Lourenco D, etal., N Engl J Med. 2009 Mar 19;360(12):1200-10. doi: 10.1056/NEJMoa0806228. Epub 2009 Feb 25.
BACKGROUND: The genetic causes of nonsyndromic ovarian insufficiency are largely unknown. A nuclear receptor, NR5A1 (also called steroidogenic factor 1), is a key transcriptional regulator of genes involved in the hypothalamic-pituitary-steroidogenic axis. Muta
tion of NR5A1 causes 46,XY disorders of sex development, with or without adrenal failure, but growing experimental evidence from studies in mice suggests a key role for this factor in ovarian development and function as well. METHODS: To test the hypothesis that mutations in NR5A1 cause disorders of ovarian development and function, we sequenced NR5A1 in four families with histories of both 46,XY disorders of sex development and 46,XX primary ovarian insufficiency and in 25 subjects with sporadic ovarian insufficiency. None of the affected subjects had clinical signs of adrenal insufficiency. RESULTS: Members of each of the four families and 2 of the 25 subjects with isolated ovarian insufficiency carried mutations in the NR5A1 gene. In-frame deletions and frameshift and missense mutations were detected. Functional studies indicated that these mutations substantially impaired NR5A1 transactivational activity. Mutations were associated with a range of ovarian anomalies, including 46,XX gonadal dysgenesis and 46,XX primary ovarian insufficiency. We did not observe these mutations in more than 700 control alleles. CONCLUSIONS: NR5A1 mutations are associated with 46,XX primary ovarian insufficiency and 46,XY disorders of sex development.
Takagi M, etal., Horm Res Paediatr. 2016;85(1):65-8. doi: 10.1159/000440862. Epub 2015 Sep 26.
BACKGROUND: To date, more than 100 mutations of NR5A1 have been reported; however, mutations affecting the splice site are rare, with only two reported mutations. OBJECTIVE: To characterize the c.870+3_6delGAGT splice mutation of NR5A1
R5A1 through molecular analyses. RESULTS: The reverse transcription polymerase chain reaction (RT-PCR) study revealed that c.870+3_6delGAGT resulted in p.A82fs*95. Mutant NR5A1 showed a reduced transactivation on the CYP11A1 and STAR promoters without a dominant negative effect. CONCLUSION: To the best of our knowledge, this is the first report of the NR5A1 splice site mutation, which was proven to be deleterious by the RT-PCR method.
Bashamboo A, etal., Am J Hum Genet. 2010 Oct 8;87(4):505-12. doi: 10.1016/j.ajhg.2010.09.009.
One in seven couples worldwide are infertile, and male factor infertility accounts for approximately 30%-50% of these cases. Although many genes are known to be essential for gametogenesis, there are surprisingly few monogenic mutations that have been conclusively demonstrated to cause human sperma
togenic failure. A nuclear receptor, NR5A1 (also called steroidogenic factor 1), is a key transcriptional regulator of genes involved in the hypothalamic-pituitary-steroidogenic axis, and it is expressed in the steroidogenic tissue of the developing and adult human gonad. Mutations of NR5A1 have been reported in 46,XY disorders of sex development and in 46,XX primary ovarian insufficiency. To test the hypothesis that mutations in NR5A1 cause male infertility, we sequenced NR5A1 in 315 men with idiopathic spermatogenic failure. We identified seven men with severe spermatogenic failure who carried missense mutations in NR5A1. Functional studies indicated that these mutations impaired NR5A1 transactivational activity. We did not observe these mutations in more than 4000 control alleles, including the entire coding sequence of 359 normospermic men and 370 fertile male controls. NR5A1 mutations are found in approximately 4% of men with otherwise unexplained severe spermatogenic failure.
Bashamboo A, etal., Hum Mol Genet. 2016 Aug 15;25(16):3446-3453. doi: 10.1093/hmg/ddw186. Epub 2016 Jul 4.
Cell lineages of the early human gonad commit to one of the two mutually antagonistic organogenetic fates, the testis or the ovary. Some individuals with a 46,XX karyotype develop testes or ovotestes (testicular or ovotesticular disorder of sex development; TDSD/OTDSD), due to the presence of the te
stis-determining gene, SRY Other rare complex syndromic forms of TDSD/OTDSD are associated with mutations in pro-ovarian genes that repress testis development (e.g. WNT4); however, the genetic cause of the more common non-syndromic forms is unknown. Steroidogenic factor-1 (known as NR5A1) is a key regulator of reproductive development and function. Loss-of-function changes in NR5A1 in 46,XY individuals are associated with a spectrum of phenotypes in humans ranging from a lack of testis formation to male infertility. Mutations in NR5A1 in 46,XX women are associated with primary ovarian insufficiency, which includes a lack of ovary formation, primary and secondary amenorrhoea as well as early menopause. Here, we show that a specific recurrent heterozygous missense mutation (p.Arg92Trp) in the accessory DNA-binding region of NR5A1 is associated with variable degree of testis development in 46,XX children and adults from four unrelated families. Remarkably, in one family a sibling raised as a girl and carrying this NR5A1 mutation was found to have a 46,XY karyotype with partial testicular dysgenesis. These unique findings highlight how a specific variant in a developmental transcription factor can switch organ fate from the ovary to testis in mammals and represents the first missense mutation causing isolated, non-syndromic 46,XX testicular/ovotesticular DSD in humans.
Biason-Lauber A and Schoenle EJ, Am J Hum Genet. 2000 Dec;67(6):1563-8. Epub 2000 Oct 18.
Steroidogenic factor 1 (NR5A1/SF-1) plays an essential role in the development of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes, controlling expression of their many important genes. The recent description of a 46,XY patient bearing
a mutation in the NR5A1 gene, causing male pseudohermaphroditism and adrenal failure, demonstrated the crucial role of SF-1 in male gonadal differentiation. The role of SF-1 in human ovarian development was, until now, unknown. We describe a phenotypically and genotypically normal girl, with signs and symptoms of adrenal insufficiency and no apparent defect in ovarian maturation, bearing a heterozygote G-->T transversion in exon 4 of the NR5A1 gene that leads to the missense R255L in the SF-1 protein. The exchange does not interfere with protein translation and stability. Consistent with the clinical picture, R255L is transcriptionally inactive and has no dominant-negative activity. The inability of the mutant (MUT) NR5A1/SF-1 to bind canonical DNA sequences might offer a possible explanation for the failure of the mutant protein to transactivate target genes. This is the first report of a mutation in the NR5A1 gene in a genotypically female patient, and it suggests that NR5A1/SF-1 is not necessary for female gonadal development, confirming the crucial role of NR5A1/SF-1 in adrenal gland formation in both sexes.
Liu M, etal., Environ Toxicol. 2022 Oct;37(10):2419-2433. doi: 10.1002/tox.23607. Epub 2022 Jun 28.
Phthalates may interfere with the biosynthesis of steroid hormones in the adrenal cortex. Bis (2-butoxyethyl) phthalate (BBOP) is a phthalate containing oxygen atoms in the alcohol moiety. In this study, 35-day-old male Sprague-Dawley rats were daily gavaged with BBOP (0, 10, 100, 250, and 500 mg/kg
body weight) for 21 days. BBOP did not affect the weight of body and adrenal glands. BBOP significantly reduced serum corticosterone levels at 250 and 500 mg/kg, and lowered aldosterone level at 500 mg/kg without affecting adrenocorticotropic hormone. BBOP did not alter the thickness of the adrenal cortex. BBOP significantly down-regulated the expression of steroidogenesis-related genes (Scarb1, Star, Cyp11a1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a1, and Nr4a2) and proteins, and antioxidant enzymes (Sod1, Sod2, Gpx1, and Cat) and their proteins, while up-regulating the expression of Mc2r and Agtr1a at various doses. BBOP reduced the phosphorylation of AKT1, AKT2, and ERK1/2, as well as the levels of SIRT1 and PGC1α without affecting the phosphorylation of AMPK. BBOP significantly induced the production of reactive oxygen species and apoptosis rate in H295R cells at 100 μM and higher after 24 h of treatment. In conclusion, male rats exposed to BBOP in puberty have significant reduction of steroid biosynthesis with a potential mechanism that is involved in the decrease in the phosphorylation of AKT1, AKT2, ERK1/2, as well as SIRT1 and PGC1α and increase in ROS.
Lin L, etal., J Clin Endocrinol Metab. 2007 Mar;92(3):991-9. Epub 2007 Jan 2.
CONTEXT: Steroidogenic factor 1 (SF1/AdBP4/FTZF1, NR5A1) is a nuclear receptor transcription factor that plays a key role in regulating adrenal and gonadal development, steroidogenesis, and reproduction. Targeted deletion of Nr5a1
/span> (Sf1) in the mouse results in adrenal and gonadal agenesis, XY sex-reversal, and persistent Mullerian structures in males. Consistent with the murine phenotype, human mutations in SF1 were described initially in two 46,XY individuals with female external genitalia, Mullerian structures (uterus), and primary adrenal failure. OBJECTIVE: Given recent case reports of haploinsufficiency of SF1 affecting testicular function in humans, we aimed to identify SF1 mutations in a cohort of individuals with a phenotypic spectrum of 46,XY gonadal dysgenesis/impaired androgenization (now termed 46,XY disorders of sex development) with normal adrenal function. METHODS AND PATIENTS: The study included mutational analysis of NR5A1 in 30 individuals with 46,XY disorders of sex development, followed by functional studies of SF1 activity. RESULTS: Heterozygous missense mutations in NR5A1 were found in four individuals (four of 30, 13%) with this phenotype. These mutations (V15M, M78I, G91S, L437Q) were shown to impair transcriptional activation through abnormal DNA binding (V15M, M78I, G91S), altered subnuclear localization (V15M, M78I), or disruption of the putative ligand-binding pocket (L437Q). Two mutations appeared to be de novo or germline changes. The other two mutations appeared to be inherited in a sex-limited dominant manner because the mother is heterozygous for the change. CONCLUSIONS: These studies demonstrate that SF1 mutations are more frequent than previously suspected causes of impaired fetal and postnatal testicular function in 46,XY individuals.
CONTEXT: Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition
, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. OBJECTIVE: To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. PATIENTS: 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. METHODS: SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). RESULTS: Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. CONCLUSIONS: Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
Woo KH, etal., Horm Res Paediatr. 2015;84(2):116-23. doi: 10.1159/000431324. Epub 2015 Jun 27.
BACKGROUND/AIMS: Heterozygous mutations of NR5A1, which encodes steroidogenic factor 1 (SF1), were identified in patients with 46,XY disorders of sex development (DSD) with normal adrenal function. This study was aimed to identify and functionally characterize
mutations of NR5A1 in patients with 46,XY DSD. METHODS: This study included 51 patients from 49 unrelated families with 46,XY DSD. Genomic DNA was extracted from peripheral blood leukocytes, and direct sequencing of all coding exons and their flanking introns of NR5A1 was performed. Transient transfections and dual-luciferase(R) reporter assays were performed to evaluate the effect of NR5A1 variants on transcriptional activity. RESULTS: Four of 49 patients (8.2%) harbored a novel heterozygous sequence variant of NR5A1: c.80G>C (p.G26A), c.847T>C (p.C283R), c.1151del (p.L384Rfs*7), and c.1333G>T (p.E445*). They presented with female external genitalia with clitoromegaly in infancy or childhood, or primary amenorrhea in adolescence. In vitro functional studies of SF1 activity determined that each variant, except p.E445*, led to a reduced expression of downstream target genes and disturbed the regulation of gonadal development. CONCLUSIONS: Loss-of-function mutations of NR5A1 are a relatively common cause of 46,XY DSD. Therefore, genetic defects of NR5A1 should be considered as an etiology in subjects with 46,XY DSD without adrenal insufficiency.
In the adrenal cortex, corticotropin induces the expression of several genes encoding proteins involved in the synthesis and intracellular transport of steroid hormones via the protein kinase A (PKA) signalling pathway, and this process is mediated by steroidogenic factor-1 (SF-1). This study was de
signed to elucidate the influence of the PKA and PKC pathways on the expression of the SF-1 gene in mouse adrenocortical cells, line Y-1. It has also been attempted to answer the question whether or not SF-1 plays a role in the PKA-induced expression of LIPE gene encoding hormone-sensitive lipase/cholesteryl esterase, which supplies cholesterol for steroid hormone synthesis. In this study, we found that stimulation of the PKA pathway caused a significant increase in SF-1 expression, and that this effect was abolished by the PKA inhibitor, H89. Decreased SF-1 gene transcript levels were seen with the simultaneous activation of PKA and PKC, suggesting a possible interaction between the PKA and PKC pathways. It was also observed that SF-1 increased the transcriptional activity of the LIPE gene by interacting with the SF-1 response element located in promoter A. Moreover, transient silencing of SF-1 expression with specific siRNAs abolished PKA-stimulated transcription of the LIPE gene, indicating that SF-1 is an important regulator of LIPE expression in Y-1 cells and thus could play a role in the regulation of the cholesterol supply for adrenal steroidogenesis.