Quintana E, etal., Clin Genet. 2010 May;77(5):474-82. doi: 10.1111/j.1399-0004.2009.01313.x. Epub 2009 Dec 10.
We screened for PDHA1 mutations in 40 patients with biochemically demonstrated PDHc deficiency or strong clinical suspicion, and found changes with probable pathological significance in 20. Five patients presented new mutations: p.A169V, c.932_938del, c.1143_114
4 ins24, c.1146_1159dup and c.510-30G> A, this latter is a new undescribed cause of exon 6 skipping. Another four mutations have been found, and previously reported, in our patients: p.H113D, p.P172L, p.Y243del and p.Y369Q. Eleven patients presented seven known mutations: p.R127Q, p.I166I, p.A198T, p.R263G, p.R302C, p.R378C and c.1142_1145dup. The latter three were found in more than one unrelated patient: p.R302C was detected in a heterozygous girl and a mosaic male, p.R378C in two males and finally, c.1142_1145dup in three females; only one in 20 mothers was found to be a carrier (p.R263G). Apart from those 20 patients, the only alteration detected in one girl with clear PDHc and PDH-E1 deficiency was the silent change c.396A> C (p.R132R), and other eight PDHc deficient patients carry combinations of known infrequent polymorphisms that are overrepresented among our 20 unsolved patients. The importance of these changes on PDH activity is unclear. Investigations in the other PDHc genes are in course in order to elucidate the genetic defect in the unresolved patients.
Defects in the pyruvate dehydrogenase (PDH) complex are an important cause of primary lactic acidosis, a frequent manifestation of metabolic disease in children. Clinical symptoms can vary considerably in patients with PDH complex deficiencies, and almost equal numbers of affected males and females
have been identified, suggesting an autosomal recessive mode of inheritance of the disease. However, the great majority of PDH complex deficiencies result from mutations in the X-linked pyruvate dehydrogenase (E1) alpha subunit gene (PDHA1). The major factors that contribute to the clinical variation in E1alpha deficiency and its resemblance to a recessive disease are developmental lethality in some males with severe mutations and the pattern of X-inactivation in females. To date, 37 different missense/nonsense and 39 different insertion/deletion mutations have been identified in the E1alpha subunit gene of 130 patients (61 females and 69 males) from 123 unrelated families. Insertion/deletion mutations occur preferentially in exons 10 and 11, while missense/nonsense mutations are found in all exons. In males, the majority of missense/nonsense mutations are found in exons 3, 7, 8 and 11, and three recurrent mutations at codons R72, R263 and R378 account for half of these patients with missense/nonsense mutations (25 of 50). A significantly lower number of females is found with missense/nonsense mutations (25). However, 36 females out of 55 affected patients have insertion/deletion mutations. The total number of female and male patients is thus almost the same, although a difference in the distribution of the type of mutations is evident between both sexes. In many families, the parents of the affected patients were studied for the presence of the PDHA1 mutation. The mutation was never present in the somatic cells of the father; in 63 mothers studied, 16 were carriers (25%). In four families, the origin of the new mutation was determined to be twice paternal and twice maternal.
Liu F, etal., Oncotarget. 2015 Sep 29;6(29):27199-213. doi: 10.18632/oncotarget.4508.
The glucose metabolism reprogramming is a hallmark of cancer. The oncoprotein hepatitis B X-interacting protein (HBXIP) functions in the development of breast cancer. In this study, we supposed that HBXIP might be involved in the glucose metabolism reprogramming in breast cancer. We showed that HBX
IP led to increases in generation of intracellular glucose and lactate, as well as decreases in generation of reactive oxygen species. Expression of synthesis of cytochrome c oxidase 2 (SCO2) and pyruvate dehydrogenase alpha 1 (PDHA1), two factors of metabolic switch from oxidative phosphorylation to aerobic glycolysis, was suppressed by HBXIP. In addition, miR-183/182 and miR-96 directly inhibited the expression of SCO2 and PDHA1 through targeting their mRNA coding sequences (CDSs), respectively. Interestingly, HBXIP elevated the miR-183/96/182 cluster expression through hypoxia-inducible factor 1alpha (HIF1alpha). The stability of HIF1alpha was enhanced by HBXIP through disassociating interaction of von Hippel-Lindau protein (pVHL) with HIF1alpha. Moreover, miR-183 increased the levels of HIF1alpha protein through directly targeting CDS of VHL mRNA, forming a feedback loop of HIF1alpha/miR-183/pVHL/HIF1alpha. In function, HBXIP-elevated miR-183/96/182 cluster enhanced the glucose metabolism reprogramming in vitro. HBXIP-triggered glucose metabolism reprogramming promoted the growth of breast cancer in vivo. Thus, we conclude that the oncoprotein HBXIP enhances glucose metabolism reprogramming through suppressing SCO2 and PDHA1 in breast cancer.