Fezai M, etal., Neurosignals. 2015;23(1):20-33. doi: 10.1159/000442601. Epub 2015 Dec 17.
BACKGROUND/AIMS: Kir2.1 (KCNJ2) channels are expressed in neurons, skeletal muscle and cardiac tissue and maintain the resting membrane potential. The activity of those channels is regulated by diverse signalling molecules. The present study explored whether Kir2.1 channels are sensitive to the tran
sporter and channels regulating kinases SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), which are in turn regulated by WNK (with-no-K[Lys]) kinases. METHODS: cRNA encoding Kir2.1 was injected into Xenopus laevis oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active T233E SPAK, WNK insensitive T233A SPAK, catalytically inactive D212A SPAK, wild-type OSR1, constitutively active T185E OSR1, WNK insensitive T185A OSR1 and catalytically inactive D164A OSR1. Inwardly rectifying K+ channel activity was quantified utilizing dual electrode voltage clamp and Kir2.1 channel protein abundance in the cell membrane was measured utilizing chemiluminescence of Kir2.1 containing an extracellular HA-tag epitope. RESULTS: Kir2.1 activity was significantly enhanced by wild-type SPAK and T233E SPAK, but not by T233A SPAK and D212A SPAK, as well as by wild-type OSR1 and T185E OSR1, but not by T185A OSR1 and D164A OSR1. As shown for SPAK, the kinases enhanced Kir2.1 protein abundance in the cell membrane. The difference of current and conductance between oocytes expressing Kir2.1 together with SPAK or OSR1 and oocytes expressing Kir2.1 alone was dissipated following a 24 hours inhibition of channel insertion into the cell membrane by brefeldin A (5 microM). CONCLUSIONS: SPAK and OSR1 are both stimulators of Kir2.1 activity. They are presumably effective by enhancing channel insertion into the cell membrane.
BACKGROUND/AIMS: Kinases involved in the regulation of epithelial transport include SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1). SPAK and OSR1 are both regulated by WNK (wi
th-no-K(Lys)) kinases. The present study explored whether SPAK and/or OSR1 influence the excitatory amino acid transporter EAAT3, which accomplishes glutamate and aspartate transport in kidney, intestine and brain. METHODS: cRNA encoding EAAT3 was injected into Xenopus laevis oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 and catalytically inactive (D164A)OSR1. Glutamate-induced current was taken as measure of electrogenic glutamate transport and was quantified utilizing dual electrode voltage clamp. Furthermore, Ussing chamber was employed to determine glutamate transport in the intestine from gene-targeted mice carrying WNK insensitive SPAK (spak(tg/tg)) and from corresponding wild-type mice (spak(+/+)). RESULTS: EAAT3 activity was significantly decreased by wild-type SPAK and (T233E)SPAK, but not by (T233A)SPAK and (D212A)SPAK. SPAK decreased maximal transport rate without affecting significantly affinity of the carrier. Similarly, EAAT3 activity was significantly downregulated by wild-type OSR1 and (T185E)OSR1, but not by (T185A)OSR1 and (D164A)OSR1. Again OSR1 decreased maximal transport rate without affecting significantly affinity of the carrier. Intestinal electrogenic glutamate transport was significantly lower in spak(+/+) than in spak(tg/tg) mice. CONCLUSION: Both, SPAK and OSR1 are negative regulators of EAAT3 activity.
Vorontsova I, etal., Invest Ophthalmol Vis Sci. 2014 Dec 16;56(1):310-21. doi: 10.1167/iovs.14-15911.
PURPOSE: To identify whether the kinases that regulate the activity of cation chloride cotransporters (CCC) in other tissues are also expressed in rat and human lenses. METHODS: The expression of with-no-lysine kinase (WNK 1, 3, 4), oxidative stress response kinase 1 (OSR1
OSR1), and Ste20-like proline alanine rich kinase (SPAK) were determined at either the transcript or protein levels in the rat and human lenses by reverse-transcriptase PCR and/or Western blotting, respectively. Selected kinases were regionally and subcellularly characterized in rat and human lenses. The transparency, wet weight, and tissue morphology of lenses extracted from SPAK knock-out animals was compared with wild-type lenses. RESULTS: WNK 1, 3, 4, SPAK, and OSR1 were identified at the transcript level in rat lenses and WNK1, 4, SPAK, and OSR1 expression confirmed at the protein level in both rat and human lenses. SPAK and OSR1 were found to associate with membranes as peripheral proteins and exhibited distinct subcellular and region-specific expression profiles throughout the lens. No significant difference in the wet weight of SPAK knock-out lenses was detected relative to wild-type lenses. However, SPAK knock-out lenses showed an increased susceptibility to opacification. CONCLUSIONS: Our results show that the WNK 1, 3, 4, OSR1, and SPAK signaling system known to play a role in regulating the phosphorylation status, and hence activity of the CCCs in other tissues, is also present in the rat and human lenses. The increased susceptibility of SPAK lenses to opacification suggests that disruption of this signaling pathway may compromise the ability of the lens to control its volume, and its ability to maintain its transparency.
BACKGROUND/AIMS: KCNQ1/E1 channels are expressed in diverse tissues and serve a variety of functions including endolymph secretion in the inner ear, cardiac repolarization, epithelial transport and cell volume regulation. Kinases involved in regulation of epithelial transport and cell volume include
SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), which are under control of WNK (with-no-K[Lys]) kinases. The present study explored whether KCNQ1/E1 channels are regulated by SPAK and/or OSR1. METHODS: cRNA encoding KCNQ1/E1 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active T233ESPAK, WNK insensitive T233ASPAK, catalytically inactive D212ASPAK, wild-type OSR1, constitutively active T185EOSR1, WNK insensitive T185AOSR1 and catalytically inactive D164AOSR1. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp and KCNQ1/E1 channel protein abundance in the cell membrane utilizing chemiluminescence of KCNQ1/E1 containing an extracellular Flag tag epitope (KCNQ1-Flag/E1). RESULTS: KCNQ1/E1 activity and KCNQ1-Flag/E1 protein abundance were significantly enhanced by wild-type SPAK and T233ESPAK, but not by T233ASPAK and D212ASPAK. Similarly, KCNQ1/E1 activity and KCNQ1-Flag/E1 protein abundance were significantly increased by wild-type OSR1 and T185EOSR1, but not by T185AOSR1 and D164AOSR1. CONCLUSIONS: SPAK and OSR1 participate in the regulation of KCNQ1/E1 protein abundance and activity.
Fezai M, etal., Kidney Blood Press Res. 2015;40(6):555-64. doi: 10.1159/000368531. Epub 2015 Oct 28.
BACKGROUND/AIMS: SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), kinases controlled by WNK (with-no-K[Lys] kinase), are powerful regulators of cellular ion transport and blood pressure. Observations in gene-target
ed mice disclosed an impact of SPAK/OSR1 on phosphate metabolism. The present study thus tested whether SPAK and/or OSR1 contributes to the regulation of the intestinal Na(+)-coupled phosphate co-transporter NaPi-IIb (SLC34A2). METHODS: cRNA encoding NaPi-IIb was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 or catalytically inactive (D164A)OSR1. The phosphate (1 mM)-induced inward current (I(Pi)) was taken as measure of phosphate transport. RESULTS: I(Pi) was observed in NaPi-IIb expressing oocytes but not in water injected oocytes, and was significantly increased by co-expression of SPAK, (T233E)SPAK, OSR1, (T185E)OSR1 or SPAK+OSR1, but not by co-expression of (T233A)SPAK, (D212A)SPAK, (T185A)OSR1, or (D164A)OSR1. SPAK and OSR1 both increased the maximal transport rate of the carrier. CONCLUSIONS: SPAK and OSR1 are powerful stimulators of the intestinal Na+-coupled phosphate co-transporter NaPi-IIb.
Abousaab A, etal., J Membr Biol. 2015 Dec;248(6):1107-19. doi: 10.1007/s00232-015-9826-5. Epub 2015 Aug 2.
SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are cell volume-sensitive kinases regulated by WNK (with-no-K[Lys]) kinases. SPAK/OSR1 regulate several channels and carriers. S
PAK/OSR1 sensitive functions include neuronal excitability. Orchestration of neuronal excitation involves the excitatory glutamate transporters EAAT1 and EAAT2. Sensitivity of those carriers to SPAK/OSR1 has never been shown. The present study thus explored whether SPAK and/or OSR1 contribute to the regulation of EAAT1 and/or EAAT2. To this end, cRNA encoding EAAT1 or EAAT2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild-type SPAK or wild-type OSR1, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 or catalytically inactive (D164A)OSR1. The glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1- and in EAAT2-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of SPAK and OSR1. As shown for EAAT2, SPAK, and OSR1 decreased significantly the maximal transport rate but significantly enhanced the affinity of the carrier. The effect of wild-type SPAK/OSR1 on EAAT1 and EAAT2 was mimicked by (T233E)SPAK and (T185E)OSR1, but not by (T233A)SPAK, (D212A)SPAK, (T185A)OSR1, or (D164A)OSR1. Coexpression of either SPAK or OSR1 decreased the EAAT2 protein abundance in the cell membrane of EAAT2-expressing oocytes. In conclusion, SPAK and OSR1 are powerful negative regulators of the excitatory glutamate transporters EAAT1 and EAAT2.
Vitari AC, etal., Biochem J. 2006 Jul 1;397(1):223-31.
The SPAK (STE20/SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase-1) kinases interact and phosphorylate NKCC1 (Na+-K+-2Cl- co-transporter-1), leading to its activation. Recent studies indicated that SPAK and OSR1
t-weight:700;'>OSR1 are phosphorylated and activated by the WNK1 [with no K (lysine) protein kinase-1] and WNK4, genes mutated in humans affected by Gordon's hypertension syndrome. In the present study, we have identified three residues in NKCC1 (Thr175/Thr179/Thr184 in shark or Thr203/Thr207/Thr212 in human) that are phosphorylated by SPAK and OSR1, and have developed a peptide substrate, CATCHtide (cation chloride co-transporter peptide substrate), to assess SPAK and OSR1 activity. Exposure of HEK-293 (human embryonic kidney) cells to osmotic stress, which leads to phosphorylation and activation of NKCC1, increased phosphorylation of NKCC1 at the sites targeted by SPAK/OSR1. The residues on NKCC1, phosphorylated by SPAK/OSR1, are conserved in other cation co-transporters, such as the Na+-Cl- co-transporter, the target of thiazide drugs that lower blood pressure in humans with Gordon's syndrome. Furthermore, we characterize the properties of a 92-residue CCT (conserved C-terminal) domain on SPAK and OSR1 that interacts with an RFXV (Arg-Phe-Xaa-Val) motif present in the substrate NKCC1 and its activators WNK1/WNK4. A peptide containing the RFXV motif interacts with nanomolar affinity with the CCT domains of SPAK/OSR1 and can be utilized to affinity-purify SPAK and OSR1 from cell extracts. Mutation of the arginine, phenylalanine or valine residue within this peptide abolishes binding to SPAK/OSR1. We have identified specific residues within the CCT domain that are required for interaction with the RFXV motif and have demonstrated that mutation of these in OSR1 inhibited phosphorylation of NKCC1, but not of CATCHtide which does not possess an RFXV motif. We establish that an intact CCT domain is required for WNK1 to efficiently phosphorylate and activate OSR1. These data establish that the CCT domain functions as a multipurpose docking site, enabling SPAK/OSR1 to interact with substrates (NKCC1) and activators (WNK1/WNK4).
Zhang KK, etal., Hum Mol Genet. 2016 Mar 15;25(6):1140-51. doi: 10.1093/hmg/ddv636. Epub 2016 Jan 6.
Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation.
We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny.
RATIONALE: Mutations of TBX5 cause Holt-Oram syndrome (HOS) in humans, a disease characterized by atrial or occasionally ventricular septal defects in the heart and skeletal abnormalities of the upper extremity. Previous studies have demonstrated that Tbx5 regulates Osr1
sr1 expression in the second heart field (SHF) of E9.5 mouse embryos. However, it is unknown whether and how Tbx5 and Osr1 interact in atrial septation. OBJECTIVE: To determine if and how Tbx5 and Osr1 interact in the posterior SHF for cardiac septation. METHODS AND RESULTS: In the present study, genetic inducible fate mapping showed that Osr1-expressing cells contribute to atrial septum progenitors between E8.0 and E11.0. Osr1 expression in the pSHF was dependent on the level of Tbx5 at E8.5 and E9.5 but not E10.5, suggesting that the embryo stage before E10.5 is critical for Tbx5 interacting with Osr1 in atrial septation. Significantly more atrioventricular septal defects (AVSDs) were observed in embryos with compound haploinsufficiency for Tbx5 and Osr1. Conditional compound haploinsufficiency for Tbx5 and Osr1 resulted in a significant cell proliferation defect in the SHF, which was associated with fewer cells in the G2 and M phases and a decreased level of Cdk6 expression. Remarkably, genetically targeted disruption of Pten expression in atrial septum progenitors rescued AVSDs caused by Tbx5 and Osr1 compound haploinsufficiency. There was a significant decrease in Smo expression, which is a Hedgehog (Hh) signaling pathway modulator, in the pSHF of Osr1 knockout embryos at E9.5, implying a role for Osr1 in regulating Hh signaling. CONCLUSIONS: Tbx5 and Osr1 interact to regulate posterior SHF cell cycle progression for cardiac septation.
Vitari AC, etal., Biochem J. 2005 Oct 1;391(Pt 1):17-24.
Mutations in the human genes encoding WNK1 [with no K (lysine) protein kinase-1] and the related protein kinase WNK4 are the cause of Gordon's hypertension syndrome. Little is known about the molecular mechanism by which WNK isoforms regulate cellular processes. We immunoprecipitated WNK1 from extra
cts of rat testis and found that it was specifically associated with a protein kinase of the STE20 family termed 'STE20/SPS1-related proline/alanine-rich kinase' (SPAK). We demonstrated that WNK1 and WNK4 both interacted with SPAK as well as a closely related kinase, termed 'oxidative stress response kinase-1' (OSR1). Wildtype (wt) but not catalytically inactive WNK1 and WNK4 phosphorylated SPAK and OSR1 to a much greater extent than with other substrates utilized previously, such as myelin basic protein and claudin-4. Phosphorylation by WNK1 or WNK4 markedly increased SPAK and OSR1 activity. Phosphopeptide mapping studies demonstrated that WNK1 phosphorylated kinase-inactive SPAK and OSR1 at an equivalent residue located within the T-loop of the catalytic domain (Thr233 in SPAK, Thr185 in OSR1) and a serine residue located within a C-terminal non-catalytic region (Ser373 in SPAK, Ser325 in OSR1). Mutation of Thr185 to alanine prevented the activation of OSR1 by WNK1, whereas mutation of Thr185 to glutamic acid (to mimic phosphorylation) increased the basal activity of OSR1 over 20-fold and prevented further activation by WNK1. Mutation of Ser325 in OSR1 to alanine or glutamic acid did not affect the basal activity of OSR1 or its ability to be activated by WNK1. These findings suggest that WNK isoforms operate as protein kinases that activate SPAK and OSR1 by phosphorylating the T-loops of these enzymes, resulting in their activation. Our analysis also describes the first facile assay that can be employed to quantitatively assess WNK1 and WNK4 activity.