The ApcMin/+ mouse exhibits an intestinal tumor associated loss of muscle and fat that is accompanied by chronic inflammation, insulin resistance and hyperlipidemia. Since the liver governs systemic energy demands through regulation of glucose and lipid metabolism, it is likely that the liver is a p
athological target of cachexia progression in the ApcMin/+ mouse. The purpose of this study was to determine if cancer and the progression of cachexia affected liver endoplasmic reticulum (ER)-stress, inflammation, metabolism, and protein synthesis signaling. The effect of cancer (without cachexia) was examined in wild-type and weight-stable ApcMin/+ mice. Cachexia progression was examined in weight-stable, pre-cachectic, and severely-cachectic ApcMin/+ mice. Livers were analyzed for morphology, glycogen content, ER-stress, inflammation, and metabolic changes. Cancer induced hepatic expression of ER-stress markers BiP (binding immunoglobulin protein), IRE-1alpha (endoplasmic reticulum to nucleus signaling 1), and inflammatory intermediate STAT-3 (signal transducer and activator of transcription 3). While gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression was suppressed by cancer, glycogen content or protein synthesis signaling remained unaffected. Cachexia progression depleted liver glycogen content and increased mRNA expression of glycolytic enzyme PFK (phosphofrucktokinase) and gluconeogenic enzyme PEPCK. Cachexia progression further increased pSTAT-3 but suppressed p-65 and JNK (c-Jun NH2-terminal kinase) activation. Interestingly, progression of cachexia suppressed upstream ER-stress markers BiP and IRE-1alpha, while inducing its downstream target CHOP (DNA-damage inducible transcript 3). Cachectic mice exhibited a dysregulation of protein synthesis signaling, with an induction of p-mTOR (mechanistic target of rapamycin), despite a suppression of Akt (thymoma viral proto-oncogene 1) and S6 (ribosomal protein S6) phosphorylation. Thus, cancer induced ER-stress markers in the liver, however cachexia progression further deteriorated liver ER-stress, disrupted protein synthesis regulation and caused a differential inflammatory response related to STAT-3 and NF-kappaB (Nuclear factor-kappaB) signaling.
Denz CR, etal., Biochem Biophys Res Commun. 2004 Aug 6;320(4):1291-7.
Tropomyosins are a family of actin binding proteins encoded by a group of highly conserved genes. Humans have four tropomyosin-encoding genes: TPM1, TPM2, TPM3, and TPM4, each of which is known to generate multiple isoforms by alternative splicing, promoters, and 3' end processing. TPM1 is the most
versatile and encodes a variety of tissue specific isoforms. The TPM1 isoform specific to striated muscle, designated TPM1alpha, consists of 10 exons: 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b. In this study, using RT-PCR with adult and fetal human RNAs, we present evidence for the expression of a novel isoform of the TPM1 gene that is specifically expressed in cardiac tissues. The new isoform is designated TPM1kappa and contains exon 2a instead of 2b. Ectopic expression of human GFP.TPM1kappa fusion protein can promote myofibrillogenesis in cardiac mutant axolotl hearts that are lacking in tropomyosin.
CD4(+) CD44(v.low) cells are peripheral precursor T cells that inhibit lymphopenia by generating a large CD4(+) T cell pool containing balanced numbers of naive, memory, and regulatory Foxp3(+) cells with a diverse TCR repertoire. Recent thymic emigrants (RTE) and stem cell-like memory T cells (T(S
CM)) can also replenish a T cell pool. In this study we formally test whether CD44(v.low) cells are the same population as RTE and T(SCM). Our data show that, in contrast to RTE, CD44(v.low) cells express high levels of CD45RB and low levels of CD24. Moreover, CD44(v.low) cells isolated from mice devoid of RTE retain their capacity to repopulate lymphopenic mice with naive and memory cells and Foxp3(+) Tregs. In addition, CD44(v.low) cells do not express IL-2Rbeta, Sca-1, and CXCR3, the phenotypic hallmarks of T(SCM). Overall, these data demonstrate that CD44(v.low) cells are neither RTE nor T(SCM).
A devastating aspect of cancer cachexia is severe loss of muscle and fat mass. Though cachexia occurs in both sexes, it is not well-defined in the female. The Apc(Min/+) mouse is genetically predisposed to develop intestinal tumors; circulating IL-6 is a critical regulator of cancer cachexia in the
male Apc(Min/+) mouse. The purpose of this study was to examine the relationship between IL-6 signaling and cachexia progression in the female Apc(Min/+) mouse. Male and female Apc(Min/+) mice were examined during the initiation and progression of cachexia. Another group of females had IL-6 overexpressed between 12 and 14 weeks or 15-18 weeks of age to determine whether IL-6 could induce cachexia. Cachectic female Apc(Min/+) mice lost body weight, muscle mass, and fat mass; increased muscle IL-6 mRNA expression was associated with these changes, but circulating IL-6 levels were not. Circulating IL-6 levels did not correlate with downstream signaling in muscle in the female. Muscle IL-6r mRNA expression and SOCS3 mRNA expression as well as muscle IL-6r protein and STAT3 phosphorylation increased with severe cachexia in both sexes. Muscle SOCS3 protein increased in cachectic females but decreased in cachectic males. IL-6 overexpression did not affect cachexia progression in female Apc(Min/+) mice. Our results indicate that female Apc(Min/+) mice undergo cachexia progression that is at least initially IL-6-independent. Future studies in the female will need to determine mechanisms underlying regulation of IL-6 response and cachexia induction.
Glaucoma is one of the major causes of blindness worldwide with characteristic optic disc changes and elevated intraocular pressure. It is subcategorized into Primary Open Angle Glaucoma (POAG) and Juvenile Open Angle Glaucoma (JOAG) depending upon age of the disease onset. Myocilin (MYOC) is the fr
equently mutated gene in familial cases of glaucoma. MYOC mutations show variable phenotype and penetrance. This study was aimed to identify disease causing mutation in 8 affected of a consanguineous family diagnosed with severe form of Juvenile Open Angle Glaucoma. Homozygosity mapping with four microsatellite markers and subsequent direct sequencing of MYOC revealed a novel heterozygous transition c.1130 C>G, substituting Threonine in to Arginine at codon 377 (p.Thr377Arg) of MYOC. This mutation was segregating with phenotype in all affected and was not found in control subjects. Ophthalmological findings revealed JOAG with severe and rapidly progressive phenotype. The age of onset was in the first decade of life and maximum Intra Ocular Pressure (IOP) recorded was 25mmHg. Bioinformatic tools predicted C to G transition at c.1130 as pathogenic and no structural changes were predicted in protein. This is the first report of novel MYOC mutation from Pakistan; segregating as autosomal dominant trait in large family diagnosed with JOAG. Identification of novel disease causing allele in MYOC indicates genetic heterogeneity of the population. This finding will help to provide genetic counseling to the affected family and carriers of this mutation may be advised for early therapeutic intervention to avoid irreversible visual loss.
Ansar M, etal., Hum Mol Genet. 2018 Aug 1;27(15):2703-2711. doi: 10.1093/hmg/ddy180.
Developmental eye defects often severely reduce vision. Despite extensive efforts, for a substantial fraction of these cases the molecular causes are unknown. Recessive eye disorders are frequent in consanguineous populations and such large families with multiple affected individuals provide an oppo
rtunity to identify recessive causative genes. We studied a Pakistani consanguineous family with three affected individuals with congenital vision loss and progressive eye degeneration. The family was analyzed by exome sequencing of one affected individual and genotyping of all family members. We have identified a non-synonymous homozygous variant (NM_001128918.2: c.1708C > G: p.Arg570Gly) in the MARK3 gene as the likely cause of the phenotype. Given that MARK3 is highly conserved in flies (I: 55%; S: 67%) we knocked down the MARK3 homologue, par-1, in the eye during development. This leads to a significant reduction in eye size, a severe loss of photoreceptors and loss of vision based on electroretinogram (ERG) recordings. Expression of the par-1 p.Arg792Gly mutation (equivalent to the MARK3 variant found in patients) in developing fly eyes also induces loss of eye tissue and reduces the ERG signals. The data in flies and human indicate that the MARK3 variant corresponds to a loss of function. We conclude that the identified mutation in MARK3 establishes a new gene-disease link, since it likely causes structural abnormalities during eye development and visual impairment in humans, and that the function of MARK3/par-1 is evolutionarily conserved in eye development.
Salmeron A, etal., EMBO J. 1996 Feb 15;15(4):817-26.
The Tpl-2 protein serine/threonine kinase was originally identified, in a C-terminally deleted form, as the product of an oncogene associated with the progression of Moloney murine leukemia virus-induced T cell lymphomas in rats. The kinase domain of Tpl-2 is homologous to the Saccharomyces cerevisi
ae gene product, STE11, which encodes a MAP kinase kinase kinase. This suggested that Tpl-2 might have a similar activity. Consistent with this hypothesis, immunoprecipitated Tpl-2 and Tpl-2deltaC (a C-terminally truncated mutant) phosphorylated and activated recombinant fusion proteins of the mammalian MAP kinase kinases, MEK-1 and SEK-1, in vitro. Furthermore, transfection of Tpl-2 into COS-1 cells or Jurkat T cells. markedly activated the MAP kinases, ERK-1 and SAP kinase (JNK), which are substrates for MEK-1 and SEK-1, respectively. Tpl-2, therefore, is a MAP kinase kinase kinase which can activate two MAP kinase pathways. After Raf and Mos, Tpl-2 is the third serine/threonine oncoprotein kinase that has been shown to function as a direct activator of MEK-1.
Endothelial dysfunction and activation occur in the vasculature and are believed to contribute to the pathogenesis of cardiovascular diseases. We have shown that 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a cytochrome P450 4A-derived eicosanoid that promotes vasoconstriction in the micr
ocirculation, uncouples endothelial nitric-oxide synthase (eNOS) and reduces nitric oxide (NO) levels via the dissociation of the 90-kDa heat shock protein (HSP90) from eNOS. It also causes endothelial activation by stimulating nuclear factor-kappaB (NF-kappaB) and increasing levels of pro-inflammatory cytokines. In this study, we examined signaling mechanisms that may link 20-HETE-induced endothelial dysfunction and activation. Under conditions in which 20-HETE inhibited NO production, it also stimulated inhibitor of NF-kappaB (IkappaB) phosphorylation. Both effects were prevented by inhibition of tyrosine kinases and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). It is noteworthy that inhibitor of IkappaB kinase (IKK) activity negated the 20-HETE-mediated inhibition of NO production. Immunoprecipitation experiments revealed that treatment of ionophore-stimulated cells with 20-HETE brings about a decrease in HSP90-eNOS association and an increase in HSP90-IKKbeta association, suggesting that the activation by 20-HETE of NF-kappaB is linked to its action on eNOS. Furthermore, addition of inhibitors of tyrosine kinase MAPK and IKK restored the 20-HETE-mediated impairment of acetylcholine-induced relaxation in rat renal interlobar arteries. The results indicate that 20-HETE mediates eNOS uncoupling and endothelial dysfunction via the activation of tyrosine kinase, MAPK, and IKK, and these effects are linked to 20-HETE-mediated endothelial activation.
Manole A, etal., Am J Hum Genet. 2020 Aug 6;107(2):311-324. doi: 10.1016/j.ajhg.2020.06.016. Epub 2020 Jul 31.
Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neurop
athy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.
Simon M, etal., PLoS Genet. 2015 Mar 25;11(3):e1005097. doi: 10.1371/journal.pgen.1005097. eCollection 2015 Mar.
Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94)
and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome.
A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl-tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disabilit
y and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In-gel activity staining after blue native-polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole-exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3' splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV-transformed lymphoblasts, a specific decrease in the amount of charged mt-tRNA(Asn) was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease-associated aaRS2.