Wallis RH, etal., Diabetologia 2004 Jun;47(6):1096-106. Epub 2004 May 26.
AIMS/HYPOTHESIS. Genetic investigations in the spontaneously diabetic (Type 2) Goto Kakizaki (GK) rat have identified quantitative trait loci (QTL) for diabetes-related phenotypes. The aims of this study were to refine the chromosomal mapping of a QTL ( Nidd/gk5) identified in chromosome 8 of the GK
rat and to define a pathophysiological profile of GK gene variants underlying the QTL effects in congenics. METHODS. Genetic linkage analysis was carried out with chromosome 8 markers genotyped in a GKxBN F2 intercross previously used to map diabetes QTL. Two congenic strains were designed to contain GK haplotypes in the region of Nidd/gk5 transferred onto a Brown Norway (BN) genetic background, and a broad spectrum of diabetes phenotypes were characterised in the animals. RESULTS. Results from QTL mapping suggest that variations in glucose-stimulated insulin secretion in vivo, and in body weight are controlled by different chromosome 8 loci (LOD3.53; p=0.0004 and LOD4.19; p=0.00007, respectively). Extensive physiological screening in male and female congenics at 12 and 24 weeks revealed the existence of GK variants at the locus Nidd/gk5, independently responsible for significantly enhanced insulin secretion and increased levels of plasma triglycerides, phospholipids and HDL, LDL and total cholesterol. Sequence polymorphisms detected between the BN and GK strains in genes encoding ApoAI, AIV, CIII and Lipc do not account for these effects. CONCLUSIONS/INTERPRETATION. We refined the localisation of the QTL Nidd/gk5 and its pathophysiological characteristics in congenic strains derived for the locus. These congenic strains provide novel models for testing the contribution of a subset of GK alleles on diabetes phenotypes and for identifying diabetes susceptibility genes.
Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). W
e identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).
Florez JC, etal., Diabetologia. 2008 Mar;51(3):451-7. Epub 2007 Dec 4.
AIMS/HYPOTHESIS: Wolfram syndrome (diabetes insipidus, diabetes mellitus, optic atrophy and deafness) is caused by mutations in the WFS1 gene. Recently, single nucleotide polymorphisms (SNPs) in WFS1 have been reproducibly associated with type 2 diabetes. We therefore examined the effects of these v
ariants on diabetes incidence and response to interventions in the Diabetes Prevention Program (DPP), in which a lifestyle intervention or metformin treatment was compared with placebo. METHODS: We genotyped the WFS1 SNPs rs10010131, rs752854 and rs734312 (H611R) in 3,548 DPP participants and performed Cox regression analysis using genotype, intervention and their interactions as predictors of diabetes incidence. We also evaluated the effect of these SNPs on insulin resistance and beta cell function at 1 year. RESULTS: Although none of the three SNPs was associated with diabetes incidence in the overall cohort, white homozygotes for the previously reported protective alleles appeared less likely to develop diabetes in the lifestyle arm. Examination of the publicly available Diabetes Genetics Initiative genome-wide association dataset revealed that rs10012946, which is in strong linkage disequilibrium with the three WFS1 SNPs (r(2)=0.88-1.0), was associated with type 2 diabetes (allelic odds ratio 0.85, 95% CI 0.75-0.97, p=0.026). In the DPP, we noted a trend towards increased insulin secretion in carriers of the protective variants, although for most SNPs this was seen as compensatory for the diminished insulin sensitivity. CONCLUSIONS/INTERPRETATION: The previously reported protective effect of select WFS1 alleles may be magnified by a lifestyle intervention. These variants appear to confer an improvement in beta cell function.
Pathological variants in the nuclear malonyl-CoA-acyl carrier protein transacylase (MCAT) gene, which encodes a mitochondrial protein involved in fatty-acid biogenesis, have been reported in two siblings from China affected by insidious optic nerve degeneration
in childhood, leading to blindness in the first decade of life. After analysing 51 families with negative molecular diagnostic tests, from a cohort of 200 families with hereditary optic neuropathy (HON), we identified two novel MCAT mutations in a female patient who presented with acute, sudden, bilateral, yet asymmetric, central visual loss at the age of 20. This presentation is consistent with a Leber hereditary optic neuropathy (LHON)-like phenotype, whose existence and association with NDUFS2 and DNAJC30 has only recently been described. Our findings reveal a wider phenotypic presentation of MCAT mutations, and a greater genetic heterogeneity of nuclear LHON-like phenotypes. Although MCAT pathological variants are very uncommon, this gene should be investigated in HON patients, irrespective of disease presentation.
Giger JM, etal., Am J Physiol Cell Physiol 2002 Mar;282(3):C518-27.
Functional overload (OL) of the rat plantaris muscle by the removal of synergistic muscles induces a shift in the myosin heavy chain (MHC) isoform expression profile from the fast isoforms toward the slow type I, or, beta-MHC isoform. Different length rat beta-MHC promoters were linked to a firefly
luciferase reporter gene and injected in control and OL plantaris muscles. Reporter activities of -3,500, -914, -408, and -215 bp promoters increased in response to 1 wk of OL. The smallest -171 bp promoter was not responsive to OL. Mutation analyses of putative regulatory elements within the -171 and -408 bp region were performed. The -408 bp promoters containing mutations of the betae1, distal muscle CAT (MCAT; betae2), CACC, or A/T-rich (GATA), were still responsive to OL. Only the proximal MCAT (betae3) mutation abolished the OL response. Gel mobility shift assays revealed a significantly higher level of complex formation of the betae3 probe with nuclear protein from OL plantaris compared with control plantaris. These results suggest that the betae3 site functions as a putative OL-responsive element in the rat beta-MHC gene promoter.