| 11537903 | Meox2 haploinsufficiency increases neuronal cell loss in a mouse model of Alzheimer's disease. | Soto I, etal., Neurobiol Aging. 2016 Jun;42:50-60. doi: 10.1016/j.neurobiolaging.2016.02.025. Epub 2016 Mar 2. | Evidence suggests that multiple genetic and environmental factors conspire together to increase susceptibility to Alzheimer's disease (AD). The amyloid cascade hypothesis states that deposition of the amyloid-beta (Abeta) peptide is central to AD; however, evidence in humans and animals suggests th at Abeta buildup alone is not sufficient to cause neuronal cell loss and cognitive decline. Mouse models that express high levels of mutant forms of amyloid precursor protein and/or cleaving enzymes deposit amyloid but do not show neuron loss. Therefore, a double-hit hypothesis for AD has been proposed whereby vascular dysfunction precedes and promotes Abeta toxicity. In support of this, copy number variations in mesenchyme homeobox 2 (MEOX2), a gene involved in vascular development, are associated with severe forms of AD. However, the role of MEOX2 in AD has not been studied. Here, we tested Meox2 haploinsufficiency in B6.APP/PS1 (B6.APB(Tg)) mice, a mouse model of AD. Despite no overt differences in plaque deposition or glial activation, B6.APB(Tg) mice that carry only one copy of Meox2 (B6.APB(Tg).Mx(-/+)) show increased neuronal cell loss, particularly in regions containing plaques, compared with B6.APB(Tg) mice. Neuronal cell loss corresponds with a significant decrease in plaque-associated microvessels, further supporting a synergistic effect of vascular compromise and amyloid deposition on neuronal cell dysfunction in AD. | 27143421 | 2016-10-01 |
| 11352441 | Regulation of the expression and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221. | Chen Y, etal., Mol Cell Biol. 2010 Aug;30(15):3902-13. doi: 10.1128/MCB.01237-09. Epub 2010 Jun 1. | Tumors secrete proangiogenic factors to induce the ingrowth of blood vessels from the stroma. These peptides bind to cell surface receptors on vascular endothelial cells (ECs), triggering signaling cascades that activate and repress batteries of downstream genes responsible for the angiogenic phenot ype. To determine if microRNAs (miRNAs) affect regulation of the EC phenotype by GAX, a homeobox gene and negative transcriptional regulator of the angiogenic phenotype, we tested the effect of miR-221 on GAX expression. miR-221 strongly upregulated GAX, suggesting that miR-221 downregulates a repressor of GAX. We next expressed miR-221 in ECs and identified ZEB2, a modulator of the epithelial-mesenchymal transition, as being strongly downregulated by miR-221. Using miR-221 expression constructs and an inhibitor, we determined that ZEB2 is upregulated by serum and downregulates GAX, while the expression of miR-221 upregulates GAX and downregulates ZEB2. A mutant miR-221 fails to downregulate ZEB2 or upregulate GAX. Finally, using chromatin immunoprecipitation, we identified two ZEB2 binding sites that modulate the ability of ZEB2 to downregulate GAX promoter activity. We conclude that miR-221 upregulates GAX primarily through its ability to downregulate the expression of ZEB2. These observations suggest a strategy for inhibiting angiogenesis by either recapitulating miR-221 expression or inhibiting ZEB2 activation. | 20516212 | 2010-07-01 |
| 155882536 | The Ski-Zeb2-Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype. | Cunnington RH, etal., J Cell Sci. 2014 Jan 1;127(Pt 1):40-9. doi: 10.1242/jcs.126722. Epub 2013 Oct 23. | Cardiac fibrosis is linked to fibroblast-to-myofibroblast phenoconversion and proliferation but the mechanisms underlying this are poorly understood. Ski is a negative regulator of TGF-β-Smad signaling in myofibroblasts, and might redirect the myofibroblast phenotype back to fibroblasts. Meox2 ='font-weight:700;'>Meox2 could alter TGF-β-mediated cellular processes and is repressed by Zeb2. Here, we investigated whether Ski diminishes the myofibroblast phenotype by de-repressing Meox2 expression and function through repression of Zeb2 expression. We show that expression of Meox1 and Meox2 mRNA and Meox2 protein is reduced during phenoconversion of fibroblasts to myofibroblasts. Overexpression of Meox2 shifts the myofibroblasts into fibroblasts, whereas the Meox2 DNA-binding mutant has no effect on myofibroblast phenotype. Overexpression of Ski partially restores Meox2 mRNA expression levels to those in cardiac fibroblasts. Expression of Zeb2 increased during phenoconversion and Ski overexpression reduces Zeb2 expression in first-passage myofibroblasts. Furthermore, expression of Meox2 is decreased in scar following myocardial infarction, whereas Zeb2 protein expression increases in the infarct scar. Thus Ski modulates the cardiac myofibroblast phenotype and function through suppression of Zeb2 by upregulating the expression of Meox2. This cascade might regulate cardiac myofibroblast phenotype and presents therapeutic options for treatment of cardiac fibrosis. | 24155330 | 2014-01-01 |