van der Spuy J and Cheetham ME, J Biol Chem. 2004 Nov 12;279(46):48038-47. Epub 2004 Aug 30.
Mutations in the aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) cause the blinding disease Leber congenital amaurosis (LCA). The similarity of AIPL1 to AIP has led to suggestions that AIPL1 could function in a similar manner to AIP in facilitating protein translocation and as a compone
nt of chaperone complexes. AIPL1 interacts with the cell cycle regulator NEDD8 ultimate buster protein 1 (NUB1). As AIPL1 is predominantly cytoplasmic and NUB1 is predominantly nuclear, we tested the hypothesis that AIPL1 could modulate the nuclear translocation of NUB1. Co-transfection of AIPL1 with GFP-NUB1 resulted in a shift of GFP-NUB1 subcellular distribution toward the cytoplasm. Interestingly, AIPL1 was able to act in a chaperone-like fashion to efficiently suppress inclusion formation by NUB1 fragments. Co-transfection of AIPL1 with GFP-NUB1-N and GFP-NUB1-C resulted in an AIPL1-dependent suppression of GFP-NUB1-N perinuclear inclusions and GFP-NUB1-C intranuclear inclusions leading to the redistribution of these fragments in the cytoplasm. This chaperone-like function of AIPL1 was specific for NUB1, since AIPL1 was unable to suppress the inclusion formation by unrelated aggregation-prone proteins and AIP had no effect on NUB1 localization or inclusion formation. We examined the effect of a range of pathogenic and engineered mutations on the ability of AIPL1 to modulate NUB1 localization or inclusion formation. With the exception of W278X, which formed non-functional SDS-insoluble inclusions, all of the pathogenic mutations studied were soluble and could modulate NUB1 with varying efficiency compared with the wild-type protein. The effect of AIPL1 on NUB1 required the C-terminal region of AIPL1, as engineered C-terminal truncation mutations had no effect on NUB1. These data show that AIPL1 can modulate protein translocation and act in a chaperone-like manner and suggest that AIPL1 is an important modulator of NUB1 cellular function.
Tanji K, etal., Biochem Biophys Res Commun. 2016 Feb 12;470(3):635-42. doi: 10.1016/j.bbrc.2016.01.093. Epub 2016 Jan 18.
Abnormal alpha-synuclein is deposited in neuronal cytoplasmic inclusions and presynapses in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Previously we have shown that NUB1 is accumulated in these specific regions together with abnormal alpha-syn
uclein and that NUB1 is able to inhibit alpha-synuclein aggregation in cultured cells. We therefore created transgenic (Tg) mice expressing both NUB1 and abnormal alpha-synuclein to investigate the role of NUB1 on degradation of abnormal alpha-synuclein in vivo. Immunohistochemical and biochemical studies confirmed that NUB1 was over-expressed in neurons of mice expressing NUB1 (NUB1 Tg), and both NUB1 and abnormal alpha-synuclein (double Tg). NUB1 levels were increased by 4.7-fold in NUB1 Tg mice compared with wild type mice. Unexpectedly, normal and abnormal alpha-synuclein levels were unchanged between abnormal alpha-synuclein Tg mice (Lewy body disease model mice) and double Tg mice, and pathological observations were almost similar between them. Finally, we found that the levels of insoluble alpha-synuclein were lower and those of some chaperone molecules were higher in double Tg mice compared with abnormal alpha-synuclein Tg mice. These results suggest that increased levels of NUB1 play a potential role in degradation of detergent-insoluble alpha-synuclein in vivo, although it is insufficient to degrade abnormal alpha-synuclein in Lewy body disease model mice.
Kito K, etal., J Biol Chem 2001 Jun 8;276(23):20603-9. Epub 2001 Mar 19.
NEDD8, a ubiquitin-like protein, covalently conjugates to cullin family members. It appears to control vital biological events through its conjugation to cullins. To study how this conjugation pathway is regulated, we performed yeast two-hybrid screening by using NEDD8 as a bait and isolated a cDNA
fragment encoding a potent down-regulator of the NEDD8 expression. Here, we report this novel regulator, NUB1 (NEDD8 Ultimate Buster-1). NUB1 is composed of 601 residues with a calculated 69.1-kDa molecular mass. It is an interferon-inducible protein and predominantly localized in the nucleus. The NUB1 message is specifically expressed in adult human testis, ovary, heart, and skeletal muscle tissues and is developmentally down-regulated in mouse embryos. In biochemical analysis, we found that NUB1 overexpression leads to severe reduction of NEDD8 monomer and NEDD8 conjugates in cells. This reduction is not due to down-regulation of NEDD8 transcription, but due to post-transcriptional mechanism. As expected from this activity, overexpression of NUB1 had a profound growth-inhibitory effect on U2OS cells. Thus, NUB1 is a strong down-regulator of the NEDD8 expression and appears to play critical roles in regulating biological events, including cell growth.
Akey DT, etal., Hum Mol Genet 2002 Oct 15;11(22):2723-33.
Mutations in the aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) gene have been found in patients with Leber congenital amaurosis (LCA), a severe, early-onset form of retinal degeneration. To determine the normal function of AIPL1 and to better understand how mutations in this gene caus
e disease, we performed a yeast two-hybrid screen to identify AIPL1-interacting proteins in the retina. One of the identified interacting proteins corresponds to NUB1 (NEDD8 Ultimate Buster 1), which is thought to control many biological events, especially cell cycle progression, by downregulating NEDD8 expression. The AIPL1-NUB1 interaction was verified by co-immunoprecipitation studies in Y79 retinoblastoma cells, demonstrating that this interaction occurs within cells that share a number of features with retinal progenitor cells. Furthermore, we examined the localization of the AIPL1 protein within developing and adult retinas, and found that AIPL1 is present in the developing photoreceptor layer of the human retina and within the photoreceptors of the adult retina. Similar to AIPL1, NUB1 is also expressed in the developing and adult retina. Therefore, it is possible that the early-onset form of retinal degeneration seen in LCA patients with AIPL1 mutations may be due to a defect in the regulation of cell cycle progression during photoreceptor maturation. These data raise the possibility that AIPL1 is important for appropriate photoreceptor formation during development and/or survival following differentiation.