Kim HR, etal., Mol Cells. 2020 Jun 30;43(6):581-589. doi: 10.14348/molcells.2020.0032.
Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonst
rated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.
Hwang EM, etal., Biochem Biophys Res Commun. 2007 Feb 16;353(3):805-11. doi: 10.1016/j.bbrc.2006.12.115. Epub 2006 Dec 22.
NELL2 is as a neuron-specific secreted glycoprotein. The present study provides evidence of an alternatively spliced variant of the rat NELL2 gene that yields cytosolic NELL2 (cNELL2
le='font-weight:700;'>NELL2). cNELL2 was initially detected in the thymus and subsequently found to be ubiquitously expressed in many other tissues. The absence of the sequences corresponding to the third exon, which contains the terminal portion of the signal peptide, accounts for the uniform distribution of cNELL2 throughout the cytoplasm. This is in contrast to NELL2, which is preferentially located at distinct subcellular structures involved in the secretary process, such as endoplasmic reticulum and Golgi apparatus. Western blot analysis showed that cNELL2 was not present in the medium but only in lysates, while NELL2 was detected as a glycosylated larger form in both lysates and media. Immunoprecipitation analysis revealed that cNELL2 interacts with PKCbeta1. These results suggest that cNELL2 is involved in PKCbeta1-mediated intracellular signaling.
Aihara K, etal., Brain Res Mol Brain Res. 2003 Aug 19;116(1-2):86-93.
NELL2 is a neuron-specific thrombospondin-1-like extracellular protein containing six epidermal growth factor-like domains. NELL2 is highly expressed in the hippocampus and cerebral cortex. Although the involvement of NELL2
style='font-weight:700;'>NELL2 in neural functions has been inferred from its expression and biochemical profiles, biological roles of NELL2 remain uncertain. We evaluated the survival effect of NELL2 using primary cultured neurons from fetal rat brain following treatment with a recombinant NELL2 protein. NELL2 increased survival of neurons from the hippocampus and cerebral cortex. We further examined the protective effect of NELL2 from oxygen-glucose deprivation- and beta-amyloid-induced neuronal death, and found that NELL2 did not protect neurons from these insults. To understand signaling properties underlying the survival effect, we studied activation of mitogen-activated protein kinases (MAPKs) by NELL2. Treatment of primary cultured cells from the hippocampus with NELL2 enhanced phosphorylation of c-jun N-terminal kinase (JNK), whereas phosphorylation of extracellular signal-regulated kinase (ERK) was decreased by NELL2 treatment. NELL2-enhanced survival of hippocampal neurons was completely blocked by SP600125, an anthrapyrazolone inhibitor of JNK, while treatment of MEK (MAPK/ERK kinase) inhibitors per se enhanced survival of neurons similar to NELL2 treatment. These results suggest that NELL2 promotes survival of neurons by modulating MAPK activities.
Kuroda S, etal., Biochem Biophys Res Commun 1999 Nov;265(1):79-86.
Two closely related genes coding for NELL proteins (NELL1 and NELL2) have been cloned by the yeast two-hybrid screening of a rat brain cDNA library with the regulatory domain of protein kinase C betaI (PKCbetaI) as bait. The rat NELL proteins show about 55% iden
tity with each other and contain several protein motifs assigned to a secretion signal peptide, an NH(2)-terminal thrombospondin-1 (TSP-1)-like module, five von Willebrand factor C domains, and six epidermal growth factor-like domains; the NELL proteins share many protein motifs with TSP-1. The NELL proteins expressed in COS-7 cells are homotrimeric glycoproteins and possess heparin-binding activity. Furthermore, while NELL1 and NELL2 show distinct subcellular localization in cytoplasm, they both are partially secreted into the culture medium of COS-7 cells. Although the NELL1 mRNA is faintly expressed in adult neural cells, the NELL2 mRNA is expressed abundantly, particularly in the pyramidal cells of rat hippocampus, showing neuronal high plasticity. During mouse embryogenesis, expression of the NELL2 mRNA is initiated 7-11 days postcoitum, simultaneously with neural plate formation. These results strongly suggest that the NELL2 protein, similar to but not identical with TSP-1, is involved in the growth and differentiation of neural cells. Additionally, the NELL1 and NELL2 mRNAs were found to be expressed abundantly in Burkitt's lymphoma Raji cells and colorectal adenocarcinoma SW480 cells, respectively. Thus, it is likely that the NELL proteins also participate in the growth, differentiation, and oncogenesis of cancer cell lines.
Ha CM, etal., Neuroendocrinology. 2008;88(3):199-211. doi: 10.1159/000139579. Epub 2008 Jun 12.
NELL2, a protein containing EGF-like repeats, is almost exclusively expressed in the nervous system. In the mammalian brain, NELL2 expression is mostly neuronal. NELL2 was previously f
ound to be a secreted protein that functions during embryonic development as a neuronal differentiation and survival factor. We now show that the Nell2 gene is selectively expressed in the two major subtypes of glutamatergic neurons described in the postnatal brain: those containing the vesicular glutamate transporter 1 and those expressing vesicular glutamate transporter 2. No Nell2 mRNA is detected in GABAergic neurons. Likewise, GnRH neurons are devoid of NELL2. During prepubertal development of the female rat, Nell2 mRNA abundance increases selectively in the medial basal hypothalamus, reaching maximal values at the end of the juvenile period, to decline at the time of puberty to intermediate levels. Similar, but less pronounced changes are observed in the preoptic area, but they are absent in the cerebral cortex. A well-established glutamatergic function in the neuroendocrine brain is to enhance release of GnRH, the neurohormone controlling sexual development and the time of puberty. In vivo disruption of NELL2 synthesis via intraventricular administration of antisense oligodeoxynucleotides reduced GnRH release from the medial basal hypothalamus and delayed the initiation of female puberty. These results identify NELL2 as a new component of glutamatergic neurons and provide evidence for its physiological involvement in a major, glutamate-dependent, process of neuroendocrine regulation.
Kim H, etal., J Neurochem 2002 Dec;83(6):1389-400.
In this study we investigated the mRNA expression of NELL2, a neural tissue-specific epidermal growth factor (EGF)-like repeat domain-containing protein, in the developing and adult rat CNS using in situ hybridization histochemistry and northern blot analysis. T
he possible candidates that interact with or be regulated by NELL2 were screened with a cDNA expression array in antisense (AS) NELL2 oligodeoxynucleotide (ODN)-injected rat hypothalami. NELL2 mRNA was detected as early as embryonic day 10, and was predominant in the CNS throughout the pre-natal stages. Its expression gradually increased during embryonic development and its strong expression was observed throughout the CNS until embryonic day 20. It was detected in the ventricular zone of the spinal cord, medulla and pons in 12-day-old-embryos, suggesting that NELL2 plays a role in the neurogenesis of these areas. After birth its expression gradually decreased, but high levels of expression could be observed in the tenia tecta, piriform cortex, hippocampus, dentate gyrus, cerebellar cortex, ambiguus nucleus, and inferior olivary nucleus of adult rat brains. The analysis of cDNA expression arrays revealed that the administration of AS NELL2 ODN markedly decreased the expression of several Ca2+-binding proteins and those involved in the transport and release of vesicles such as EF-hand Ca2+-binding protein p22 and rab7. This finding was confirmed by relative reverse transcription-polymerase chain reaction. The effect of NELL2 on synaptic vesicle content in median eminence (ME) nerve terminals was determined with synaptophysin levels as a marker protein in the AS NELL2 ODN-injected rat. It was significantly decreased by the AS ODN. These data suggest that NELL2 may play an important role in the development of the CNS as well as maintenance of neural functions, by regulating the intracellular machinery involving Ca2+ signaling, synaptic transport and/or release of vesicles.