Shire K, etal., J Cell Sci. 2016 Feb 1;129(3):580-91. doi: 10.1242/jcs.176446. Epub 2015 Dec 16.
Promyelocytic leukemia (PML) protein forms the basis of PML nuclear bodies (PML NBs), which control many important processes. We have screened an shRNA library targeting ubiquitin pathwa
y proteins for effects on PML NBs, and identified RNF8 and RNF168 DNA-damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the levels of PML NBs and proteins, whereas overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin-interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted in increased ubiquitylation and SUMO2 modification of PML. In addition, RNF168 was found to associate with proteins modified by SUMO2 and/or SUMO3 in a manner dependent on its ubiquitin-binding sequences, suggesting that hybrid SUMO-ubiquitin chains can be bound. In vitro assays confirmed that RNF168, preferentially, binds hybrid SUMO2-K63 ubiquitin chains compared with K63-ubiquitin chains or individual SUMO2. Our study identified previously unrecognized roles for RNF8 and RNF168 in the regulation of PML, and a so far unknown preference of RNF168 for hybrid SUMO-ubiquitin chains.
Kamitani T, etal., J Biol Chem 1998 Oct 9;273(41):26675-82.
Acute promyelocytic leukemia arises following a reciprocal chromosome translocation t(15;17), which generates PML-retinoic acid receptor alpha fusion proteins (PML-RARalpha). We have shown previously that wild type PML
le='font-weight:700;'>PML, but not PML-RARalpha, is covalently modified by the sentrin family of ubiquitin-like proteins (Kamitani, T., Nguyen, H. P., Kito, K., Fukuda-Kamitani, T., and Yeh, E. T. H. (1998) J. Biol. Chem. 273, 3117-3120). To understand the mechanisms underlying the differential sentrinization of PML versus PML-RARalpha, extensive mutational analysis was carried out to determine which Lys residues are sentrinized. We show that Lys65 in the RING finger domain, Lys160 in the B1 Box, and Lys490 in the nuclear localization signal contributes three major sentrinization sites. The PML mutant with Lys to Arg substitutions in all three sites is expressed normally, but cannot be sentrinized. Furthermore, the triple substitution mutant is localized predominantly to the nucleoplasm, in contrast to wild type PML, which is localized to the nuclear bodies. Thus, sentrinization of PML, in the context of the RING finger and the B1 box, regulates nuclear body formation. Furthermore, we showed that sentrinization of PML-RARalpha could be restored by overexpression of sentrin, but not by retinoic acid treatment. These studies provide novel insight into the pathobiochemistry of acute promyelocytic leukemia and the sentrinization pathway.
The promyelocytic leukaemia gene PML is a pleiotropic tumour suppressor. We have recently demonstrated that PML opposes mTOR-HIF1alpha-VEGF signalling in hypoxia. To determine the relevance of PML
>PML-mTOR antagonism in tumourigenesis, we have intercrossed Pml null mice with Tsc2 heterozygous mice, which develop kidney cysts and carcinomas exhibiting mTOR upregulation. We find that combined inactivation of Pml and Tsc2 results in aberrant TORC1 activity both in pre-tumoural kidneys as well as in kidney lesions. Such increase correlates with a marked acceleration in tumour progression, impacting on both the biology and histology of kidney carcinomas. Also, Pml inactivation decreases the rate of loss of heterozygosity (LOH) for the wt Tsc2 allele. Interestingly, however, aberrant TORC1 activity does not accelerate renal cystogenesis in Tsc2/Pml mutants. Our data demonstrate that activation of mTOR is critical for tumour progression, but not for tumour initiation in the kidney.
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML
font-weight:700;'>PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we analyzed the role of PML and the ND10 components Daxx and Sp100 during retroviral replication in different cell types. Using cell lines exhibiting a shRNA-mediated knockdown, we found that PML, but not Daxx or Sp100, inhibits HIV and other retroviruses in a cell type-dependent manner. The PML-mediated block to retroviral infection was active in primary human fibroblasts and murine embryonic fibroblasts but absent from T cells and myeloid cell lines. Quantitative PCR analysis of HIV cDNA in infected cells revealed that PML restricts infection at the level of reverse transcription. Our findings shed light on the controversial role of PML during retroviral infection and show that PML contributes to the intrinsic restriction of retroviral infections in a cell type-dependent manner.
Ohsaki Y, etal., J Cell Biol. 2016 Jan 4;212(1):29-38. doi: 10.1083/jcb.201507122.
Lipid droplets (LDs) in the nucleus of hepatocyte-derived cell lines were found to be associated with premyelocytic leukemia (PML) nuclear bodies (NBs) and type I nucleoplasmic reticulum (NR) or the extension of the inner nuclear membrane. Knockdown of PML
yle='font-weight:700;'>PML isoform II (PML-II) caused a significant decrease in both nuclear LDs and type I NR, whereas overexpression of PML-II increased both. Notably, these effects were evident only in limited types of cells, in which a moderate number of nuclear LDs exist intrinsically, and PML-II was targeted not only at PML NBs, but also at the nuclear envelope, excluding lamins and SUN proteins. Knockdown of SUN proteins induced a significant increase in the type I NR and nuclear LDs, but these effects were cancelled by simultaneous knockdown of PML-II. Nuclear LDs harbored diacylglycerol O-acyltransferase 2 and CTP:phosphocholine cytidylyltransferase alpha and incorporated newly synthesized lipid esters. These results corroborated that PML-II plays a critical role in generating nuclear LDs in specific cell types.
Promyelocytic leukemia nuclear bodies (PML NBs) are comprised of PML and a striking variety of its associated proteins. Various cellular functions have been attributed to PML NBs, includ
ing the regulation of gene expression. We report here that induced expression of PML recruits Sp1 into PML NBs, leading to the reduction of Sp1 transactivation function. Specifically, Chromatin immunoprecipitation (ChIP) assay demonstrated that induced expression of PML significantly diminishes the amount of Sp1 binding to its target gene promoter, immunofluorescence staining showed dramatic increase in the co-localization between PML and Sp1 upon induction of PML expression, moreover, PML and Sp1 co-fractionated in the core nuclear matrix. Our study further showed that PML promotes SUMOylation of Sp1 in a RING-motif-dependent manner, SUMOylation of Sp1 facilitates physical interaction between Sp1 and PML and recruitment of Sp1 into the PML NBs, the SUMO binding motif of PML was also important for its interaction with Sp1. The results of this study demonstrate a novel mechanism by which PML regulates gene expression through sequestration of the transcription factor into PML NBs.
In acute promyelocytic leukemia (APL), the promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). Arsenic is an effective treatment for this disease as it induces SUMO-dependent ubiquitin-mediated proteasomal degradation of the
PML-RAR fusion protein. Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin E3 ligase, RNF4 in response to arsenic. After administration of arsenic, PML immediately transits into nuclear bodies where it undergoes SUMO modification. This initial recruitment of PML into nuclear bodies is not dependent on RNF4, but RNF4 quickly follows PML into the nuclear bodies where it is responsible for ubiquitylation of SUMO-modified PML and its degradation by the proteasome. While arsenic restricts the mobility of PML, FRAP analysis indicates that RNF4 continues to rapidly shuttle into PML nuclear bodies in a SUMO-dependent manner. Under these conditions FRET studies indicate that RNF4 interacts with SUMO in PML bodies but not directly with PML. These studies indicate that arsenic induces the rapid reorganization of the cell nucleus by SUMO modification of nuclear body-associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML.
Fasci D, etal., Sci Signal. 2015 Jun 9;8(380):ra56. doi: 10.1126/scisignal.aaa3929.
Acute promyelocytic leukemia is characterized by a chromosomal translocation that produces an oncogenic fusion protein of the retinoic acid receptor alpha (RARalpha) and promyelocytic leukemia protein (PML). Arsenic trioxide chemotherapy of this cancer induces t
he PML moiety to organize nuclear bodies, where the oncoprotein is degraded. This process requires the participation of two SUMO paralogs (SUMO1 and SUMO2) to promote PML ubiquitylation mediated by the ubiquitin E3 ligase RNF4 and reorganization of PML nuclear bodies. We demonstrated that the ubiquitylation of PML required the SUMO deconjugation machinery, primarily the deconjugating enzyme SENP1, and was suppressed by expression of non-deconjugatable SUMO2. We hypothesized that constitutive SUMO2 conjugation and deconjugation occurred basally and that arsenic trioxide treatment caused the exchange of SUMO2 for SUMO1 on a fraction of Lys(65) in PML. On the basis of data obtained with mutational analysis and quantitative proteomics, we propose that the SUMO switch at Lys(65) of PML enhanced nuclear body formation, subsequent SUMO2 conjugation to Lys(160), and consequent RNF4-dependent ubiquitylation of PML. Our work provides insights into how the SUMO system achieves selective SUMO paralog modification and highlights the crucial role of SENPs in defining the specificity of SUMO signaling.
PML (Promyelocytic Leukemia protein), also known as TRIM19, belongs to the family of tripartite motif (TRIM) proteins. PML is mainly expressed in the nucleus, where it forms dynamic structures known as PML
ht:700;'>PML nuclear bodies that recruit many other proteins, such as Sp100 and Daxx. While the role of PML/TRIM19 in antiviral defense is well documented, its effect on HIV-1 infection remains unclear. Here we show that infection by HIV-1 and other retroviruses triggers the formation of PML cytoplasmic bodies, as early as 30 minutes post-infection. Quantification of the number and size of PML cytoplasmic bodies revealed that they last approximately 8 h, with a peak at 2 h post-infection. PML re-localization is blocked by reverse-transcription inhibitors and is not observed following infection with unrelated viruses, suggesting it is specifically triggered by retroviral reverse-transcription. Furthermore, we show that PML interferes with an early step of retroviral infection since PML knockdown dramatically increases reverse-transcription efficiency. We demonstrate that PML does not inhibit directly retroviral infection but acts through the stabilization of one of its well-characterized partners, Daxx. In the presence of PML, cytoplasmic Daxx is found in the vicinity of incoming HIV-1 capsids and inhibits reverse-transcription. Interestingly, Daxx not only interferes with exogenous retroviral infections but can also inhibit retrotransposition of endogenous retroviruses, thus identifying Daxx as a broad cellular inhibitor of reverse-transcription. Altogether, these findings unravel a novel antiviral function for PML and PML nuclear body-associated protein Daxx.
Ivanschitz L, etal., Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14278-83. doi: 10.1073/pnas.1507540112. Epub 2015 Nov 2.
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML
00;'>PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.
Liu J, etal., Blood. 2016 Jan 14;127(2):243-50. doi: 10.1182/blood-2015-04-637678. Epub 2015 Nov 4.
Resistance to arsenic and/or all-trans retinoic acid (ATRA) is a challenging problem in the clinical management of acute promyelocytic leukemia (APL). Acquired genetic mutations in the PML moiety of the PML-RARA fusion gene
are found in some patients with relapsed/refractory APL. Whether all of the identified point mutations play a role and have a similar function in the mechanisms of arsenic resistance remains unknown. Here we performed in vitro functional analyses and a retrospective analysis of APL patients to investigate the effect of PML-RARA mutations in mediating resistance to arsenic trioxide. Among the 5-point mutations in the PML part of PML-RARA identified in patients with relapsed APL, we found that A216V, S214L, and A216T mutations could attenuate the negative regulation of arsenic on PML-RARA, resulting in the retention of oncoproteins. In contrast, L217F and S220G mutations functioned weakly in this context. Furthermore, we demonstrated that either increasing the concentration of arsenic trioxide or combining it with ATRA could overcome the mutation-triggered arsenic resistance in vitro. In addition to presenting more evidence to reinforce the correlation of genetic mutations in PML-RARA with arsenic efficacy, we provide novel insight into the functional difference of acquired mutations of PML-RARA both in vitro and in the clinical setting. Our findings may help predict the prognosis and select more effective strategies during APL therapy.
The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost
never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice.
Granito A, etal., Am J Gastroenterol. 2010 Jan;105(1):125-31. doi: 10.1038/ajg.2009.596. Epub 2009 Oct 27.
OBJECTIVES: Some patients with primary biliary cirrhosis (PBC) have antinuclear antibodies (ANAs). These ANAs include the "multiple nuclear dots" (MND) staining pattern, targeting promyelocytic leukemia protein (PML) nuclear body (NB) components, such as "speck
led 100-kD" protein (Sp100) and PML. A new PML NB protein, designated as Sp140, was identified using serum from a PBC patient. The aim of this study was to analyze the immune response against Sp140 protein in PBC patients. METHODS: We studied 135 PBC patients and 157 pathological controls with type 1 autoimmune hepatitis, primary sclerosing cholangitis, and systemic lupus erythematosus. We used indirect immunofluorescence and a neuroblastoma cell line expressing Sp140 for detecting anti-Sp140 antibodies, and a commercially available immunoblot for detecting anti-Sp100 and anti-PML antibodies. RESULTS: Anti-Sp140 antibodies were present in 20 (15%) PBC patients but not in control samples, with a higher frequency in antimitochondrial antibody (AMA)-negative cases (53 vs. 9%, P<0.0001). Anti-Sp140 antibodies were found together with anti-Sp100 antibodies in all but one case (19 of 20, 90%) and with anti-PML antibodies in 12 (60%) cases. Anti-Sp140 positivity was not associated with a specific clinical feature of PBC. CONCLUSIONS: Our study identifies Sp140 as a new, highly specific autoantigen in PBC for the first time. The very frequent coexistence of anti-Sp140, anti-Sp100 and anti-PML antibodies suggests that the NB is a multiantigenic complex in PBC and enhances the diagnostic significance of these reactivities, which are particularly useful in AMA-negative cases.
Smith KP, etal., J Cell Biochem. 2004 Dec 15;93(6):1282-96.
Definitive localization of c-Myc within the nucleus is important to fully understand the regulation and function of this oncoprotein. Studies of c-Myc distribution, however, have produced conflicting results. To overcome technical challenges inherent in c-Myc cytology, we use here three methods to v
isualize c-Myc and in addition examine the impact of proteasome inhibition. EYFP or HA-tagged Myc was reintroduced by stable transfection into myc null diploid rat fibroblasts, replacing endogenous Myc with tagged Myc expressed at or near normal levels. This tagged Myc is shown to functionally replace the endogenous Myc by restoration of normal cell morphology and growth rate. We were able to confirm key findings using antibodies to the endogenous c-Myc and/or its partner, Max. Contrary to some published reports, by all three methods the c-Myc protein in rat fibroblasts distributes predominantly throughout the nucleus in a dispersed granular pattern, avoiding the nucleolus. Importantly, however, several findings provide evidence for an unanticipated relationship between c-Myc and PML nuclear bodies, which is enhanced under conditions of proteasome inhibition. Evidence of Max concentration within PML bodies is shown both with and without proteasome inhibition, strengthening the relationship between PML bodies and Myc/Max. Some accumulation of Myc and Max in nucleoli upon proteasome inhibition is also observed, although co-localization of ubiquitin was only seen with PML bodies. This work provides a comprehensive study of c-Myc distribution and also presents the first evidence of a relationship between turnover of this oncoprotein and PML nuclear bodies, known to break down in certain cancers.
Promyelocytic leukemia (PML) protein is a nucleoprotein that can regulate a variety of cellular stress responses. The aim of this study was to determine qualitative and quantitative changes in PML expression in preeclamptic
placentae. Immunoblot, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry techniques were used to determine PML gene expression and localization in normal (n = 6) and preeclamptic (n = 6) placentae and primary cells. Promyelocytic leukemia protein was immunolocalized within nuclei of villus mesenchyme, but largely absent in trophoblast nuclei, with a trend for increased PML reactivity in preeclamptic placenta. Immunoblot analyses of nuclear extracts confirmed relative increases (approximately 3-fold) of PML expression in preeclamptic placentae (P < .05). Conversely, less PML messenger RNA (mRNA; approximately 2-fold) was detected in preeclamptic versus normal placental samples. In vitro, PML expression could be increased by hypoxia in cultured endothelial cells but not trophoblast. Increased PML protein expression in preeclamptic villi suggests it could contribute to decreased vascularity and placental growth and/or function.
In acute promyelocytic leukaemia (APL), the promyelocytic leukaemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). This disease can be treated effectively with arsenic, which induces PML modification by sm
all ubiquitin-like modifiers (SUMO) and proteasomal degradation. Here we demonstrate that the RING-domain-containing ubiquitin E3 ligase, RNF4 (also known as SNURF), targets poly-SUMO-modified proteins for degradation mediated by ubiquitin. RNF4 depletion or proteasome inhibition led to accumulation of mixed, polyubiquitinated, poly-SUMO chains. PML protein accumulated in RNF4-depleted cells and was ubiquitinated by RNF4 in a SUMO-dependent fashion in vitro. In the absence of RNF4, arsenic failed to induce degradation of PML and SUMO-modified PML accumulated in the nucleus. These results demonstrate that poly-SUMO chains can act as discrete signals from mono-SUMOylation, in this case targeting a poly-SUMOylated substrate for ubiquitin-mediated proteolysis.
Molecular markers for cancers are not only useful for cancer detection and prognostic prediction, but may also serve as potential therapeutic targets. In order to identify reliable molecular markers for prognostic prediction in gallbladder carcinoma (GBC), we evaluated the immunohistochemical expres
sion of 15 proteins, namely p53, p27, p16, RB, Smad4, PTEN, FHIT, GSTP1, MGMT, E-cadherin, nm23, CD44, TIMP3, S100A4, and promyelocytic leukemia (PML) in 138 cases of GBC using the tissue microarray method. The prognostic significance was analyzed for each protein. Overexpression of p53 and S100A4, and loss of p27, p16, RB, Smad4, FHIT, E-cadherin and PML expression were associated with poor survival. In particular, PML and p53 showed considerable potential as independent prognostic markers. Patients with normal PML and p53 expression displayed favorable outcomes, compared to those showing abnormal expression of either or both proteins (49% vs. 23% in a 5-year survival rate; 60 months vs. 11 months in median survival, respectively; P=0.009). Thus, PML and p53 are potential candidates for development as clinically applicable molecular prognostic markers of GBC, and may be effective therapeutic targets for the disease in the future.
Zhou W, etal., Oncotarget. 2015 Nov 10;6(35):37300-15. doi: 10.18632/oncotarget.5836.
Glioblastoma multiforme (GBM) is the most lethal brain tumor. Tumor relapse in GBM is inevitable despite maximal therapeutic interventions. Glioma stem cells (GSCs) have been found to be critical players in therapeutic resistance and tumor recurrence. Therapeutic drugs targeting GSCs may significant
ly improve GBM treatment. In this study, we demonstrated that arsenic trioxide (As2O3) effectively disrupted GSCs and inhibited tumor growth in the GSC-derived orthotopic xenografts by targeting the promyelocytic leukaemia (PML). As2O3 treatment induced rapid degradation of PML protein along with severe apoptosis in GSCs. Disruption of the endogenous PML recapitulated the inhibitory effects of As2O3 treatment on GSCs both in vitro and in orthotopic tumors. Importantly, As2O3 treatment dramatically reduced GSC population in the intracranial GBM xenografts and increased the survival of mice bearing the tumors. In addition, As2O3 treatment preferentially inhibited cell growth of GSCs but not matched non-stem tumor cells (NSTCs). Furthermore, As2O3 treatment or PML disruption potently diminished c-Myc protein levels through increased poly-ubiquitination and proteasome degradation of c-Myc. Our study indicated a potential implication of As2O3 in GBM treatment and highlighted the important role of PML/c-Myc axis in the maintenance of GSCs.
Chen HY, etal., Oncogene. 2015 Oct 1;34(40):5141-51. doi: 10.1038/onc.2014.435. Epub 2015 Jan 26.
Cullin 3 (Cul3)-family ubiquitin ligases use the BTB-domain-containing proteins for the recruitment of substrates, but the regulation of this family of ubiquitin ligases has not been completely understood. KLHL20 is a BTB-family protein and targets tumor suppressor promyelocytic leukemia protein (... (more)
pan style='font-weight:700;'>PML) and death-associated protein kinase (DAPK) to its kelch-repeat domain for ubiquitination and degradation. Here, we show that another BTB-kelch protein KLHL39 is recruited to the substrate-binding domain of KLHL20 but is not a substrate of Cul3-KLHL20 complex. Interestingly, KLHL39 does not bind Cul3 because of the absence of certain conserved residues in the BTB domain. Instead, KLHL39 blocks KLHL20-mediated ubiquitination of PML and DAPK by disrupting the binding of these substrates to KLHL20 as well as the binding of KLHL20 to Cul3. Through the two mechanisms, KLHL39 increases the stability of PML and DAPK. In human colon cancers, downregulations of KLHL39, PML and DAPK are associated with metastatic progression. Furthermore, preclinical data indicate that KLHL39 promotes colon cancer migration, invasion and survival in vitro and metastasis in vivo through a PML- and DAPK-dependent mechanism. Our study identifies KLHL39 as a negative regulator of Cul3-KLHL20 ubiquitin ligase and reveals a role of KLHL39-mediated PML and DAPK stabilization in colon cancer metastasis.
Severe congenital neutropenia is associated with a marked propensity to develop myelodysplasia or acute myeloid leukemia (AML). Truncation mutations of CSF3R, encoding the granulocyte colony-stimulating factor receptor (G-CSFR), are associated with development of myelodysplasia/AML in severe congeni
tal neutropenia. However, a causal relationship between CSF3R mutations and leukemic transformation has not been established. Herein, we show that truncated G-CSFR cooperates with the PML-RARalpha oncogene to induce AML in mice. Expression of truncated G-CSFR significantly shortens the latency of AML in a G-CSF-dependent fashion and it is associated with a distinct AML presentation characterized by higher blast counts and more severe myelosuppression. Basal and G-CSF-induced signal transducer and activator of transcription 3, signal transducer and activator of transcription 5, and extracellular signal-regulated kinase 1/2 phosphorylation were highly variable but similar in leukemic blasts expressing wild-type and truncated G-CSFR. These data provide new evidence suggesting a causative role for CSF3R mutations in human AML.
Rabellino A, etal., Cancer Res. 2012 May 1;72(9):2275-84. doi: 10.1158/0008-5472.CAN-11-3159. Epub 2012 Mar 9.
The ubiquitin-like SUMO proteins covalently modify protein substrates and regulate their functional properties. In a broad spectrum of cancers, the tumor suppressor PML undergoes ubiquitin-mediated degradation primed by CK2 phosphorylation. Here, we report that
the SUMO E3-ligase inhibitor PIAS1 regulates oncogenic signaling through its ability to sumoylate PML and the PML-RARA oncoprotein of acute promyelocytic leukemia (APL). PIAS1-mediated SUMOylation of PML promoted CK2 interaction and ubiquitin/proteasome-mediated degradation of PML, attenuating its tumor suppressor functions. In addition, PIAS1-mediated SUMOylation of PML-RARA was essential for induction of its degradation by arsenic trioxide, an effective APL treatment. Moreover, PIAS1 suppression abrogated the ability of arsenic trioxide to trigger apoptosis in APL cells. Lastly, PIAS1 was also essential for PML degradation in non-small cell lung carcinoma (NSCLC) cells, and PML and PIAS1 were inversely correlated in NSCLC cell lines and primary specimens. Together, our findings reveal novel roles for PIAS1 and the SUMOylation machinery in regulating oncogenic networks and the response to leukemia therapy.
Albano F, etal., Oncotarget. 2015 May 30;6(15):13269-77.
In this study we performed absolute quantification of the PML-RARA transcript by droplet digital polymerase chain reaction (ddPCR) in 76 newly diagnosed acute promyelocytic leukemia (APL) cases to verify the prognostic impact of the PML
;'>PML-RARA initial molecular burden. ddPCR analysis revealed that the amount of PML-RARA transcript at diagnosis in the group of patients who relapsed was higher than in that with continuous complete remission (CCR) (272 vs 89.2 PML-RARA copies/ng, p = 0.0004, respectively). Receiver operating characteristic analysis detected the optimal PML-RARA concentration threshold as 209.6 PML-RARA/ng (AUC 0.78; p < 0.0001) for discriminating between outcomes (CCR versus relapse). Among the 67 APL cases who achieved complete remission after the induction treatment, those with >209.6 PML-RARA/ng had a worse relapse-free survival (p = 0.0006). At 5-year follow-up, patients with >209.6 PML-RARA/ng had a cumulative incidence of relapse of 50.3% whereas 7.5% of the patients with suffered a relapse (p < 0.0001). Multivariate analysis identified the amount of PML-RARA before induction treatment as the sole independent prognostic factor for APL relapse.Our results show that the pretreatment PML-RARA molecular burden could therefore be used to improve risk stratification in order to develop more individualized treatment regimens for high-risk APL cases.
To examine the in vivo responses of promyelocytic leukemia protein (PML) to arsenic, rats (male, 6 weeks old, Sprague Dawley) were administered a single intraperitoneal dose of 5 mg/kg arsenic trioxide (ATO). The protein was examined in the heart, lung, liver, a
nd brain 6 and 48 hours after administration: a significant response of PML was observed in the brain. Oxidative DNA modification was also observed in the brain as revealed by increased immunoreactivity to anti-8-hydroxy-2'-deoxyguanosine (8-OHdG) antibody. In contrast, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) stain reactivity was only slightly increased, suggesting oxidative cellular stress without apoptotic cell death in the ATO-administered rat brain. Among the DNA damage response pathways, the ATR-Chk1 axis was activated, while the ATM-Chk2 axis was not, implying that the PML response is associated with activation of the ATR-Chk1 DNA repair pathway in the brain.
Imoto N, etal., J Biol Chem. 2016 Feb 26;291(9):4723-31. doi: 10.1074/jbc.M115.637835. Epub 2015 Dec 24.
PAX5 is a transcription factor that is required for the development and maintenance of B cells. Promyelocytic leukemia (PML) is a tumor suppressor and proapoptotic factor. The fusion gene PAX5-PML has been identified in acut
e lymphoblastic leukemia with chromosomal translocation t(9;15)(p13;q24). We have reported previously that PAX5-PML dominant-negatively inhibited PAX5 transcriptional activity and impaired PML function by disrupting PML nuclear bodies (NBs). Here we demonstrated the leukemogenicity of PAX5-PML by introducing it into normal mouse pro-B cells. Arrest of differentiation was observed in PAX5-PML-introduced pro-B cells, resulting in the development of acute lymphoblastic leukemia after a long latency in mice. Among the transactivation targets of PAX5, B cell linker protein (BLNK) was repressed selectively in leukemia cells, and enforced BLNK expression abrogated the differentiation block and survival induced by PAX5-PML, indicating the importance of BLNK repression for the formation of preleukemic state. We also showed that PML NBs were intact in leukemia cells and attributed this to the low expression of PAX5-PML, indicating that the disruption of PML NBs was not required for the PAX5-PML-induced onset of leukemia. These results provide novel insights into the molecular mechanisms underlying the onset of leukemia by PAX5 mutations.
Scherer M, etal., J Virol. 2015 Nov 11;90(3):1190-205. doi: 10.1128/JVI.01973-15.
PML is the organizer of cellular structures termed nuclear domain 10 (ND10) or PML-nuclear bodies (PML-NBs) that act as key mediators of intrinsic immunity against human cytomegalovirus
(HCMV) and other viruses. The antiviral function of ND10 is antagonized by viral regulatory proteins such as the immediate early protein IE1 of HCMV. IE1 interacts with PML through its globular core domain (IE1CORE) and induces ND10 disruption in order to initiate lytic HCMV infection. Here, we investigate the consequences of a point mutation (L174P) in IE1CORE, which was shown to abrogate the interaction with PML, for lytic HCMV infection. We found that a recombinant HCMV encoding IE1-L174P displays a severe growth defect similar to that of an IE1 deletion virus. Bioinformatic modeling based on the crystal structure of IE1CORE suggested that insertion of proline into the highly alpha-helical domain severely affects its structural integrity. Consistently, L174P mutation abrogates the functionality of IE1CORE and results in degradation of the IE1 protein during infection. In addition, our data provide evidence that IE1CORE as expressed by a recombinant HCMV encoding IE1 1-382 not only is required to antagonize PML-mediated intrinsic immunity but also affects a recently described function of PML in innate immune signaling. We demonstrate a coregulatory role of PML in type I and type II interferon-induced gene expression and provide evidence that upregulation of interferon-induced genes is inhibited by IE1CORE. In conclusion, our data suggest that targeting PML by viral regulatory proteins represents a strategy to antagonize both intrinsic and innate immune mechanisms. IMPORTANCE: PML nuclear bodies (PML-NBs), which represent nuclear multiprotein complexes consisting of PML and additional proteins, represent important cellular structures that mediate intrinsic resistance against many viruses, including human cytomegalovirus (HCMV). During HCMV infection, the major immediate early protein IE1 binds to PML via a central globular domain (IE1CORE), and we have shown previously that this is sufficient to antagonize intrinsic immunity. Here, we demonstrate that modification of PML by IE1CORE not only abrogates intrinsic defense mechanisms but also attenuates the interferon response during infection. Our data show that PML plays a novel coregulatory role in type I as well as type II interferon-induced gene expression, which is antagonized by IE1CORE. Importantly, our finding supports the view that targeting of PML-NBs by viral regulatory proteins has evolved as a strategy to inhibit both intrinsic and innate immune defense mechanisms.
Kakizuka A, etal., Cell. 1991 Aug 23;66(4):663-74. doi: 10.1016/0092-8674(91)90112-c.
A unique mRNA produced in leukemic cells from a t(15;17) acute promyelocytic leukemia (APL) patient encodes a fusion protein between the retinoic acid receptor alpha (RAR alpha) and a myeloid gene product called PML. PML con
tains a cysteine-rich region present in a new family of apparent DNA-binding proteins that includes a regulator of the interleukin-2 receptor gene (Rpt-1) and the recombination-activating gene product (RAG-1). Accordingly, PML may represent a novel transcription factor or recombinase. The aberrant PML-RAR fusion product, while typically retinoic acid responsive, displays both cell type- and promoter-specific differences from the wild-type RAR alpha. Because patients with APL can be induced into remission with high dose RA therapy, we propose that the nonliganded PML-RAR protein is a new class of dominant negative oncogene product. Treatment with RA would not only relieve this inhibition, but the activated PML-RAR protein may actually promote myelocyte differentiation.
Wagenknecht N, etal., Viruses. 2015 Jun 5;7(6):2884-907. doi: 10.3390/v7062751.
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still cont
roversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence andWestern blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency.
Imani-Saber Z and Ghafouri-Fard S, Asian Pac J Cancer Prev. 2015;16(12):5005-6.
Gastric cancer as one of the most common cancers worldwide has various genetic and environmental risk factors including Helicobacter pylori (H.pylori) infection. Recently, loss of a tumor suppressor gene named promyelocytic leukemia (PML) has been identified in
gastric cancer. However, no mutation has been found in this gene in gastric cancer samples. Cag A H.pylori protein has been shown to exert post transcriptional regulation of some tumor suppressor genes. In order to assess such a mechanism for PML degradation, we performed in silico analyses to establish any interaction between PML and Cag A proteins. In silico interaction and docking studies showed that these two proteins may have stable interactions. In addition, we showed that imatinib kinase inhibitor can restore PML function by inhibition of casein kinase 2.
Wang QQ, etal., Oncotarget. 2015 Sep 22;6(28):25646-59. doi: 10.18632/oncotarget.4662.
Arsenic trioxide (As2O3) is one of the most effective therapeutic agents used for patients with acute promyelocytic leukemia (APL). The probable explanation for As2O3-induced cell differentiation is the direct targeting of PML-RARalpha oncoprotein by As2O3, whic
h results in initiation of PML-RARalpha degradation. However, after injection, As2O3 is rapidly methylated in body to different intermediate metabolites such as trivalent monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)), therefore, it remains unknown that which arsenic specie is actually responsible for the therapeutic effects against APL. Here we have shown the role of As2O3 (as iAs(III)) and its intermediate metabolites (i.e., MMA(III)/DMA(III)) in NB4 cells. Inorganic iAs(III) predominantly showed induction of cell differentiation, while MMA(III) and DMA(III) specifically showed to induce mitochondria and endoplasmic reticulum-mediated apoptosis, respectively. On the other hand, in contrast to iAs(III), MMA(III) showed stronger binding affinity for ring domain of PML recombinant protein, however, could not induce PML protein SUMOylation and ubiquitin/proteasome degradation. In summary, our results suggest that the binding of arsenicals to the ring domain of PML proteins is not associated with the degradation of PML-RARalpha fusion protein. Moreover, methylated arsenicals can efficiently lead to cellular apoptosis, however, they are incapable of inducing NB4 cell differentiation.
Acute promyelocytic leukaemia (APL) is characterized by the PML/RARA fusion transcript. PML and RARA mutations have been shown to directly respond to arsenic trioxide (ATO) and all-trans retinoic (ATRA). We analysed the prev
alence of PML mutations in 32 patients with de novo or therapy-related APL (t-APL; n = 5), treated with ATO. We identified one ATO-resistant t-APL patient, who presented a PML A216T mutation in both the rearranged and unrearranged PML alleles, and two mutations in the rearranged RARA gene. In this patient, subclones with different PML and RARA mutations acquired clonal dominance during the disease course, probably leading to treatment resistance.
We describe mutations in the PML nuclear body protein Sp110 in the syndrome veno-occlusive disease with immunodeficiency, an autosomal recessive disorder of severe hypogammaglobulinemia, combined T and B cell immunodeficiency, absent lymph node germinal centers
, absent tissue plasma cells and hepatic veno-occlusive disease. This is the first report of the involvement of a nuclear body protein in a human primary immunodeficiency and of high-penetrance genetic mutations in hepatic veno-occlusive disease.
Takayama N, etal., Exp Hematol. 2001 Jul;29(7):864-72.
OBJECTIVE: All-trans retinoic acid (RA) resistance in acute promyelocytic leukemia (APL) has been a serious clinical problem in differentiation-inducing therapy. However, the mechanisms underlying acquired RA resistance in APL patients are not well understood. MATERIALS AND METHODS: We recently esta
blished a spontaneous RA-resistant APL cell line (UF-1) from a patient and used this cell line as an excellent in vitro model for RA-resistant clinical situations. We investigated the structural and functional abnormalities of chimeric PML/RARalpha gene in UF-1 cells and preserved materials from the original patient. RESULTS: A novel point mutation was detected in the ligand-binding (E) domain of the RARalpha portion of the PML/RARalpha gene in UF-1 cells. This mutation resulted in amino acid substitution of Arg611 (CGG) for Trp611 (TGG) in the short-form PML/RARalpha protein, which corresponded to Arg276 in wild-type RARalpha. Importantly, the same mutation was also detected in the preserved materials from the original patient. COS-1 cells were transiently transfected with cDNA encoding wild-type and mutant PML/RARalpha constructed by site-directed mutagenesis and performed RA-binding assay. Interestingly, RA-binding activity was dramatically decreased in the mutant PML/RARalpha compared with that of the wild-type chimeric protein, suggesting that this single amino acid substitution is critical for RA binding. CONCLUSIONS: These results strongly suggest that a novel point mutation in the ligand-binding domain of the RARalpha portion (Arg611) of the chimeric PML/RARalpha gene decreased sensitivity to all-trans RA. We conclude that acquisition of the PML/RARalpha mutation is one possible mechanism for development of RA resistance in patients with APL in vivo.
tinoic acid receptor gene with the t (15;17) translocation causes disassembly of PML NBs, leading to development of acute promyelocytic leukemia. In contrast, PML overexpression as well as different morphological changes of PML NBs were described in a few solid tumors. In this study, the expression of PML through the multistep hepatocarcinogenesis was analyzed in 95 cases of human hepatocellular carcinomas (HCCs) for comparison along with dysplastic nodules (DNs) and background liver cirrhosis (LC) or chronic hepatitis by immunohistochemistry and immunoblot. In addition, cases of HCCs were further evaluated according to their histologic grade and etiology. The amount of PML as well as the number and size of PML NBs increased gradually through the progression from LC, DNs to HCCs. The overexpression of PML in HCCs was much more closely associated with HBV infection than HCV infection or alcoholic liver disease. The PML expression, however, was not correlated with histologic grade of HCCs. These results suggest that PML is involved in the early stage of multistep hepatocarcinogenesis, and HBV infection may be associated with the overexpression of PML and the morphological alteration of PML NBs.
Jo S, etal., Biochim Biophys Acta. 2016 Jul;1863(7 Pt A):1499-509. doi: 10.1016/j.bbamcr.2016.03.019. Epub 2016 Mar 24.
Arsenic trioxide (ATO) is a therapeutic agent for acute promyelocytic leukemia (APL) which induces PML-RARA protein degradation via enhanced UBE2I-mediated sumoylation. PCGF2, a Polycomb group protein, has been suggested as an anti-SUMO E3 protein by inhibiting
the sumoylation of UBE2I substrates, HSF2 and RANGAP1, via direct interaction. Thus, we hypothesized that PCGF2 might play a role in ATO-induced PML-RARA degradation by interacting with UBE2I. PCGF2 protein was down-regulated upon ATO treatment in human APL cell line, NB4. Knockdown of PCGF2 in NB4 cells, in the absence of ATO treatment, was sufficient to induce sumoylation-, ubiquitylation- and PML nuclear body-mediated degradation of PML-RARA protein. Moreover, overexpression of PCGF2 protected ATO-mediated degradation of ectopic and endogenous PML-RARA in 293T and NB4 cells, respectively. In 293T cells, UBE2I-mediated PML-RARA degradation was reduced upon PCGF2 co-expression. In addition, UBE2I-mediated sumoylation of PML-RARA was reduced upon PCGF2 co-expression and PCGF2-UBE2I interaction was confirmed by co-immunoprecipitation. Likewise, endogenous PCGF2-UBE2I interaction was detected by co-immunoprecipitation and immunofluorescence assays in NB4 cells. Intriguingly, upon ATO-treatment, such interaction was disrupted and UBE2I was co-immunoprecipitated or co-localized with its SUMO substrate, PML-RARA. Taken together, our results suggested a novel role of PCGF2 in ATO-mediated degradation of PML-RARA that PCGF2 might act as a negative regulator of UBE2I via direct interaction.
The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear b
odies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis. We identified 29 proteins that affected APB formation, which included proteins involved in telomere and chromatin organization, protein sumoylation and DNA repair. By integrating and extending these findings, we found that APB formation induced clustering of telomere repeats, telomere compaction and concomitant depletion of the shelterin protein TRF2 (also known as TERF2). These APB-dependent changes correlated with the induction of a DNA damage response at telomeres in APBs as evident by a strong enrichment of the phosphorylated form of the ataxia telangiectasia mutated (ATM) kinase. Accordingly, we propose that APBs promote telomere maintenance by inducing a DNA damage response in ALT-positive tumor cells through changing the telomeric chromatin state to trigger ATM phosphorylation.
Wimmer P, etal., Oncogene. 2016 Jan 7;35(1):69-82. doi: 10.1038/onc.2015.63. Epub 2015 Mar 16.
Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated fa
ctors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.
Kuo HY, etal., Cell Cycle. 2014;13(19):3132-42. doi: 10.4161/15384101.2014.949212.
Promyelocytic leukemia protein (PML) is emerging as an important tumor suppressor. Its expression is lost during the progression of several types of cancer, including lung cancer. The EGF receptor (EGFR), a membrane-bound receptor tyrosine kinase, transduces int
racellular signals responsible for cell proliferation, differentiation and migration. EGFR activity is frequently abnormally upregulated in lung adenocarcinoma (LAC) and thus is considered to be a driving oncogene for LAC. EGFR translocates into the nucleus and transcriptionally activates genes, such as CCND1, that promote cell growth. Recently, we demonstrated that PML interacted with nuclear EGFR (nEGFR) and suppressed the nEGFR-mediated transcriptional activation of CCND1 in lung cancer cells, thereby restraining cell growth. When we further investigated the interplay between PML and EGFR in lung cancer metastasis, we found that the matrix metalloprotease-2 gene (MMP2) was a novel nEGFR target gene and was repressed by PML. We provide evidence that nEGFR bound to the AT-rich sequence (ATRS) in the MMP2 promoter and enhanced its transcriptional activity. In addition, we demonstrated that PML repressed nEGFR-induced MMP2 transcription and reduced cell invasion. PML was recruited by nEGFR to the MMP2 promoter where it reduced histone acetylation, leading to the transcriptional repression of MMP2. Finally, we demonstrated that PML upregulation by interferon-β (IFNβ) in lung cancer cells decreased MMP2 expression and cell invasion. Together, our results suggested that IFNβ induced PML to inhibit lung cancer metastasis by repressing the nEGFR-mediated transcriptional activation of MMP2.
BACKGROUND: Recent studies indicate that angiogenesis is important in the pathogenesis of acute myeloid leukemias (AMLs). Among the various AMLs, the bone marrow angiogenetic response is particularly pronounced in acute promyelocytic leukemia (APL). However, the molecular mechanisms responsible for
this angiogenetic response are largely unknown. In the present study, we have explored the role of HHEX, a homeodomain transcription factor, as a possible mediator of the pro-angiogenetic response observed in APL. This transcription factor seems to represent an ideal candidate for this biologic function because it is targeted by PML-RARalpha, is capable of interaction with PML and PML-RARalpha, and acts as a regulator of the angiogenetic response. METHODS: We used various cellular systems of APL, including primary APL cells and leukemic cells engineered to express PML-RARalpha, to explore the role of the PML-RARalpha fusion protein on HHEX expression. Molecular and biochemical techniques have been used to investigate the mechanisms through which PML-RARalpha downmodulates HHEX and the functional consequences of this downmodulation at the level of the expression of various angiogenetic genes, cell proliferation and differentiation. RESULTS: Our results show that HHEX expression is clearly downmodulated in APL and that this effect is directly mediated by a repressive targeting of the HHEX gene promoter by PML-RARalpha. Studies carried out in primary APL cells and in a cell line model of APL with inducible PML-RARalpha expression directly support the view that this fusion protein through HHEX downmodulation stimulates the expression of various genes involved in angiogenesis and inhibits cell differentiation. CONCLUSIONS: Our data suggest that HHEX downmodulation by PML-RARalpha is a key event during APL pathogenesis.
Lin YC, etal., Cancer Res. 2014 Dec 1;74(23):6935-46. doi: 10.1158/0008-5472.CAN-14-1330. Epub 2014 Oct 7.
The tumor-suppressor protein promyelocytic leukemia (PML) is aberrantly degraded in multiple types of human cancers through mechanisms that are incompletely understood. Here, we show that the phosphatase SCP1 and its isoforms SCP2/3 dephosphorylate PML
font-weight:700;'>PML at S518, thereby blocking PML ubiquitination and degradation mediated by the prolyl isomerase Pin1 and the ubiquitin ligase KLHL20. Clinically, SCP1 and SCP3 are downregulated in clear cell renal cell carcinoma (ccRCC) and these events correlated with PMLS518 phosphorylation, PML turnover, and high-grade tumors. Restoring SCP1-mediated PML stabilization not only inhibited malignant features of ccRCC, including proliferation, migration, invasion, tumor growth, and tumor angiogenesis, but also suppressed the mTOR-HIF pathway. Furthermore, blocking PML degradation in ccRCC by SCP1 overexpression or Pin1 inhibition enhanced the tumor-suppressive effects of the mTOR inhibitor temsirolimus. Taken together, our results define a novel pathway of PML degradation in ccRCC that involves SCP downregulation, revealing contributions of this pathway to ccRCC progression and offering a mechanistic rationale for combination therapies that jointly target PML degradation and mTOR inhibition for ccRCC treatment.
OBJECTIVES: The study aimed to assess the potential for serum neurofilament light chain (NFL) levels to predict the risk of progressive multifocal leukoencephalopathy (PML) in natalizumab (NTZ)-treated patients with multiple sclerosis (MS) and to disc
riminate PML from MS relapses. METHODS: NFL levels were measured with single molecule array (Simoa) in 4 cohorts: (1) a prospective cohort of patients with MS who developed PML under NTZ therapy (pre-PML) and non-PML NTZ-treated patients (NTZ-ctr); (2) a cohort of patients whose blood was collected during PML; (3) an independent cohort of non-PML NTZ-treated patients with serum NFL determinations at 2 years (replication cohort); and (4) a cohort of patients whose blood was collected during exacerbations. RESULTS: Serum NFL levels were significantly increased after 2 years of NTZ treatment in pre-PML patients compared with NTZ-ctr. The prognostic performance of serum NFL levels to predict PML development at 2 years was similar in the NTZ-ctr group and replication cohort. Serum NFL levels also distinguished PML from MS relapses and were 8-fold higher during PML compared with relapses. CONCLUSIONS: These results support the use of serum NFL levels in clinical practice to identify patients with relapsing-remitting MS at higher PML risk and to differentiate PML from clinical relapses in NTZ-treated patients. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that serum NFL levels can identify NTZ-treated patients with MS who will develop PML with a sensitivity of 67% and specificity of 80%.
The E1B-55K product from human adenovirus is a substrate of the small ubiquitin-related modifier (SUMO)-conjugation system. SUMOylation of E1B-55K is required to transform primary mammalian cells in cooperation with adenovirus E1A and to repress p53 tumour suppressor functions. The biochemical cons
equences of SUMO1 conjugation of 55K have so far remained elusive. Here, we report that E1B-55K physically interacts with different isoforms of the tumour suppressor protein promyelocytic leukaemia (PML). We show that E1B-55K binds to PML isoforms IV and V in a SUMO1-dependent and -independent manner. Interaction with PML-IV promotes the localization of 55K to PML-containing subnuclear structures (PML-NBs). In virus-infected cells, this process is negatively regulated by other viral proteins, indicating that binding to PML is controlled through reversible SUMOylation in a timely coordinated manner. These results together with earlier work are consistent with the idea that SUMOylation regulates targeting of E1B-55K to PML-NBs, known to control transcriptional regulation, tumour suppression, DNA repair and apoptosis. Furthermore, they suggest that SUMO1-dependent modulation of p53-dependent growth suppression through E1B-55K PML-IV interaction has a key role in adenovirus-mediated cell transformation.
Masroori N, etal., Retrovirology. 2016 Mar 22;13(1):19. doi: 10.1186/s12977-016-0253-1.
BACKGROUND: The promyelocytic leukemia (PML) protein, a type I interferon (IFN-I)-induced gene product and a member of the tripartite motif (TRIM) family, modulates the transcriptional activity of viruses belonging to various families. Whether PML
t-weight:700;'>PML has an impact on the replication of HIV-1 has not been fully addressed, but recent studies point to its possible involvement in the restriction of HIV-1 in human cells and in the maintenance of transcriptional latency in human cell lines in which HIV-1 is constitutively repressed. We investigated further the restriction of HIV-1 and a related lentivirus, SIVmac, by PML in murine cells and in a lymphocytic human cell line. In particular, we studied the relevance of PML to IFN-I-mediated inhibition and the role of individual human isoforms. RESULTS: We demonstrate that both human PML (hPML) and murine PML (mPML) inhibit the early post-entry stages of the replication of HIV-1 and a related lentivirus, SIVmac. In addition, HIV-1 was transcriptionally silenced by mPML and by hPML isoforms I, II, IV and VI in MEFs. This PML-mediated transcriptional repression was attenuated in presence of the histone deacetylase inhibitor SAHA. In contrast, depletion of PML had no effect on HIV-1 gene expression in a human T cell line. PML was found to contribute to the inhibition of HIV-1 by IFN-I. Specifically, IFN-alpha and IFN-beta treatments of MEFs enhanced the PML-dependent inhibition of HIV-1 early replication stages. CONCLUSIONS: We show that PML can inhibit HIV-1 and other lentiviruses as part of the IFN-I-mediated response. The restriction takes place at two distinct steps, i.e. reverse transcription and transcription, and in an isoform-specific, cellular context-specific fashion. Our results support a model in which PML activates innate immune antilentiviral effectors. These data are relevant to the development of latency reversal-inducing pharmacological agents, since PML was previously proposed as a pharmacological target for such inhibitors. This study also has implications for the development of murine models of HIV-1.
The tumor suppressor protein promyelocytic leukemia (PML) is a key regulator of inflammatory responses and tumorigenesis and functions through the assembly of subnuclear structures known as PML nuclear bodies (NBs). The infl
ammation-related cytokine tumor necrosis factor-alpha (TNFalpha) is known to induce PML protein accumulation and PML NB formation that mediate TNFalpha-induced cell death in cancer cells and inhibition of migration and capillary tube formation in endothelial cells (ECs). In this study, we uncover a novel mechanism of PML gene regulation in which the p38 MAPK and its downstream kinase MAP kinase-activated protein kinase 1 (MNK1) mediate TNFalpha-induced PML protein accumulation and PML NB formation. The mechanism includes the presence of an internal ribosome entry site (IRES) found within the well-conserved 100 nucleotides upstream of the PML initiation codon. The activity of the PML IRES is induced by TNFalpha in a manner that involves MNK1 activation. It is proposed that the p38-MNK1-PML network regulates TNFalpha-induced apoptosis in breast cancer cells and TNFalpha-mediated inhibition of migration and capillary tube formation in ECs.
Brown D, etal., Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2551-6. doi: 10.1073/pnas.94.6.2551.
The malignant cells of acute promyelocytic leukemia (APL) contain a reciprocal chromosomal translocation that fuses the promyelocytic leukemia gene (PML) with the retinoic acid receptor alpha gene (RAR alpha). To test the hypothesis that the chimera PML
'font-weight:700;'>PMLRAR alpha plays a role in leukemogenesis, we expressed a PMLRAR alpha cDNA in myeloid cells of transgenic mice. PMLRAR alpha transgenic mice exhibited impaired neutrophil maturation early in life, which progressed at a low frequency over the course of several months to overt APL. Both the preleukemic state and the leukemia could be transplanted to nontransgenic mice, and the transplanted preleukemia could progress to APL. The APL recapitulated features of the human disease, including a response to retinoic acid. Retinoic acid caused the leukemic cells to differentiate in vitro and in vivo, eliciting remissions of both the preleukemic state and APL in mice. Our results demonstrate that PMLRAR alpha impairs neutrophil differentiation and initiates the development of APL. The transgenic mice described here provide an apparently accurate model for human APL that includes clear evidence of tumor progression. The model should be useful for exploring the molecular pathogenesis of APL and the mechanisms of the therapeutic response to retinoic acid, as well as for preclinical studies of therapeutic regimens.
Wu J, etal., Blood. 2014 Jan 9;123(2):261-70. doi: 10.1182/blood-2013-02-483289. Epub 2013 Nov 19.
Promyelocytic leukemia protein (PML) has been implicated as a participant in multiple cellular processes including senescence, apoptosis, proliferation, and differentiation. Studies of PML function in hematopoietic different
iation previously focused principally on its myeloid activities and also indicated that PML is involved in erythroid colony formation. However, the exact role that PML plays in erythropoiesis is essentially unknown. In this report, we found that PML4, a specific PML isoform expressed in erythroid cells, promotes endogenous erythroid genes expression in K562 and primary human erythroid cells. We show that the PML4 effect is GATA binding protein 1 (GATA-1) dependent using GATA-1 knockout/rescued G1E/G1E-ER4 cells. PML4, but not other detected PML isoforms, directly interacts with GATA-1 and can recruit it into PML nuclear bodies. Furthermore, PML4 facilitates GATA-1 trans-activation activity in an interaction-dependent manner. Finally, we present evidence that PML4 enhances GATA-1 occupancy within the globin gene cluster and stimulates cooperation between GATA-1 and its coactivator p300. These results demonstrate that PML4 is an important regulator of GATA-1 and participates in erythroid differention by enhancing GATA-1 trans-activation activity.