| 11532643 | Cerebral visual impairment and intellectual disability caused by PGAP1 variants. | Bosch DG, etal., Eur J Hum Genet. 2015 Dec;23(12):1689-93. doi: 10.1038/ejhg.2015.42. Epub 2015 Mar 25. | Homozygous variants in PGAP1 (post-GPI attachment to proteins 1) have recently been identified in two families with developmental delay, seizures and/or spasticity. PGAP1 is a member of the glycosylphosphatidylinositol ancho r biosynthesis and remodeling pathway and defects in this pathway are a subclass of congenital disorders of glycosylation. Here we performed whole-exome sequencing in an individual with cerebral visual impairment (CVI), intellectual disability (ID), and factor XII deficiency and revealed compound heterozygous variants in PGAP1, c.274_276del (p.(Pro92del)) and c.921_925del (p.(Lys308Asnfs*25)). Subsequently, PGAP1-deficient Chinese hamster ovary (CHO)-cell lines were transfected with either mutant or wild-type constructs and their sensitivity to phosphatidylinositol-specific phospholipase C (PI-PLC) treatment was measured. The mutant constructs could not rescue the PGAP1-deficient CHO cell lines resistance to PI-PLC treatment. In addition, lymphoblastoid cell lines (LCLs) of the affected individual showed no sensitivity to PI-PLC treatment, whereas the LCLs of the heterozygous carrier parents were partially resistant. In conclusion, we report novel PGAP1 variants in a boy with CVI and ID and a proven functional loss of PGAP1 and show, to our knowledge, for the first time this genetic association with CVI. | 25804403 | 2015-09-01 |
| 598114479 | Additional evidence that PGAP1 loss of function causes autosomal recessive global developmental delay and encephalopathy. | Williams C, etal., Clin Genet. 2015 Dec;88(6):597-9. doi: 10.1111/cge.12581. Epub 2015 Mar 30. | | 25823418 | 2015-12-01 |
| 1303970 | Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. | Tanaka S, etal., J Biol Chem 2004 Apr 2;279(14):14256-63. Epub 2004 Jan 20. | The inositol moiety of mammalian glycosylphosphatidylinositol (GPI) is acylated at an early step in GPI biosynthesis. The inositol acylation is essential for the generation of mature GPI capable of attachment to proteins. However, the acyl group is usually absent from GPI-anchored proteins (GPI-APs) on the cell surface due to inositol deacylation that occurs in the endoplasmic reticulum (ER) soon after GPI-anchor attachment. Mammalian GPI inositol-deacylase has not been cloned, and the biological significance of the deacylation has been unclear. Here we report a GPI inositol-deacylase-deficient Chinese hamster ovary cell line established by taking advantage of resistance to phosphatidylinositol-specific phospholipase C and the gene responsible, which was termed PGAP1 for Post GPI Attachment to Proteins 1. PGAP1 encoded an ER-associated, 922-amino acid membrane protein bearing a lipase consensus motif. Substitution of a conserved putative catalytic serine with alanine resulted in a complete loss of function, indicating that PGAP1 is the GPI inositol-deacylase. The mutant cells showed a clear delay in the maturation of GPI-APs in the Golgi and accumulation of GPI-APs in the ER. Thus, the GPI inositol deacylation is important for efficient transport of GPI-APs from the ER to the Golgi. | 14734546 | 2004-12-01 |
| 11536364 | Loss of function of PGAP1 as a cause of severe encephalopathy identified by Whole Exome Sequencing: Lessons of the bioinformatics pipeline. | Granzow M, etal., Mol Cell Probes. 2015 Oct;29(5):323-9. doi: 10.1016/j.mcp.2015.05.012. Epub 2015 Jun 4. | We evaluated a multiple consanguineous Turkish family with two children, a boy and a girl, affected by severe encephalopathy, hypotonia, microcephaly and retinal dystrophy by a combination of linkage analysis and Whole Exome Sequencing (WES). We analyzed the sequence data by two different bioinforma tics pipelines which did not differ in overall processing strategy but involved differences in software used, minor allele frequency (MAF) thresholds and reference data sets, the usage of in-house control exomes and filter settings to prioritize called variants. Assuming autosomal recessive mode of inheritance, only homozygous variants present in both children were considered. The resulting variant lists differed partially (nine variants identified by both pipelines, ten variants by only one pipeline). Major reasons for this discrepancy were different filters for MAF and different variant prioritizations. Combining the variant lists with the results of linkage analysis and further prioritization by expression data and prediction tools, an intronic homozygous splice variant (c.1090-2A>G; IVS9-2A>G; p.?) in PGAP1 (Post-GPI Attachment To Proteins 1) was identified and validated by cDNA analysis. PGAP1 ensures the first step of maturation of GPI (glycosylphosphatidylinositol)-anchor proteins. Recently, a homozygous loss-of-function mutation in PGAP1 has been reported in one family with two children affected by a similar phenotype. The present report not only illustrates the possible influence of specific filtering settings on the results of WES but also confirms PGAP1 as a cause of severe encephalopathy. | 26050939 | 2015-09-01 |
| 598114551 | Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy. | Murakami Y, etal., PLoS Genet. 2014 May 1;10(5):e1004320. doi: 10.1371/journal.pgen.1004320. eCollection 2014 May. | Many eukaryotic cell-surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). There are at least 26 genes involved in biosynthesis and remodeling of GPI anchors. Hypomorphic coding mutations in seven of these genes have been reported to cause decreased expression of GPI anchored proteins (GPI-APs) on the cell surface and to cause autosomal-recessive forms of intellectual disability (ARID). We performed homozygosity mapping and exome sequencing in a family with encephalopathy and non-specific ARID and identified a homozygous 3 bp deletion (p.Leu197del) in the GPI remodeling gene PGAP1. PGAP1 was not described in association with a human phenotype before. PGAP1 is a deacylase that removes an acyl-chain from the inositol of GPI anchors in the endoplasmic reticulum immediately after attachment of GPI to proteins. In silico prediction and molecular modeling strongly suggested a pathogenic effect of the identified deletion. The expression levels of GPI-APs on B lymphoblastoid cells derived from an affected person were normal. However, when those cells were incubated with phosphatidylinositol-specific phospholipase C (PI-PLC), GPI-APs were cleaved and released from B lymphoblastoid cells from healthy individuals whereas GPI-APs on the cells from the affected person were totally resistant. Transfection with wild type PGAP1 cDNA restored the PI-PLC sensitivity. These results indicate that GPI-APs were expressed with abnormal GPI structure due to a null mutation in the remodeling gene PGAP1. Our results add PGAP1 to the growing list of GPI abnormalities and indicate that not only the cell surface expression levels of GPI-APs but also the fine structure of GPI-anchors is important for the normal neurological development. | 24784135 | 2014-05-01 |