doi: 10.1186/s12881-020-0986-5.
BACKGROUND: Noonan syndrome (NS), an autosomal dominant developmental genetic disorder, is caused by germline mutations in genes associated with the RAS / mitogen-activated protein kinase (MAPK) pathway. In several studies PTPN11 is one of the genes w
ith a significant number of pathogenic variants in NS-affected patients. Therefore, clinically diagnosed NS individuals are initially tested for pathogenic variants in PTPN11 gene to confirm the relationship before studying genotype-phenotype correlation. METHODS: Individuals (363) with clinically diagnosed NS from four hospitals in South India were recruited and the exons of PTPN11 gene were sequenced. RESULTS: Thirty-two previously described pathogenic variants in eight different exons in PTPN11 gene were detected in 107 patients, of whom 10 were familial cases. Exons 3, 8 and 13 had the highest number of pathogenic variants. The most commonly identified pathogenic variants in this series were in exon 8 (c.922A > G, c.923A > G), observed in 22 of the affected. Congenital cardiac anomalies were present in 84% of the mutation-positive cohort, the majority being defects in the right side of the heart. The most common facial features were downward-slanting palpebral fissures, hypertelorism and low-set posteriorly rotated ears. Other clinical features included short stature (40%), pectus excavatum (54%) and, in males, unilateral or bilateral cryptorchidism (44%). CONCLUSION: The clinical features and mutational spectrum observed in our cohort are similar to those reported in other large studies done worldwide. This is the largest case series of NS-affected individuals with PTPN11 mutations described till date from India.
Chen Y, etal., Genes Chromosomes Cancer. 2006 Jun;45(6):583-91.
PTPN11 has been identified as a causative gene in Noonan syndrome (NS), responsible for about 50% of cases of NS. Given the association between NS and an increased risk of some malignancies, notably leukemia and probably some solid tumors including neuroblastoma
(NB) and rhabdomyosarcoma (RMS), recent studies have reported that gain-of-function somatic mutations in PTPN11 occur in some hematological malignancies, especially de novo juvenile myelomonocytic leukemia (JMML) and in some solid tumors such as NB, although at a low frequency. In a screen for mutations of PTPN11 in 7 cell lines and 30 fresh tumors of RMS and in 25 cell lines and 40 fresh tumors of NB, we identified a missense mutation (A72T) in an embryonal RMS patient. In the RMS samples, we also detected mutations of NRAS in 1 cell line and 1 patient; both mutations were in embryonal RMSs and had no PTPN11 mutations. No mutations of PTPN11 were detected in NB. In 95 leukemia cell lines and 261 fresh leukemia samples including 22 JMMLs, 9 kinds of missense mutations were detected in 17 leukemia samples, which included 11 (50.0%) mutations in JMML samples and lower frequencies in other hematological malignancies. Furthermore, we identified 4 (18.2%) NRAS mutations and 1 (4.5%) KRAS mutation in 5 JMML samples, 1 of which had a concomitant PTPN11 mutation. Our data suggest that mutations of PTPN11 as well as RAS play a role in the pathogenesis of not only myeloid hematological malignancies but also a subset of RMS malignancies.
BACKGROUND AND OBJECTIVE: LEOPARD syndrome (MIM #151100) is a rare autosomal dominant condition with characteristic skin anomalies, facial dysmorphism, hypertelorism, cardiac anomalies, and occasional conductive hearing loss. Mutations in the PTPN11 g
ene are described as the causal gene defect for the clinical features of Noonan syndrome (MIM #163950), but also for LEOPARD syndrome. For confirmation of the clinical diagnosis of multiple lentigines syndrome, the molecular genetic mutation analysis in the PTPN11 gene could be helpful. PATIENTS/METHODS: We report on a family with LEOPARD syndrome in which the mutation analysis in the father and his daughter in the PTPN11 gene was carried out us:ng PCR, DHPLC, and automated sequencing. RESULTS: We could identify both father and daughter as carriers of the mutation Y279C in the PTPN11 gene, which is known as a disease-related mutation. CONCLUSIONS: The allelic affinity to Noonan syndrome could thus be further supported.
Germline and somatic gain-of-function mutations in tyrosine phosphatase PTPN11 (SHP-2) are associated with juvenile myelomonocytic leukemia (JMML), a myeloproliferative disease (MPD) of early childhood. The mechanism by which PTPN11
1 mutations induce this disease is not fully understood. Signaling partners that mediate the pathogenic effects of PTPN11 mutations have not been explored. Here we report that germ line mutation Ptpn11(D61G) in mice aberrantly accelerates hematopoietic stem cell (HSC) cycling, increases the stem cell pool, and elevates short-term and long-term repopulating capabilities, leading to the development of MPD. MPD is reproduced in primary and secondary recipient mice transplanted with Ptpn11(D61G/+) whole bone marrow cells or purified Lineage(-)Sca-1(+)c-Kit(+) cells, but not lineage committed progenitors. The deleterious effects of Ptpn11(D61G) mutation on HSCs are attributable to enhancing cytokine/growth factor signaling. The aberrant HSC activities caused by Ptpn11(D61G) mutation are largely corrected by deletion of Gab2, a prominent interacting protein and target of Shp-2 in cell signaling. As a result, MPD phenotypes are markedly ameliorated in Ptpn11(D61G/+)/Gab2(-/-) double mutant mice. Collectively, our data suggest that oncogenic Ptpn11 induces MPD by aberrant activation of HSCs. This study also identifies Gab2 as an important mediator for the pathogenic effects of Ptpn11 mutations.
Demir K, etal., Turk J Pediatr. 2010 May-Jun;52(3):321-4.
Noonan syndrome is an autosomal dominant disorder characterized by short stature, typical craniofacial features, and congenital heart defects. The underlying genetic defects were not clear until 2001. This report is the first to describe a molecular analysis and associated clinical features of a Tur
kish mother and son, who were clinically diagnosed as Noonan syndrome when the boy was referred to our department due to short stature. The analysis revealed an A --> G transition at position 923 in exon 8 of the PTPN11 gene, indicating an Asn308Ser substitution.
Noonan syndrome (NS), an autosomal dominant multisystem disorder, is caused by the dysregulation of the RAS-MAPK pathway and is characterized by short stature, heart defects, pectus excavatum, webbed neck, learning problems, cryptorchidism and facial dysmorphism. We here present the clinical and mo
lecular characterization of a family with NS and multiple giant cell lesions (MGCLs). The proband is a 12-year-old girl with NS and MGCL. Her mother shows typical NS without MGCL. Whole-exome sequencing of the girl, her mother and her healthy maternal grand parents revealed a previously unobserved mutation in exon 5 of the PTPN11 gene (c.598 A>T; p.N200Y), transmitted from the mother to the proband. As no other modification in the RAS-MAPK pathway genes as related to Rasopathies was detected in the proband, this report demonstrates for the first time that a unique mutation affecting this, otherwise unaffected signaling route, can cause both NS and NS/MGCL in the same family. This observation further confirms that NS/MGCL is not a distinct entity but rather that MGCL represents a rare complication of NS. Moreover, the localization of the p.N200Y mutation suggests an alternative molecular mechanism for the excessive phosphatase activity of the PTPN11-encoded protein.
A male infant with clinical features of Noonan syndrome and rapidly progressive hypertrophic cardiomyopathy is reported. He manifested severe heart failure and failure to thrive. Administration of propranolol and cibenzoline improved ventricular outflow tract obstruction, leading to catch-up growth.
Genetic analysis of the patient revealed a novel missense mutation in the PTPN11 gene. CONCLUSION: This is the first description of a patient with a Gln510Glu mutation in the protein-tyrosine phosphatase, non-receptor type 11 gene. This specific mutation may be associated with a rapidly progressive hypertrophic cardiomyopathy.
Sarkozy A, etal., Eur J Hum Genet. 2004 Dec;12(12):1069-72.
Noonan (NS) and multiple lentigines/LEOPARD syndromes (LS) have proved to be associated with distinct PTPN11 mutations. Noonan-like/multiple giant cell lesion syndrome (NLS) is a rare disease, characterised by short stature, facial dysmorphisms, congenital heart
defect (CHD) and central giant cell lesions. PTPN11 gene mutations have been reported in a single NLS family and two sporadic patients. Here we report a patient with a complex phenotype progressing throughout the years from NS at birth towards LS and NLS. PTPN11 gene analysis disclosed a novel missense mutation (Ala461Thr) in exon 12, affecting the consensus sequence of the SHP2-active site. This observation joins together NS and LS to NLS into a unique genetic defect, broadening the clinical and molecular spectrum of PTPN11-related disorders.
Takahashi I, etal., Tohoku J Exp Med. 2006 Mar;208(3):255-9.
Human growth is a highly complicated process, but it is obviously influenced by a genetic factor. Recent genome-wide linkage analyses suggested some genetic regions underlying stature variations. However, any specific genes underlying stature variations have not been identified. Noonan syndrome (NS)
is an autosomal dominant disorder clinically characterized by short stature, minor facial anomalies, and congenital heart defects. Recently, PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) has been identified as a major responsible gene for NS, causing about half of the affected individuals. We herein report a large family demonstrating NS caused by one of the common PTPN11 mutations, c.188 A > G (Y63C). In this family, the patients were apparently healthy, but heterozygosity of the c.188 A > G (Y63C) mutation was related to growth impairment. This finding suggested that PTPN11 genetic variants contribute to adult height in the general population. However, c.188 A > G (Y63C) was not identified in 96 short individuals from the general population of 2,281 healthy adults. Thus, it is unlikely that PTPN11 is one of the genes underlying stature variations in the general population.
Fahrner JA, etal., Am J Med Genet A. 2012 Jun;158A(6):1414-21. doi: 10.1002/ajmg.a.35363. Epub 2012 May 14.
The RAS-MAPK pathway is critical for human growth and development. Abnormalities at different steps of this signaling cascade result in neuro-cardio-facial-cutaneous syndromes, or the RASopathies, a group of disorders with overlapping yet distinct phenotypes. RASopathy patients have variable degree
s of intellectual disability, poor growth, relative macrocephaly, ectodermal abnormalities, dysmorphic features, and increased risk for certain malignancies. Congenital heart disease, particularly hypertrophic cardiomyopathy (HCM) and pulmonic stenosis, are prominent features in these disorders. Significant locus heterogeneity exists for many of the RASopathies. Traditionally, these diseases were thought to be inherited in an autosomal dominant manner. However, recently patients with defects in two components of this pathway and overlapping features of various forms of Noonan syndrome and neurofibromatosis 1 and have been reported. Here we present a patient with severe, progressive neonatal HCM, elevated urinary catecholamine metabolites, and dysmorphic features in whom we identified a known LEOPARD syndrome-associated PTPN11 mutation (c.1403 C > T; p.T468M) and a novel, potentially pathogenic missense SOS1 variant (c.1018 C > T; p.P340S) replacing a rigid nonpolar imino acid with a polar amino acid at a highly conserved position. We describe detailed clinical manifestations, cardiac histopathology, and the molecular genetic findings. Oligogenic models of inheritance with potential synergistic effects should be considered in the RASopathies.
Bentires-Alj M, etal., Cancer Res. 2004 Dec 15;64(24):8816-20.
The SH2 domain-containing protein-tyrosine phosphatase PTPN11 (Shp2) is required for normal development and is an essential component of signaling pathways initiated by growth factors, cytokines, and extracellular matrix. In many of these pathways, Shp2 acts up
stream of Ras. About 50% of patients with Noonan syndrome have germ-line PTPN11 gain of function mutations. Associations between Noonan syndrome and an increased risk of some malignancies, notably leukemia and neuroblastoma, have been reported, and recent data indicate that somatic PTPN11 mutations occur in children with sporadic juvenile myelomonocytic leukemia, myelodysplasic syndrome, B-cell acute lymphoblastic leukemia, and acute myelogenous leukemia (AML). Juvenile myelomonocytic leukemia patients without PTPN11 mutations have either homozygotic NF-1 deletion or activating RAS mutations. Given the role of Shp2 in Ras activation and the frequent mutation of RAS in human tumors, these data raise the possibility that PTPN11 mutations play a broader role in cancer. We asked whether PTPN11 mutations occur in other malignancies in which activating RAS mutations occur at low but significant frequency. Sequencing of PTPN11 from 13 different human neoplasms including breast, lung, gastric, and neuroblastoma tumors and adult AML and acute lymphoblastic leukemia revealed 11 missense mutations. Five are known mutations predicted to result in an activated form of Shp2, whereas six are new mutations. Biochemical analysis confirmed that several of the new mutations result in increased Shp2 activity. Our data demonstrate that mutations in PTPN11 occur at low frequency in several human cancers, especially neuroblastoma and AML, and suggest that Shp2 may be a novel target for antineoplastic therapy.
Hamajima N, etal., Asian Pac J Cancer Prev. 2008 Apr-Jun;9(2):217-20.
Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) of gastric epithelial cells interacts with cagA from Helicobacter pylori (H. pylori). Our previous studies found the AA genotype of a G/A single nucleotide polymorphism at intron 3 (rs2301756) of PTPN11
TPN11 gene, which encodes SHP-2, to be associated with a lower risk of gastric atrophy. The present study aimed to examine the association with gastric atrophy among the subjects of a case-control study of peptic ulcer disease (PUD) conducted in the Uzbek Republic. Cases were 95 patients (61 males and 34 females) with PUD aged 16 to 85 years. Controls were 102 hospital volunteers (42 males and 60 females) including 42 patients with miscellaneous diseases, aged 15 to 75 years. Gastric atrophy was evaluated with serum pepsinogens (PG1<70 ng/ml and PG1/PG2<3). Polymorphisms of PTPN11 at intron 3 (rs2301756) and intron10 (rs12229892) were genotyped with PCR with confronting two-pair primers (PCR-CTPP). Anti-cagA IgG antibody was detected in 93.7% of cases and 77.5% in controls. Gastric atrophy was observed in 24.2% of the PUD patients and 33.3% in the controls. The A allele at intron 3 was completely linked to the G allele at intron 10. The age, sex, and group (cases and controls) adjusted odds ratio of gastric atrophy was 0.18 (95% confidence interval, 0.04-0.86) for intron 3 GG genotype relative to AA genotype. Since the finding was opposite to that among Japanese, the H. pylori strains and/or lifestyle in Uzbekistan might modify the association.
Hishida A, etal., BMC Gastroenterol. 2009 Jul 9;9:51. doi: 10.1186/1471-230X-9-51.
BACKGROUND: Previous studies have revealed the significance of Helicobacter pylori (H. pylori) infection as a risk factor of gastric cancer. Cytotoxin-associated gene A (cagA) positivity has been demonstrated to determine the clinical outcome of H. pylori infection in the presence of SHP-
2 (src homology 2 domain-containing protein tyrosine phosphatase-2). This study aimed to examine the formerly reported association of G/A PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) polymorphism (rs2301756) with gastric atrophy, as well as the association with gastric cancer in a Japanese population using a large sample size. METHODS: Study subjects were 583 histologically diagnosed patients with gastric cancer (429 males and 154 females) and age- and sex-frequency-matched 1,636 non-cancer outpatients (1,203 males and 433 females), who visited Aichi Cancer Center Hospital between 2001-2005. Serum anti-H. pylori IgG antibody and pepsinogens were measured to evaluate H. pylori infection and gastric atrophy, respectively. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by a logistic model. RESULTS: Among H. pylori seropositive non-cancer outpatients, the age- and sex-adjusted OR of gastric atrophy was 0.82 (95% CI 0.62-1.10, P = 0.194) for G/A, 0.84 (95% CI 0.39-1.81, P = 0.650) for A/A, and 0.83 (95% CI 0.62-1.09, P = 0.182) for G/A+A/A, relative to G/G genotype, and that of severe gastric atrophy was 0.70 (95% CI 0.47-1.04, P = 0.079), 0.56 (95% CI 0.17-1.91, P = 0.356), and 0.68 (95% CI 0.46-1.01, P = 0.057), respectively. Among H. pylori infected subjects (H. pylori seropositive subjects and seronegative subjects with gastric atrophy), the adjusted OR of severe gastric atrophy was further reduced; 0.62 (95% CI 0.42-0.90, P = 0.012) for G/A+A/A. The distribution of the genotype in patients with gastric cancer was not significantly different from that for H. pylori infected subjects without gastric atrophy. CONCLUSION: Our study results revealed that those with the A/A genotype of PTPN11 rs2301756 polymorphism are at lower risk of severe gastric atrophy, but are not associated with a decreased risk of gastric cancer, which partially supported our previous finding that the polymorphism in the PTPN11 gene encoding SHP-2 was associated with the gastric atrophy risk in H. pylori infected Japanese. The biological roles of this PTPN11 polymorphism require further investigation.
Yagasaki H, etal., Am J Med Genet A. 2015 Dec;167A(12):3144-7. doi: 10.1002/ajmg.a.37295. Epub 2015 Aug 19.
Most cases of Noonan syndrome (NS) result from mutations in one of the RAS-MAPK signaling genes, including PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 (MAP2K1), and CBL. Cardiovascular diseases of varying severity, such as pulmonary stenosis and hypertroph
ic cardiomyopathy (HCM), are common in NS patients. RAF1 mutations are most frequent in NS with HCM, while PTPN11 mutations are also well known. Thr73Ile is a gain-of-function mutation of PTPN11, which has been highly associated with juvenile myelomonocytic leukemia and NS/myeloproliferative disease (MPD), but has not previously been reported in HCM. Here, we report a Japanese female infant with NS carrying the PTPN11 T73I mutation with NS/MPD, complete atrio-ventricular septal defect, and rapidly progressive HCM. No other HCM-related mutations were detected in PTPN11, RAF1, KRAS, BRAF, and SHOC2. This patient provides additional information regarding the genotype-phenotype correlation for PTPN11 T73I mutation in NS.
Brasil AS, etal., Arq Bras Endocrinol Metabol. 2010 Nov;54(8):717-22.
Noonan syndrome (NS) is an autosomal dominant disorder, with variable phenotypic expression, characterized by short stature, facial dysmorphisms and heart disease. Different genes of the RAS/MAPK signaling pathway are responsible for the syndrome, the most common are: PTPN11
>PTPN11, SOS1, RAF1, and KRAS. The objective of this study was to report a patient with Noonan syndrome presenting mutations in two genes of RAS/MAPK pathway in order to establish whether these mutations lead to a more severe expression of the phenotype. We used direct sequencing of the PTPN11, SOS1, RAF1, and KRAS genes. We have identified two described mutations in heterozygosity: p.N308D and p.R552G in the genes PTPN11 and SOS1, respectively. The patient has typical clinical features similar to the ones with NS and mutation in only one gene, even those with the same mutation identified in this patient. A more severe or atypical phenotype was not observed, suggesting that these mutations do not exhibit an additive effect.
Ekvall S, etal., Am J Med Genet A. 2011 Jun;155A(6):1217-24. doi: 10.1002/ajmg.a.33987. Epub 2011 May 5.
Noonan syndrome (NS) is a heterogeneous disorder caused by activating mutations in the RAS-MAPK signaling pathway. It is associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity, and typical facial features and the inheritance is autosom
al dominant. Here, we present a clinical and molecular characterization of a patient with Noonan-like syndrome with loose anagen hair phenotype and additional features including mild psychomotor developmental delay, osteoporosis, gingival hyperplasia, spinal neuroblastoma, intrathoracic extramedullary hematopoiesis, and liver hemangioma. Mutation analysis of PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1, MEK2, NRAS, and SHOC2 was conducted, revealing a co-occurrence of two heterozygous previously identified mutations in the index patient. The mutation SHOC2 c.4A > G; p.Ser2Gly represents a de novo mutation, whereas, PTPN11 c.1226G > C; p.Gly409Ala was inherited from the mother and also identified in the brother. The mother and the brother present with some NS manifestations, such as short stature, delayed puberty, keratosis pilaris, cafe-au-lait spots, refraction error (mother), and undescended testis (brother), but no NS facial features, supporting the notion that the PTPN11 p.Gly409Ala mutation leads to a relatively mild phenotype. We propose that, the atypical phenotype of the young woman with NS reported here is an additive effect, where the PTPN11 mutation acts as a modifier. Interestingly, co-occurrence of RAS-MAPK mutations has been previously identified in a few patients with variable NS or neurofibromatosis-NS phenotypes. Taken together, the results suggest that co-occurrence of mutations or modifying loci in the RAS-MAPK pathway may contribute to the clinical variability observed among NS patients.
Kontaridis MI, etal., Circulation. 2008 Mar 18;117(11):1423-35. doi: 10.1161/CIRCULATIONAHA.107.728865. Epub 2008 Mar 3.
BACKGROUND: Heart failure is the leading cause of death in the United States. By delineating the pathways that regulate cardiomyocyte function, we can better understand the pathogenesis of cardiac disease. Many cardiomyocyte signaling pathways activate protein tyrosine kinases. However, t
he role of specific protein tyrosine phosphatases (PTPs) in these pathways is unknown. METHODS AND RESULTS: Here, we show that mice with muscle-specific deletion of Ptpn11, the gene encoding the SH2 domain-containing PTP Shp2, rapidly develop a compensated dilated cardiomyopathy without an intervening hypertrophic phase, with signs of cardiac dysfunction appearing by the second postnatal month. Shp2-deficient primary cardiomyocytes are defective in extracellular signal-regulated kinase/mitogen-activated protein kinase (Erk/MAPK) activation in response to a variety of soluble agonists and pressure overload but show hyperactivation of the RhoA signaling pathway. Treatment of primary cardiomyocytes with Erk1/2- and RhoA pathway-specific inhibitors suggests that both abnormal Erk/MAPK and RhoA activities contribute to the dilated phenotype of Shp2-deficient hearts. CONCLUSIONS: Our results identify Shp2 as the first PTP with a critical role in adult cardiac function, indicate that in the absence of Shp2 cardiac hypertrophy does not occur in response to pressure overload, and demonstrate that the cardioprotective role of Shp2 is mediated via control of both the Erk/MAPK and RhoA signaling pathways.
LEOPARD syndrome (LS), a disorder with multiple developmental abnormalities, is mainly due to mutations that impair the activity of the tyrosine phosphatase SHP2 (PTPN11). How these alterations cause the disease remains unknown. We report here that fibroblasts i
solated from LS patients displayed stronger epidermal growth factor (EGF)-induced phosphorylation of both AKT and glycogen synthase kinase 3beta (GSK-3beta) than fibroblasts from control patients. Similar results were obtained in HEK293 cells expressing LS mutants of SHP2. We found that the GAB1/phosphoinositide 3-kinase (PI3K) complex was more abundant in fibroblasts from LS than control subjects and that both AKT and GSK-3beta hyperphosphorylation were prevented by reducing GAB1 expression or by overexpressing a GAB1 mutant unable to bind to PI3K. Consistently, purified recombinant LS mutants failed to dephosphorylate GAB1 PI3K-binding sites. These mutants induced PI3K-dependent increase in cell size in a model of chicken embryo cardiac explants and in transcriptional activity of the atrial natriuretic factor (ANF) gene in neonate rat cardiomyocytes. In conclusion, SHP2 mutations causing LS facilitate EGF-induced PI3K/AKT/GSK-3beta stimulation through impaired GAB1 dephosphorylation, resulting in deregulation of a novel signaling pathway that could be involved in LS pathology.
Liu X, etal., Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):984-9. doi: 10.1073/pnas.1508535113. Epub 2016 Jan 11.
Gain-of-function (GOF) mutations of protein tyrosine phosphatase nonreceptor type 11 Ptpn11 (Shp2), a protein tyrosine phosphatase implicated in multiple cell signaling pathways, are associated with childhood leukemias and solid tumors. The underlying mechanisms
are not fully understood. Here, we report that Ptpn11 GOF mutations disturb mitosis and cytokinesis, causing chromosomal instability and greatly increased susceptibility to DNA damage-induced malignancies. We find that Shp2 is distributed to the kinetochore, centrosome, spindle midzone, and midbody, all of which are known to play critical roles in chromosome segregation and cytokinesis. Mouse embryonic fibroblasts with Ptpn11 GOF mutations show a compromised mitotic checkpoint. Centrosome amplification and aberrant mitosis with misaligned or lagging chromosomes are significantly increased in Ptpn11-mutated mouse and patient cells. Abnormal cytokinesis is also markedly increased in these cells. Further mechanistic analyses reveal that GOF mutant Shp2 hyperactivates the Polo-like kinase 1 (Plk1) kinase by enhancing c-Src kinase-mediated tyrosine phosphorylation of Plk1. This study provides novel insights into the tumorigenesis associated with Ptpn11 GOF mutations and cautions that DNA-damaging treatments in Noonan syndrome patients with germ-line Ptpn11 GOF mutations could increase the risk of therapy-induced malignancies.
Uhlen P, etal., Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2160-5. Epub 2006 Feb 3.
Gain-of-function mutations in SHP-2/PTPN11 cause Noonan syndrome, a human developmental disorder. Noonan syndrome is characterized by proportionate short stature, facial dysmorphia, increased risk of leukemia, and congenital heart defects in approximately 50% of
cases. Congenital heart abnormalities are common in Noonan syndrome, but the signaling pathway(s) linking gain-of-function SHP-2 mutants to heart disease is unclear. Diverse cell types coordinate cardiac morphogenesis, which is regulated by calcium (Ca2+) and the nuclear factor of activated T-cells (NFAT). It has been shown that the frequency of Ca2+ oscillations regulates NFAT activity. Here, we show that in fibroblasts, Ca2+ oscillations in response to FGF-2 require the phosphatase activity of SHP-2. Conversely, gain-of-function mutants of SHP-2 enhanced FGF-2-mediated Ca2+ oscillations in fibroblasts and spontaneous Ca2+ oscillations in cardiomyocytes. The enhanced frequency of cardiomyocyte Ca2+ oscillations induced by a gain-of-function SHP-2 mutant correlated with reduced nuclear translocation and transcriptional activity of NFAT. These data imply that gain-of-function SHP-2 mutants disrupt the Ca2+ oscillatory control of NFAT, suggesting a potential mechanism for congenital heart defects in Noonan syndrome.
Yang Z, etal., Leuk Res. 2011 Jul;35(7):961-4. doi: 10.1016/j.leukres.2011.04.003. Epub 2011 May 8.
Activating PTPN11 mutants promote hematopoietic progenitor hyperactivation of Erk and hypersensitivity to GM-CSF. We hypothesized that Kinase Suppressor of Ras 1 (KSR1) contributes to activating PTPN11-induced GM-CSF hyperse
nsitivity. Bone marrow progenitors from WT and KSR1-/- mice expressing WT Shp2, Shp2E76K, or Shp2D61Y were evaluated functionally and biochemically. KSR1 activation and interaction with phospho-Erk was enhanced in Shp2D61Y- and ShpE76K-expressing cells. Genetic disruption of KSR1 partially normalized Shp2E76K-induced GM-CSF hypersensitivity, but failed to correct Shp2D61Y-induced GM-CSF hypersensitivity. Collectively, these studies suggest that cells expressing Shp2E76K have a greater dependence on KSR1 for GM-CSF hypersensitivity than cells expressing Shp2D61Y.
Tartaglia M, etal., Blood. 2004 Jul 15;104(2):307-13. Epub 2004 Feb 24.
SHP-2 is a protein tyrosine phosphatase functioning as signal transducer downstream to growth factor and cytokine receptors. SHP-2 is required during development, and germline mutations in PTPN11, the gene encoding SHP-2, cause Noonan syndrome. SHP-2 plays a cru
cial role in hematopoietic cell development. We recently demonstrated that somatic PTPN11 mutations are the most frequent lesion in juvenile myelomonocytic leukemia and are observed in a smaller percentage of children with other myeloid malignancies. Here, we report that PTPN11 lesions occur in childhood acute lymphoblastic leukemia (ALL). Mutations were observed in 23 of 317 B-cell precursor ALL cases, but not among 44 children with T-lineage ALL. In the former, lesions prevalently occurred in TEL-AML1(-) cases with CD19(+)/CD10(+)/cyIgM(-) immunophenotype. PTPN11, NRAS, and KRAS2 mutations were largely mutually exclusive and accounted for one third of common ALL cases. We also show that, among 69 children with acute myeloid leukemia, PTPN11 mutations occurred in 4 of 12 cases with acute monocytic leukemia (FAB-M5). Leukemia-associated PTPN11 mutations were missense and were predicted to result in SHP-2 gain-of-function. Our findings provide evidence for a wider role of PTPN11 lesions in leukemogenesis, but also suggest a lineage-related and differentiation stage-related contribution of these lesions to clonal expansion.
Noonan syndrome (NS) is an autosomal dominant disorder characterized by short stature, typical craniofacial dysmorphism, skeletal anomalies, congenital heart defects, and predisposition to malignant tumors. In approximately 50% of cases, the disease is caused by missense mutations in the PTPN11
='font-weight:700;'>PTPN11 gene. To date, solid tumors, and particularly brain tumors and rhabdomyosarcomas, have been documented in patients with NS; however, few cases of neuroblastoma associated with NS have been reported. Here we report an unusual case of neuroblastoma with mediastinal, retroperitoneal, and medullar locations associated in a NS patient carrying a PTPN11 germline missense mutation (p.G60A). This missense mutation occurs within the N-SH2 domain of the PTPN11 gene and has been reported to be associated with acute leukemia in NS patients. The association of this p.G60A PTPN11 mutation with neuroblastoma provides new evidence that gain of function PTPN11 mutations may play an important role in the pathogenesis of solid tumors associated with Noonan syndrome.
BACKGROUND: Noonan syndrome (NS, OMIM 163950) is a relatively common autosomal dominant disorder and has significant phenotypic overlap with Costello Syndrome and cardio-facio-cutaneous syndrome. Molecular diagnosis is useful for differential diagnosis. PTPN11 g
ene mutation is the most common mutation associated with NS and hence is a suitable target for molecular diagnostics. METHODS: High resolution melting (HRM) analysis was used for screening of PTPN11 mutations. Eleven DNA samples with 10 known PTPN11 mutations were used for HRM calibration. Said calibrations were then applied to mutation screening of a panel of 50 additional NS patients. RESULTS: HRM analysis differentiated all of the 10 known mutations and identified 9 additional mutations from 10 patients in the blind study, which is in line with results obtained by sequencing. CONCLUSIONS: HRM analysis is a rapid, reliable, and low-cost tool for detection of PTPN11 genetic variants.
Chan RJ, etal., Blood. 2005 May 1;105(9):3737-42. Epub 2005 Jan 11.
Juvenile myelomonocytic leukemia (JMML) is a lethal disease of young children characterized by hypersensitivity of hematopoietic progenitors to granulocyte-macrophage colony-stimulating factor (GM-CSF). Mutations in PTPN11, which encodes the protein tyrosine pho
sphatase Shp-2, are common in JMML. We hypothesized that PTPN11 mutations induce hypersensitivity of hematopoietic progenitors to GM-CSF and confer increased GM-CSF-stimulated phospho-extracellular signal-regulated kinase (Erk) levels. To test this hypothesis, the wild-type (WT) and 3 mutant Ptpn11 cDNAs (E76K, D61V, and D61Y) were transduced into murine bone marrow cells to examine GM-CSF-stimulated granulocyte-macrophage colony-forming unit (CFU-GM) growth, macrophage progenitor proliferation, and activation of the Ras signaling pathway. Expression of the Shp-2 mutants induced progenitor cell hypersensitivity to GM-CSF compared with cells transduced with vector alone or WT Shp-2. Macrophage progenitors expressing the Shp-2 mutants displayed both basal and GM-CSF-stimulated hyperproliferation compared with cells transduced with vector alone or WT Shp-2. Consistently, macrophage progenitors transduced with the Shp-2 mutants demonstrated constitutively elevated phospho-Erk levels and sustained activation of phospho-Erk following GM-CSF stimulation compared with vector alone or WT Shp-2. These data support the hypothesis that PTPN11 mutations induce hematopoietic progenitor hypersensitivity to GM-CSF due to hyperactivation of the Ras signaling axis and provide a basis for the GM-CSF signaling pathway as a target for rational drug design in JMML.
BACKGROUND: Short stature represents one of the main features of children with Noonan syndrome. The reason for impaired growth remains largely unknown. OBJECTIVE: To assess GH and IGF1 secretion in children with Noonan syndrome. PATIENTS: 12 prepubertal children with Noonan syndrome due to mutations
in the PTPN11 gene [7 males, 6 females; median age, years: 8.6 (range 5.1-13.4)] were studied; 12 prepubertal children with short stature (SS) [7 males, 5 females; median age, years: 8.1 (range 4.8-13.1)] served as the control group. MEASUREMENTS: GH secretion after arginine stimulation test; IGF1 generation test by measurement of IGF1 levels before and after recombinant GH (rGH) administration (0.05 mg/kg/day for 4 days). RESULTS: Baseline and stimulated peak values of GH were not significantly different between the two groups. At +120 minutes, GH levels remained significantly higher (p = 0.0121) in comparison with baseline values in children with Noonan syndrome. Baseline IGFI levels in patients and in SS controls were not significantly different, in contrast to values after the rGH generation test [205 ng/mL (interquartiles 138.2-252.5 ng/mL) and 284.5 ng/mL (interquartiles 172-476 ng/mL), respectively; p = 0.0248]. IGF1 values were significantly related to height (baseline: r = 773, p = 0.0320; peak: r = 0.591, p = 0.0428) in children with Noonan syndrome. CONCLUSIONS: Blunted increase of IGF1 after the rGH generation test was present in children with Noonan syndrome due to mutations in the PTPN11 gene in comparison with SS children. This finding may be due to partial GH resistance in the former likely related to altered Ras-MAPK signaling pathway.
We analyzed mutations in four genes (FLT3, KRAS/NRAS and PTPN11) that might disrupt the RAS/mitogen activated protein kinase (MAPKinase) signaling pathway, to evaluate their prognostic value in children younger than 16 years old with B-cell precursor acute lymph
oblastic leukemia (Bcp-ALL). The overall survival (OS) was determined with the Kaplan-Meier method. MAPKinase genes were mutated in 25.4% and 20.1% of childhood and infant Bcp-ALL, respectively. Children with hyperdiploidy were more prone to harboring a MAPKinase gene mutation (odds ratio [OR] 3.18; 95% confidence interval [CI] 1.07-9.49). The mean OS of all cases was 54.0 months. FLT3 and PTPN11 mutations had no impact on OS. K/NRAS mutations were strongly associated with MLL-AFF1 (OR 5.78; 95% CI 1.00-33.24), and conferred poorer OS (p = 0.034) in univariate analysis.
Wakabayashi Y, etal., Am J Med Genet A. 2011 Oct;155A(10):2529-33. doi: 10.1002/ajmg.a.34194. Epub 2011 Sep 9.
LEOPARD syndrome (LS), generally caused by heterozygous mutations in the PTPN11 gene, is a rare autosomal-dominant multiple congenital anomaly condition, characterized by skin, facial, and cardiac abnormalities. Prognosis appears to be related to the type of str
uctural, myocardial, and arrhythmogenic cardiac disease, especially hypertrophic cardiomyopathy (HCM). We report on a woman with LS and a novel Gln510His mutation in PTPN11, who had progressive HCM with congestive heart failure and nonsustained ventricular tachycardia, successfully treated with implantable cardioverter defibrillator (ICD). Comparing our patient to the literature suggests that specific mutations at codon 510 in PTPN11 (Gln510Glu, Gln510His, but not Gln510Pro) might be a predictor of fatal cardiac events in LS. Molecular risk stratification and careful evaluations for an indication of ICD implantation are likely to be beneficial in managing patients with LS and HCM.
Pathogenic mutations in genes (SASH1 and PTPN11) can cause a rare genetic disorder associated with pigmentation defects and the well-known LEOPARD syndrome, respectively. Both conditions presented with lentiginous phenotypes. The aim of this study was to arrive
at definite diagnoses of three Chinese boys with clinically suspected lentigines-related syndromes. ADAR1, ABCB6, SASH1 and PTPN11 were candidate genes for mutational screening. Sanger sequencing was performed to identify the mutations, whereas bioinformatic analysis was used to predict the pathogenicity of novel missense mutations. Two novel mutations c.1537A>C (p.Ser513Arg) and 1527_1530dupAAGT (p.Leu511Lysfs*21) in SASH1 and a common p.Thr468Met mutation in PTPN11 were detected in three pediatric patients with lentiginous phenotypes, respectively. Comparisons between clinical presentations showed that SASH1-related phenotypes can exhibit hyper- and hypopigmentation on the trunk and extremities, similar to dyschromatosis, while scattered cafe au-lait spots usually appeared in PTPN11-related LEOPARD syndrome. Furthermore, the similarity in the clinical presentations of Peutz-Jeghers syndrome, Laugier-Hunziker syndrome, xeroderma pigmentosum, neurofibromatosis type I, suggesting that these conditions should be added into the differential diagnoses of lentiginous phenotypes.
Kalev I, etal., Eur J Pediatr. 2010 Apr;169(4):469-73. doi: 10.1007/s00431-009-1058-1. Epub 2009 Sep 20.
LEOPARD syndrome (LS) is a heterogeneous disease characterised mainly by cutaneous manifestations. LEOPARD is the acronym for its major features-multiple lentigines, electrocardiographic conduction defects, ocular hypertelorism, pulmonary stenosis, abnormalities of (male) genitalia, retardation of
growth and sensorineural deafness. As clinical manifestations are variable, molecular testing is supportive in the diagnosis of LS. We describe two unrelated LS cases with a common PTPN11 mutation Y279C and with completely different clinical features including distinct changes in skin pigmentation. In patient 1, the first complaint was hyperactive behaviour. First lentigines were presented at birth, but intensive growth began at the age of 2-4 years. Multiple dark lentigines were located mainly on the face and the upper part of the trunk, but the oral mucosa was spared. Patient 2 was born from induced labour due to polyhydramnion, and in the second week of life, mitral valve insufficiency and hypertrophic cardiomyopathy were diagnosed. Rapid growth of lentigines began at the age of 3 years. These are mostly located in the joint areas in the lower extremities; the face and upper trunk are spared from lentigines. In both cases, the rapid growth of lentigines made it possible to shift the diagnosis towards LS. Clinicians should give more consideration to rare genetic syndromes, especially in the case of symptoms from different clinical areas.
PTPN11, which encodes the tyrosine phosphatase SHP2, is mutated in approximately 35% of patients with juvenile myelomonocytic leukemia (JMML) and at a lower incidence in other neoplasms. To model JMML pathogenesis, we generated knockin mice that conditionally e
xpress the leukemia-associated mutant Ptpn11(D61Y). Expression of Ptpn11(D61Y) in all hematopoietic cells evokes a fatal myeloproliferative disorder (MPD), featuring leukocytosis, anemia, hepatosplenomegaly, and factor-independent colony formation by bone marrow (BM) and spleen cells. The Lin(-)Sca1(+)cKit(+) (LSK) compartment is expanded and "right-shifted," accompanied by increased stem cell factor (SCF)-evoked colony formation and Erk and Akt activation. However, repopulating activity is decreased in diseased mice, and mice that do engraft with Ptpn11(D61Y) stem cells fail to develop MPD. Ptpn11(D61Y) common myeloid progenitors (CMPs) and granulocyte-monocyte progenitors (GMPs) produce cytokine-independent colonies in a cell-autonomous manner and demonstrate elevated Erk and Stat5 activation in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. Ptpn11(D61Y) megakaryocyte-erythrocyte progenitors (MEPs) yield increased numbers of erythrocyte burst-forming units (BFU-Es), but MEPs and erythrocyte-committed progenitors (EPs) produce fewer erythrocyte colony-forming units (CFU-Es), indicating defective erythroid differentiation. Our studies provide a mouse model for Ptpn11-evoked MPD and show that this disease results from cell-autonomous and distinct lineage-specific effects of mutant Ptpn11 on multiple stages of hematopoiesis.
Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal d
ominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.
Noonan syndrome is a common human autosomal dominant birth defect, characterized by short stature, facial abnormalities, heart defects and possibly increased risk of leukemia. Mutations of Ptpn11 (also known as Shp2), which encodes the protein-tyrosine phosphat
ase Shp2, occur in approximately 50% of individuals with Noonan syndrome, but their molecular, cellular and developmental effects, and the relationship between Noonan syndrome and leukemia, are unclear. We generated mice expressing the Noonan syndrome-associated mutant D61G. When homozygous, the D61G mutant is embryonic lethal, whereas heterozygotes have decreased viability. Surviving Ptpn11(D61G/+) embryos ( approximately 50%) have short stature, craniofacial abnormalities similar to those in Noonan syndrome, and myeloproliferative disease. Severely affected Ptpn11(D61G/+) embryos ( approximately 50%) have multiple cardiac defects similar to those in mice lacking the Ras-GAP protein neurofibromin. Their endocardial cushions have increased Erk activation, but Erk hyperactivation is cell and pathway specific. Our results clarify the relationship between Noonan syndrome and leukemia and show that a single Ptpn11 gain-of-function mutation evokes all major features of Noonan syndrome by acting on multiple developmental lineages in a gene dosage-dependent and pathway-selective manner.
Schrader KA, etal., Clin Genet. 2009 Feb;75(2):185-9. doi: 10.1111/j.1399-0004.2008.01100.x. Epub 2008 Nov 27.
We report a patient with a clinical and molecular diagnosis of LEOPARD syndrome (LS) associated with multiple granular cell tumors (MGCT). Bidirectional sequencing of exons 7, 12, and 13 of the PTPN11 gene revealed the T468M missense mutation in exon 12. This m
utation has been previously reported in patients with LS. To our knowledge, this is the first report of MGCT associated with molecularly characterized LS and provides the first molecular evidence linking granular cell tumors (GCT) to the Ras/mitogen-activated protein (MAP) kinase pathway. We propose that MGCT can be associated with LS. Analysis of GCT from this case tested negatively for loss of heterozygosity (LOH) at the PTPN11 and NF1 loci and did not show deletions of the PTEN gene. The absence of LOH of PTPN11 supports published functional data that T468M is a dominant-negative mutation.
Although it has been suggested that mutations of the FLT3, NRAS, KRAS, and PTPN11 genes are particularly frequent in high hyperdiploid (>50 chromosomes) pediatric acute lymphoblastic leukemias (ALLs), this has as yet not been confirmed in a large patient cohort
. Furthermore, it is unknown whether mutations of these genes coexist in hyperdiploid cases. We performed mutation analyses of FLT3, NRAS, KRAS, and PTPN11 in a consecutive series of 78 high hyperdiploid ALLs. Twenty-six (33%) of the cases harbored a mutation, comprising six activating point mutations and one internal tandem duplication of FLT3 (7/78 cases; 9.0%), eight codon 12, 13, or 61 NRAS mutations (8/78 cases; 10%), five codon 12 or 13 KRAS mutations (5/78 cases, 6.4%), and seven exon 3 or 13 PTPN11 mutations (7/78 cases; 9.0%). No association was seen between the presence of a mutation in FLT3, NRAS, KRAS, or PTPN11 and gender, age, white blood cell count, or relapse, suggesting that they do not confer a negative prognostic impact. Only one case harbored mutations in two different genes, suggesting that mutations of these four genes are generally mutually exclusive. In total, one third of the cases harbored a FLT3, NRAS, KRAS, or PTPN11 mutation, identifying the RTK-RAS signaling pathway as a potential target for novel therapies of high hyperdiploid pediatric ALLs.
Araki T, etal., Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4736-41. doi: 10.1073/pnas.0810053106. Epub 2009 Feb 27.
Noonan syndrome (NS), the most common single-gene cause of congenital heart disease, is an autosomal dominant disorder that also features proportionate short stature, facial abnormalities, and an increased risk of myeloproliferative disease. Germline-activating mutations in PTPN11
700;'>PTPN11, which encodes the protein tyrosine phosphatase SHP2, cause about half of NS cases; other causative alleles include KRAS, SOS1, and RAF1 mutants. We showed previously that knock-in mice bearing the NS mutant Ptpn11(D61G) on a mixed 129S4/SvJae X C57BL6/J background exhibit all major NS features, including a variety of cardiac defects, with variable penetrance. However, the cellular and molecular mechanisms underlying NS cardiac defects and whether genetic background and/or the specific NS mutation contribute to the NS phenotype remained unclear. Here, using an inducible knock-in approach, we show that all cardiac defects in NS result from mutant Shp2 expression in the endocardium, not in the myocardium or neural crest. Furthermore, the penetrance of NS defects is affected by genetic background and the specific Ptpn11 allele. Finally, ex vivo assays and pharmacological approaches show that NS mutants cause cardiac valve defects by increasing Erk MAPK activation, probably downstream of ErbB family receptor tyrosine kinases, extending the interval during which cardiac endocardial cells undergo endocardial-mesenchymal transformation. Our data provide a mechanistic underpinning for the cardiac defects in this disorder.
Eminaga S and Bennett AM, J Biol Chem. 2008 May 30;283(22):15328-38. doi: 10.1074/jbc.M801382200. Epub 2008 Mar 31.
Noonan syndrome (NS) is an autosomal dominant disorder that is associated with multiple developmental abnormalities. Activated mutations of the protein-tyrosine phosphatase, SHP-2/PTPN11, have been reported in approximately 50% of NS cases. Despite being activat
ed, NS-associated SHP-2 mutants require plasma membrane proximity to evoke disease-associated signaling. Here we show that NS-associated SHP-2 mutants induce hypertyrosyl phosphorylation of the transmembrane glycoproteins, SIRPalpha (signal-regulatory protein alpha) and PZR (protein zero-related), resulting in their increased association with NS-associated SHP-2 mutants. NS-associated SHP-2 mutants enhanced SIRPalpha and PZR tyrosyl phosphorylation either by impairing SIRPalpha dephosphorylation or by promoting PZR tyrosyl phosphorylation. Importantly, during embryogenesis in a mouse model of NS, SIRPalpha and PZR were hypertyrosyl-phosphorylated and bound increased levels of the NS-associated SHP-2 mutant. SIRPalpha and PZR have been implicated in extracellular matrix-dependent signaling. Mouse embryonic fibroblasts derived from a mouse model of NS displayed enhanced ERK activation in response to fibronectin plating. Knockdown of SIRPalpha and PZR in these cells attenuated the enhanced activation of ERK following fibronectin plating. Thus, SIRPalpha and PZR serve as scaffolds that facilitate plasma membrane recruitment and signaling of NS-associated SHP-2 mutants.
Fragale A, etal., Hum Mutat. 2004 Mar;23(3):267-77.
Noonan syndrome is a developmental disorder with dysmorphic facies, short stature, cardiac defects, and skeletal anomalies, which can be caused by missense PTPN11 mutations. PTPN11 encodes Src homology 2 domain-containing ty
rosine phosphatase 2 (SHP2 or SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factor, hormone, and cytokine receptors. We compared the functional effects of three Noonan syndrome-causative PTPN11 mutations on SHP2's phosphatase activity, interaction with a binding partner, and signal transduction. All SHP2 mutants had significantly increased basal phosphatase activity compared to wild type, but that activity varied significantly between mutants and was further increased after epidermal growth factor stimulation. Cells expressing SHP2 mutants had prolonged extracellular signal-regulated kinase 2 activation, which was ligand-dependent. Binding of SHP2 mutants to Grb2-associated binder-1 was increased and sustained, and tyrosine phosphorylation of both proteins was prolonged. Coexpression of Grb2-associated binder-1-FF, which lacks SHP2 binding motifs, blocked the epidermal growth factor-mediated increase in SHP2's phosphatase activity and resulted in a dramatic reduction of extracellular signal-regulated kinase 2 activation. Taken together, these results document that Noonan syndrome-associated PTPN11 mutations increase SHP2's basal phosphatase activity, with greater activation when residues directly involved in binding at the interface between the N-terminal Src homology 2 and protein tyrosine phosphatase domains are altered. The SHP2 mutants prolonged signal flux through the RAS/mitogen-activated protein kinase (ERK2/MAPK1) pathway in a ligand-dependent manner that required docking through Grb2-associated binder-1 (GAB1), leading to increased cell proliferation.
Wang S, etal., J Biol Chem. 2009 Jan 9;284(2):913-20. doi: 10.1074/jbc.M804129200. Epub 2008 Nov 13.
Mutations in SHP-2 phosphatase (PTPN11) that cause hyperactivation of its catalytic activity have been identified in Noonan syndrome and various childhood leukemias. Recent studies suggest that the gain-of-function (GOF) mutations of SHP-2 play a causal role in
the pathogenesis of these diseases. However, the molecular mechanisms by which GOF mutations of SHP-2 induce these phenotypes are not fully understood. Here, we show that GOF mutations in SHP-2, such as E76K and D61G, drastically increase spreading and migration of various cell types, including hematopoietic cells, endothelial cells, and fibroblasts. More importantly, in vivo angiogenesis in SHP-2 D61G knock-in mice is also enhanced. Mechanistic studies suggest that the increased cell migration is attributed to the enhanced beta1 integrin outside-in signaling. In response to beta1 integrin cross-linking or fibronectin stimulation, activation of ERK and Akt kinases is greatly increased by SHP-2 GOF mutations. Also, integrin-induced activation of RhoA and Rac1 GTPases is elevated. Interestingly, mutant cells with the SHP-2 GOF mutation (D61G) are more sensitive than wild-type cells to the suppression of cell motility by inhibition of these pathways. Collectively, these studies reaffirm the positive role of SHP-2 phosphatase in cell motility and suggest a new mechanism by which SHP-2 GOF mutations contribute to diseases.
Pauli S, etal., Am J Med Genet A. 2012 Mar;158A(3):652-8. doi: 10.1002/ajmg.a.34439. Epub 2012 Feb 7.
Noonan syndrome (NS) is a common autosomal dominant condition characterized by short stature, congenital heart defects, and dysmorphic facial features caused in approximately 50% of cases by missense mutations in the PTPN11 gene. NS patients are predisposed to
malignancies including myeloproliferative disorders or leukemias. We report a female NS patient carrying a PTPN11 germline mutation c.417 G > C (p.E139D), who developed in her second year of life an acute lymphoblastic leukemia (ALL) and after remission, she developed at 4 years of age a juvenile myelomonocytic leukemia (JMML). Molecular genetic analysis of lymphoblastic blasts at the time of the ALL diagnosis revealed the germline mutation in a heterozygous state, while in the myelomonocytic blasts occurring with JMML diagnosis, the mutation p.E139D was found in a homozygous state due to a uniparental disomy (UPD). These findings lead to the suggestion that the pathogenesis of ALL and JMML in our patient is due to different mechanisms including somatically acquired secondary chromosomal abnormalities.
Genome-wide association studies have identified several loci associated with pancreatic cancer risk; however, the mechanisms by which genetic factors influence the development of sporadic pancreatic cancer remain largely unknown. Here, by using genome-wide association analysis and functional charact
erization, we identify a long intergenic noncoding RNA (lincRNA), LINC00673, as a potential tumor suppressor whose germline variation is associated with pancreatic cancer risk. LINC00673 is able to reinforce the interaction of PTPN11 with PRPF19, an E3 ubiquitin ligase, and promote PTPN11 degradation through ubiquitination, which causes diminished SRC-ERK oncogenic signaling and enhanced activation of the STAT1-dependent antitumor response. A G>A change at rs11655237 in exon 4 of LINC00673 creates a target site for miR-1231 binding, which diminishes the effect of LINC00673 in an allele-specific manner and thus confers susceptibility to tumorigenesis. These findings shed new light on the important role of LINC00673 in maintaining cell homeostasis and how its germline variation might confer susceptibility to pancreatic cancer.
Papadopoulou A, etal., Eur J Pediatr. 2012 Jan;171(1):51-8. doi: 10.1007/s00431-011-1487-5. Epub 2011 May 18.
Noonan syndrome (NS) is a common multiple congenital anomaly entity, the diagnosis of which, on clinical grounds, is based on a comprehensive scoring system in order to select patients for molecular confirmation. Our aim was to evaluate the phenotypic characteristics in the light of PTPN11
t-weight:700;'>PTPN11 mutations. The study revealed 80 patients who were referred with initial indication of NS or Noonan-like syndrome (NLS) and further assessed by a clinical geneticist; 60/80 index patients, mean age 5.9 +/- 5.3 years, fulfilled the NS criteria. Molecular analysis of PTPN11 gene (exons and their flanking regions) of the total population revealed mutations in 17/80 patients, all belonging in the group of the patients screened with the scoring system. All mutations were heterozygous missense changes, mostly clustering in exon 3 (8/17), followed by exons 13 (3/17), 8 (2/17), 7 (2/17), 2 (1/17) and 4 (1/17). We conclude that (a) most of our clinically diagnosed NS cases were sporadic (b) PTPN11 analysis should be limited to those fulfilling the relevant NS criteria (c) Cardiovascular evaluation should comprise all NS patients, while pulmonary stenosis, short stature, and thorax deformities prevailed among those with PTPN11 mutations.
Oishi K, etal., Hum Mol Genet. 2009 Jan 1;18(1):193-201. doi: 10.1093/hmg/ddn336. Epub 2008 Oct 11.
Missense mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase SHP-2, cause clinically similar but distinctive disorders, LEOPARD (LS) and Noonan (NS) syndromes. The LS is an autosomal dominant disorder with pleomorphic developmental abnor
malities including lentigines, cardiac defects, short stature and deafness. Biochemical analyses indicated that LS alleles engender loss-of-function (LOF) effects, while NS mutations result in gain-of-function (GOF). These biochemical findings lead to an enigma that how PTPN11 mutations with opposite effects on function result in disorders that are so similar. To study the developmental effects of the commonest LS PTPN11 alleles (Y279C and T468M), we generated LS transgenic fruitflies using corkscrew (csw), the Drosophila orthologue of PTPN11. Ubiquitous expression of the LS csw mutant alleles resulted in ectopic wing veins and, for the Y279C allele, rough eyes with increased R7 photoreceptor numbers. These were GOF phenotypes mediated by increased RAS/MAPK signaling and requiring the LS mutant's residual phosphatase activity. Our findings provide the first evidence that LS mutant alleles have GOF developmental effects despite reduced phosphatase activity, providing a rationale for how PTPN11 mutations with GOF and LOF produce similar but distinctive syndromes.
CONTEXT: The cause of growth impairment in Noonan syndrome (NS) remains unclear. Mutations in PTPN11 (protein tyrosine phosphatase, nonreceptor type 11) that codify constitutively activated Src homology protein tyrosine phosphatase-2 tyrosine phosphatase and ma
y interfere with GH and IGF-I signaling were identified in approximately 40% of patients with NS. OBJECTIVE: The objective of this study was to evaluate the influence of PTPN11 status on response to human GH (hGH) treatment in NS children with short stature. SETTING: This study was performed at a university hospital. DESIGN: The study design was to conduct a retrospective analysis of 3 yr of hGH treatment and genotyping of PTPN11 in patients with NS. PATIENTS: Fourteen NS patients, half of them with PTPN11 mutations in heterozygous state, were studied. At the beginning of treatment, there were no clinical or laboratory differences between groups with and without mutations in the PTPN11 gene. INTERVENTION: Patients were treated with hGH (47 microg/kg.d). MAIN OUTCOME MEASURES: The main outcome measures were PTPN11 genotype, change in IGF-I levels, and change in height sd score. RESULTS: Patients with mutations in PTPN11 presented a significantly smaller increment in IGF-I levels during the treatment compared with patients without mutations (86 +/- 67 and 202 +/- 93 microg/liter, respectively; P = 0.03). hGH treatment significantly improved growth velocity in both groups, with slightly better results observed in patients without mutations. This was translated into greater gains in height sd score relation to baseline during the 3 yr of treatment in patients without mutations (+1.7 +/- 0.1) compared with those with mutations (+0.8 +/- 0.4; P < 0.01). CONCLUSIONS: Our findings suggest that the presence of PTPN11 mutations in patients with NS indicates a reduced growth response to long-term hGH treatment.
Noonan syndrome is an autosomal dominant disorder defined by short stature, delayed puberty, and characteristic dysmorphic features. Tartaglia et al. (Nature Genetics, 29:465-468) have recently shown that gain-of-function mutations in the gene PTPN11 (protein-t
yrosine phosphatase, nonreceptor-type 11) cause Noonan syndrome in roughly half of patients that they examined. To further explore the relevance of PTPN11 mutations to the pathogenesis of Noonan syndrome, we analyzed the PTPN11 gene in 21 Japanese patients. Mutation analysis of the 15 coding exons and their flanking introns by denaturing HPLC and direct sequencing revealed six different heterozygous missense mutations (Asp61Gly, Tyr63Cys, Ala72Ser, Thr73Ile, Phe285Ser, and Asn308Asp) in seven cases (six sporadic and one familial). The mutations clustered either in the N-Src homology 2 domain or in the protein-tyrosine phosphatase domain. The clinical features of the mutation-positive and mutation-negative patients were comparable. The results provide further support to the notion that PTPN11 mutations are responsible for the development of Noonan syndrome in a substantial fraction of patients and that relatively infrequent features of Noonan syndrome, such as sensory deafness and bleeding diathesis, can also result from mutations of PTPN11.
Lee KA, etal., Clin Genet. 2009 Feb;75(2):190-4. doi: 10.1111/j.1399-0004.2008.01085.x. Epub 2008 Aug 26.
Noonan syndrome (NS) is an autosomal dominant disorder characterized by short stature, congenital heart defects and distinctive facies. The disorder is genetically heterogeneous with approximately 50% of patients having PTPN11 mutations. Prenatally, the diagnosi
s of NS has been suspected following certain ultrasound findings, such as cystic hygroma, increased nuchal translucency (NT) and hydrops fetalis. Studies of fetuses with cystic hygroma have suggested an NS prevalence of 1-3%. A retrospective review was performed to assess the utility of PTPN11 testing based on prenatal sonographic findings (n = 134). The most commonly reported indications for testing were increased NT and cystic hygroma. Analysis showed heterozygous missense mutations in 12 fetuses, corresponding to a positive test rate of 9%. PTPN11 mutations were identified in 16% and 2% of fetuses with cystic hygroma and increased NT, respectively. Among fetuses with isolated cystic hygroma, PTPN11 mutation prevalence was 11%. The mutations observed in the three fetuses with hydrops fetalis had previously been reported as somatic cancer mutations. Prenatal PTPN11 testing has diagnostic and possible prognostic properties that can aid in risk assessment and genetic counseling. As NS is genetically heterogeneous, negative PTPN11 testing cannot exclude the diagnosis and further study is warranted regarding the other NS genes.
Noonan syndrome is an autosomal dominant disease that manifests a wide variety of clinical characteristics. The syndrome is also associated with some cardiac defects. Half of all Noonan syndrome cases are caused by mutations in the PTPN11 gene, but only limited
data are available regarding aortic involvement in these cases. No reports exist regarding PTPN11 mutations in association with both aortic dilation and hypertrophic cardiomyopathy. We describe an 8-year-old girl who had Noonan syndrome involving a PTPN11 mutation, hypertrophic cardiomyopathy, main pulmonary artery dilation, and aortic root dilation. To our knowledge, this is the first case in which all three of these cardiovascular features have been observed in a single patient with Noonan syndrome.
CONTEXT: Noonan syndrome is frequently associated with an unclear disturbance of GH secretion. Half the individuals with Noonan syndrome carry a heterozygous mutation of the nonreceptor-type protein tyrosine phosphatase, Src homology region 2-domain phosphatase-2 (SHP-2), encoded by PTPN11
nt-weight:700;'>PTPN11, which has a role in GH receptor signaling. OBJECTIVE: The objective of this study was to compare GH secretion and IGF-I/IGF-binding protein-3 (IGFBP-3) levels of the SHP-2 mutation-positive (mut+ group) vs. mutation-negative individuals (mut- group). DESIGN, SETTING, AND PATIENTS: All children presenting to us with short stature plus at least three typical anomalies of Noonan syndrome or pulmonic stenosis during the last 5 yr (n = 29; 10 females and 19 males) were recruited. Auxological data, dysmorphic features, and cardiac morphology were documented. Hormone levels were measured by RIA. All coding exons of PTPN11 were sequenced after PCR amplification. INTERVENTION: A prepubertal subgroup (n = 11) was treated with recombinant human GH (rhGH) to promote growth. RESULTS: Sequencing yielded 11 different PTPN11 missense mutations in 16 of the 29 patients (55% mut+). Pulmonic stenosis (81 vs. 15%; P = 0.0007) and septal defects (63 vs. 15%; P = 0.02) were more frequently found in the mut+ group, whereas minor anomalies, cryptorchidism, and learning disabilities were as frequent in the mut+ group as in the mut- group. The mut+ group was younger at presentation (mean +/- sd, 5.1 +/- 2.7 vs. 10.3 +/- 5.2 yr; P = 0.002), but not significantly shorter [-3.15 +/- 0.92 vs. -3.01 +/- 1.35 height sd score (SDS)]. IGF-I levels (-2.03 +/- 0.69 vs. -1.13 +/- 0.89 SDS; P = 0.005) and IGFBP-3 levels (-0.92 +/- 1.26 vs. 0.40 +/- 1.08 SDS; P = 0.006) were significantly lower in the mut+ group. In contrast, GH levels showed a tendency to be higher in the mut+ group during spontaneous secretion at night and arginine stimulation (P > or = 0.075, not significant). The mean change in height SDS after 1 yr of rhGH therapy (0.043 mg/kg.d) was +0.66 +/- 0.21 in the mut+ group (n = 8), but +1.26 +/- 0.36 in the mut- group (n = 3; P = 0.007). CONCLUSIONS: Our data suggest that SHP-2 mutations in Noonan syndrome cause mild GH resistance by a postreceptor signaling defect, which seems to be partially compensated for by elevated GH secretion. This defect may contribute to the short stature phenotype in children with SHP-2 mutations and their relatively poor response to rhGH.
Tartaglia M, etal., Am J Hum Genet. 2002 Jun;70(6):1555-63. Epub 2002 May 1.
Noonan syndrome (NS) is a developmental disorder characterized by facial dysmorphia, short stature, cardiac defects, and skeletal malformations. We recently demonstrated that mutations in PTPN11, the gene encoding the non-receptor-type protein tyrosine phosphata
se SHP-2 (src homology region 2-domain phosphatase-2), cause NS, accounting for approximately 50% of cases of this genetically heterogeneous disorder in a small cohort. All mutations were missense changes and clustered at the interacting portions of the amino-terminal src-homology 2 (N-SH2) and protein tyrosine phosphatase (PTP) domains. A gain of function was postulated as a mechanism for the disease. Here, we report the spectrum and distribution of PTPN11 mutations in a large, well-characterized cohort with NS. Mutations were found in 54 of 119 (45%) unrelated individuals with sporadic or familial NS. There was a significantly higher prevalence of mutations among familial cases than among sporadic ones. All defects were missense, and several were recurrent. The vast majority of mutations altered amino acid residues located in or around the interacting surfaces of the N-SH2 and PTP domains, but defects also affected residues in the C-SH2 domain, as well as in the peptide linking the N-SH2 and C-SH2 domains. Genotype-phenotype analysis revealed that pulmonic stenosis was more prevalent among the group of subjects with NS who had PTPN11 mutations than it was in the group without them (70.6% vs. 46.2%; P<.01), whereas hypertrophic cardiomyopathy was less prevalent among those with PTPN11 mutations (5.9% vs. 26.2%; P<.005). The prevalence of other congenital heart malformations, short stature, pectus deformity, cryptorchidism, and developmental delay did not differ between the two groups. A PTPN11 mutation was identified in a family inheriting Noonan-like/multiple giant-cell lesion syndrome, extending the phenotypic range of disease associated with this gene.
The PTPN11 gene encodes SHP-2, a nonreceptor protein tyrosine phosphatase that relays signals from activated growth factor receptors to p21(ras) (Ras) and other signaling molecules. Somatic PTPN11 mutations are common in pat
ients with juvenile myelomonocytic leukemia (JMML) and have been reported in some other hematologic malignancies. We analyzed specimens from 278 pediatric patients with acute myelogenous leukemia (AML) who were enrolled on Children's Cancer Group trials 2941 and 2961 for PTPN11 mutations. Missense mutations of PTPN11 were detected in 11 (4%) of these samples. None of these patients had mutations in NRAS; however, one patient had evidence of a FLT3 alteration. Four of the patients with PTPN11 mutations (36%) were boys with French-American-British (FAB) morphology M5 AML (P=0.012). Patients with mutations also presented with elevated white blood cell counts. There was no difference in clinical outcome for patients with and without PTPN11 mutations. These characteristics identify a subset of pediatric AML with PTPN11 mutations that share clinical and biologic features with JMML.
Ko JM, etal., J Hum Genet. 2008;53(11-12):999-1006. doi: 10.1007/s10038-008-0343-6. Epub 2008 Nov 20.
After 2006, germline mutations in the KRAS, SOS1, and RAF1 genes were reported to cause Noonan syndrome (NS), in addition to the PTPN11 gene, and now we can find the etiology of disease in approximately 60-70% of NS cases. The aim of this study was to assess the
correlation between phenotype and genotype by molecular analysis of the PTPN11, SOS1, KRAS, and RAF1 genes in 59 Korean patients with NS. We found disease-causing mutations in 30 (50.8%) patients, which were located in the PTPN11 (27.1%), SOS1 (16.9%), KRAS (1.7%), and RAF1 (5.1%) genes. Three novel mutations (T59A in PTPN11, K170E in SOS1, S259T in RAF1) were identified. The patients with PTPN11 mutations showed higher prevalences of patent ductus arteriosus and thrombocytopenia. The patients with SOS1 mutations had a lower prevalence of delayed psychomotor development. All patients with RAF1 mutations had hypertrophic cardiomyopathy. Typical facial features and auxological parameters were, on statistical analysis, not significantly different between the groups. The molecular defects of NS are genetically heterogeneous and involve several genes other than PTPN11 related to the RAS-MAPK pathway.
BACKGROUND & AIMS: We have previously reported that Shp2, a tyrosine phosphatase previously known as a pro-leukemogenic molecule, suppresses the initiation of hepatocellular carcinoma (HCC). However, the role of Shp2 in HCC progression remains obscure. METHODS: Shp2 expression was determined in hum
an HCC using real-time PCR, immunoblotting and immunohistochemistry. Clinical significance of Shp2 expression was analyzed in 301 HCC tissues with clinico-pathological characteristics and follow-up information. Short hairpin RNA was utilized to investigate the function of Shp2 in hepatoma cell behavior. Role of Shp2 in HCC progression was monitored through nude mice xenograft assay. Kinase activity assay and co-immunoprecipitation were used for mechanism analysis. RESULTS: Elevated expression of Shp2 was detected in 65.9% (394/598) of human HCCs, and its levels were even higher in metastasized foci. Overexpression of Shp2 correlated well with the malignant clinico-pathological characteristics of HCC and predicted the poor prognosis of patients. Interference of Shp2 expression suppressed the proliferation of hepatoma cells in vitro and inhibited the growth of HCC xenografts in vivo. Down-regulation of Shp2 attenuated the adhesion and migration of hepatoma cells and diminished metastasized HCC formation in mice. Our data demonstrated that Shp2 promotes HCC growth and metastasis by coordinately activating Ras/Raf/Erk pathway and PI3-K/Akt/mTOR cascade. Moreover, down-regulation of Shp2 enhanced the sensitivity of hepatoma cells upon sorafenib treatment, and patients with low Shp2 expression exhibited superior prognosis to sorafenib. CONCLUSIONS: Shp2 promotes the progression of HCC and may serve as a prognostic biomarker for patients.
LEOPARD syndrome (LS) is an autosomal dominant "RASopathy" that manifests with congenital heart disease. Nearly all cases of LS are caused by catalytically inactivating mutations in the protein tyrosine phosphatase (PTP), non-receptor type 11 (PTPN11) gene that
encodes the SH2 domain-containing PTP-2 (SHP2). RASopathies typically affect components of the RAS/MAPK pathway, yet it remains unclear how PTPN11 mutations alter cellular signaling to produce LS phenotypes. We therefore generated knockin mice harboring the Ptpn11 mutation Y279C, one of the most common LS alleles. Ptpn11(Y279C/+) (LS/+) mice recapitulated the human disorder, with short stature, craniofacial dysmorphia, and morphologic, histologic, echocardiographic, and molecular evidence of hypertrophic cardiomyopathy (HCM). Heart and/or cardiomyocyte lysates from LS/+ mice showed enhanced binding of Shp2 to Irs1, decreased Shp2 catalytic activity, and abrogated agonist-evoked Erk/Mapk signaling. LS/+ mice also exhibited increased basal and agonist-induced Akt and mTor activity. The cardiac defects in LS/+ mice were completely reversed by treatment with rapamycin, an inhibitor of mTOR. Our results demonstrate that LS mutations have dominant-negative effects in vivo, identify enhanced mTOR activity as critical for causing LS-associated HCM, and suggest that TOR inhibitors be considered for treatment of HCM in LS patients.
He C, etal., Oncotarget. 2015 Aug 7;6(22):19017-26.
A series of host genes that respond to Helicobacter pylori (H. pylori) infection are involved in the process of gastric carcinogenesis. This study sought to examine interactions among polymorphisms of H. pylori-related genes PGC, PTPN11, TLR4, and IL1B and ass
ess whether their interaction effects were modified by H. pylori infection. Thirteen polymorphisms of the aforementioned genes were genotyped by the Sequenom MassARRAY platform in 714 gastric cancer patients, 907 atrophic gastritis cases and 1276 healthy control subjects. When we considered the host genetic effects alone, gene-gene interactions consistently decreased the risks of gastric cancer and/or atrophic gastritis, including three two-way interactions: PGC rs6912200-PTPN11 rs12229892, PGC rs4711690-IL1B rs1143623 and PTPN11 rs12229892-IL1B rs1143623 and a three-way interaction: PGC rs4711690-PGC rs6912200-PTPN11 rs12229892. When the effect modification of H. pylori infection was evaluated, the cumulative effects of the aforementioned three-way interaction on atrophic gastritis susceptibility switched from being beneficial to being risky by the status of H. pylori infection. These data showed that SNP interactions among H. pylori-related genes PGC, PTPN11, and IL1B, are associated with susceptibility to gastric carcinogenesis. Moreover, we provided important hints of an effect modification by H. pylori infection on the cumulative effect of PGC and PTPN11 polymorphisms. Functional experiments and further independent large-scale studies especially in other ethnic populations are still needed to confirm our results.
Tartaglia M, etal., Nat Genet. 2003 Jun;34(2):148-50.
We report here that individuals with Noonan syndrome and juvenile myelomonocytic leukemia (JMML) have germline mutations in PTPN11 and that somatic mutations in PTPN11 account for 34% of non-syndromic JMML. Furthermore, we
found mutations in PTPN11 in a small percentage of individuals with myelodysplastic syndrome (MDS) and de novo acute myeloid leukemia (AML). Functional analyses documented that the two most common mutations in PTPN11 associated with JMML caused a gain of function.
Noonan syndrome (NS) is a relatively common, but genetically heterogeneous autosomal dominant malformation syndrome. Characteristic features are proportionate short stature, dysmorphic face, and congenital heart defects. Only recently, a gene involved in NS could be identified. It encodes the non-r
eceptor protein tyrosine phosphatase SHP-2, which is an important molecule in several intracellular signal transduction pathways that control diverse developmental processes, most importantly cardiac semilunar valvulogenesis. We have screened this gene for mutations in 96 familial and sporadic, well-characterised NS patients and identified 15 different missense mutations in a total of 32 patients (33%), including 23 index patients. Most changes clustered in one exon which encodes parts of the N-SH2 domain. Five of the mutations were recurrent. Interestingly, no mutations in the PTPN11 gene were detected in five additional patients with cardio-facio-cutaneous (CFC) syndrome, which shows clinical similarities to NS.
BACKGROUND: The ubiquitous non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) plays a key role in RAS/ERK signaling downstream of most, if not all growth factors, cytokines and integrins, although its major substrates remain controversial. Mutat
ions in PTPN11 lead to several distinct human diseases. Germ-line PTPN11 mutations cause about 50% of Noonan Syndrome (NS), which is among the most common autosomal dominant disorders. LEOPARD Syndrome (LS) is an acronym for its major syndromic manifestations: multiple Lentigines, Electrocardiographic abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormalities of genitalia, Retardation of growth, and sensorineural Deafness. Frequently, LS patients have hypertrophic cardiomyopathy, and they might also have an increased risk of neuroblastoma (NS) and acute myeloid leukemia (AML). Consistent with the distinct pathogenesis of NS and LS, different types of PTPN11 mutations cause these disorders. RESULTS: Although multiple studies have reported the biochemical and biological consequences of NS- and LS-associated PTPN11 mutations, their structural consequences have not been analyzed fully. Here we report the crystal structures of WT SHP2 and five NS/LS-associated SHP2 mutants. These findings enable direct structural comparisons of the local conformational changes caused by each mutation. CONCLUSIONS: Our structural analysis agrees with, and provides additional mechanistic insight into, the previously reported catalytic properties of these mutants. The results of our research provide new information regarding the structure-function relationship of this medically important target, and should serve as a solid foundation for structure-based drug discovery programs.
Hearing loss (HL) is one of the most frequent clinical manifestations of patients who suffer with multi-systemic genetic disorders. HL in association with other physical stigmata is referred to as a syndromic form of HL. LEOPARD syndrome (LS) is one of the disorders with syndromic HL and it is cause
d by a mutation in the PTPN11 or RAF1 gene. In general, 5 year old children who undergo cochlear implantation usually show a marked change in behavior regarding sound detection within the first 6 months of implant use, but word identification may not be exhibited for at least another 6-12 months of implant use. We herein report on a 5-year-old girl with LS. Her clinical manifestations including bilateral sensorineural HL, which indicated the diagnosis of LS. We confirmed the diagnosis by identifying a disease-causing mutation in the PTPN11 gene, which was a heterozygous missense mutation Ala461Thr (c.1381G>A). She underwent cochlear implantation (CI) without complications and she is currently on regular follow-up at postoperative 1 year. This is the first reported case of CI in a patient with LS in the medical literature.
Germ line PTPN11 mutations cause 50% of cases of Noonan syndrome (NS). Somatic mutations in PTPN11 occur in 35% of patients with de novo, nonsyndromic juvenile myelomonocytic leukemia (JMML). Myeloproliferative disorders (M
PDs), either transient or more fulminant forms, can also occur in infants with NS (NS/MPD). We identified PTPN11 mutations in blood or bone marrow specimens from 77 newly reported patients with JMML (n = 69) or NS/MPD (n = 8). Together with previous reports, we compared the spectrum of PTPN11 mutations in 3 groups: (1) patients with JMML (n = 107); (2) patients with NS/MPD (n = 19); and (3) patients with NS (n = 243). Glu76 was the most commonly affected residue in JMML (n = 45), with the Glu76Lys alteration (n = 29) being most frequent. Eight of 19 patients with NS/MPD carried the Thr73Ile substitution. These data suggest that there is a genotype/phenotype correlation in the spectrum of PTPN11 mutations found in patients with JMML, NS/MPD, and NS. This supports the need to characterize the spectrum of hematologic abnormalities in individuals with NS and to better define the impact of the PTPN11 lesion on the disease course in patients with NS/MPD and JMML.
Schramm C, etal., Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H231-43. doi: 10.1152/ajpheart.00665.2011. Epub 2011 Nov 4.
The identification of mutations in PTPN11 (encoding the protein tyrosine phosphatase Shp2) in families with congenital heart disease has facilitated mechanistic studies of various cardiovascular defects. However, the roles of normal and mutant Shp2 in the develo
ping heart are still poorly understood. Furthermore, it remains unclear how Shp2 loss-of-function (LOF) mutations cause LEOPARD Syndrome (also termed Noonan Syndrome with multiple lentigines), which is characterized by congenital heart defects such as pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). In normal hearts, Shp2 controls cardiomyocyte size by regulating signaling through protein kinase B (Akt) and mammalian target of rapamycin (mTOR). We hypothesized that Shp2 LOF mutations dysregulate this pathway, resulting in HCM. For our studies, we chose the Shp2 mutation Q510E, a dominant-negative LOF mutation associated with severe early onset HCM. Newborn mice with cardiomyocyte-specific overexpression of Q510E-Shp2 starting before birth displayed increased cardiomyocyte sizes, heart-to-body weight ratios, interventricular septum thickness, and cardiomyocyte disarray. In 3-mo-old hearts, interstitial fibrosis was detected. Echocardiographically, ventricular walls were thickened and contractile function was depressed. In ventricular tissue samples, signaling through Akt/mTOR was hyperactivated, indicating that the presence of Q510E-Shp2 led to upregulation of this pathway. Importantly, rapamycin treatment started shortly after birth rescued the Q510E-Shp2-induced phenotype in vivo. If rapamycin was started at 6 wk of age, HCM was also ameliorated. We also generated a second mouse model in which cardiomyocyte-specific Q510E-Shp2 overexpression started after birth. In contrast to the first model, these mice did not develop HCM. In summary, our studies establish a role for mTOR signaling in HCM caused by Q510E-Shp2. Q510E-Shp2 overexpression in the cardiomyocyte population alone was sufficient to induce the phenotype. Furthermore, the pathomechanism was triggered pre- but not postnatally. However, postnatal rapamycin treatment could still reverse already established HCM, which may have important therapeutic implications.