Chen H, etal., Int J Clin Exp Pathol. 2015 May 1;8(5):5798-802. eCollection 2015.
OBJECTIVE: The present study aimed at assessing the relationship between Leukocyte-specific protein 1 gene (LSP1) polymorphisms (rs569550 and rs592373) and the pathogenesis of breast cancer (BC). METHODS: 70 BC patients and 72 healthy subjects were enrolled in t
he study. Rs569550 and rs592373 polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Odds ratio (OR) with 95% confidence interval (CI) were calculated by the chi-squared test to assess the relationship between LSP1 polymorphisms and BC risk. Linkage disequilibrium (LD) and haplotypes were also analyzed by HaploView software. RESULTS: Genotype distribution of the control was in accordance with Hardy-Weinberg equilibrium (HWE). The homozygous genotype TT and T allele of rs569550 could significantly increase the risk of BC (TT vs. GG: OR=3.17, 95% CI=1.23-8.91; T vs. G: OR=1.63, 95% CI=1.01-2.64). For rs592373, mutation homozygous genotype CC and C allele were significantly associated with BC susceptibility (CC vs. TT: OR=4.45, 95% CI=1.38-14.8; C vs. T: OR=1.70, 95% CI=1.03-2.81). LD and haplotypes analysis of rs569550 and rs592373 polymorphisms showed that T-C haplotype was a risk factor for BC (T-C vs. G-T: OR=1.74, 95% CI=1.04-2.92). CONCLUSION: LSP1 rs569550 and rs592373 polymorphisms are both risk factors for BC.
Published data on the association between lymphocyte-specific protein 1 (LSP1) rs3817198T>C polymorphism and breast cancer risk are inconclusive. Hence, we conducted a meta-analysis of the LSP1 gene and risk of breast cancer
to obtain the most reliable estimate of the association. PubMed, Embase and Web of Science databases were searched. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were extracted and pooled to assess the strength of the association between the LSP1 rs3817198T>C polymorphism and risk of breast cancer. A total of seven eligible studies including 33,920 cases and 35,671 controls based on the search criteria were involved in this meta-analysis. The distributions of genotypes in the controls were all in agreement with Hardy-Weinberg equilibrium. We observed that the LSP1 rs3817198T>C polymorphism was significantly correlated with breast cancer risk when all studies were pooled into the meta-analysis (the allele contrast model: OR = 1.06, 95% CI = 1.04-1.08; the homozygote codominant: OR = 1.14, 95% CI = 1.01-1.28). In the stratified analysis by ethnicity, significant association was observed in Caucasians for CC versus TT homozygote codominant model (OR = 1.25; 95% CI = 1.03-1.52) and for the recessive model (OR = 1.22; 95% CI = 1.02-1.47). There was significant association observed in Africans for CC versus TT homozygote codominant model (OR = 0.45; 95% CI = 0.22-0.92) and for the recessive model (OR = 0.43; 95% CI=0.22-0.88). Also, significant association was observed in mixed ethnicities for CC versus TT homozygote codominant model (OR = 1.12; 95% CI = 1.05-1.19). When stratified by study design, statistically significantly elevated risk was found in nested case-control studies (CC vs. TT: OR = 1.12, 95% CI = 1.05-1.19). But no significant association was observed for all comparison models between LSP1 rs3817198T>C polymorphism and breast cancer risk in hospital-based and people-based studies. When stratified by BRCA1 mutation carriers status, statistically significantly elevated risk was found in this meta-analysis (the allele contrast model: OR = 1.07, 95% CI = 1.01-1.14; the dominant model: OR = 1.09, 95% CI = 1.00-1.18). And significant association was found in the BRCA2 mutation carriers in the allele contrast (OR = 1.11, 95% CI = 1.03-1.20), the homozygote codominant (OR = 1.23, 95% CI = 1.04-1.47), the heterozygote codominant (OR = 1.12, 95% CI = 1.00-1.25) and the dominant models (OR = 1.14, 95% CI = 1.03-1.27). There was significant association between LSP1 rs3817198T>C polymorphism and breast cancer risk in BRCA1 and BRCA2 positive cohort in all comparison models (the allele contrast model: OR = 1.08, 95% CI = 1.03-1.13; CC vs. TT: OR = 1.16, 95% CI = 1.05-1.29; TC vs. TT: OR = 1.09, 95% CI = 1.01-1.16; the dominant model: OR = 1.10, 95% CI = 1.03-1.17; the recessive model: OR = 1.12, 95% CI = 1.01-1.23). In conclusion, this meta-analysis suggests that the LSP1 rs3817198T>C polymorphism is a low-penetrant risk factor for developing breast cancer but may not be in Africans.
Huijts PE, etal., Breast Cancer Res. 2007;9(6):R78.
INTRODUCTION: Seven SNPs in five genomic loci were recently found to confer a mildly increased risk of breast cancer. METHODS: We have investigated the correlations between disease characteristics and the patient genotypes of these SNPs in an unselected prospective cohort of 1,267 consecutive patien
ts with primary breast cancer. RESULTS: Heterozygote carriers and minor allele homozygote carriers for SNP rs889312 in the MAP3K1 gene were less likely to be lymph node positive at breast cancer diagnosis (P = 0.044) relative to major allele homozygote carriers. Heterozygote carriers and minor allele homozygote carriers for SNP rs3803662 near the TNCR9 gene were more likely to be diagnosed before the age of 60 years (P = 0.025) relative to major allele homozygote carriers. We also noted a correlation between the number of minor alleles of rs2981582 in FGFR2 and the average number of first-degree and second-degree relatives with breast cancer and/or ovarian cancer (P = 0.05). All other disease characteristics, including tumour size and grade, and oestrogen or progesterone receptor status, were not significantly associated with any of these variants. CONCLUSION: Some recently discovered genomic variants associated with a mildly increased risk of breast cancer are also associated with breast cancer characteristics or family history of breast cancer and ovarian cancer. These findings provide interesting new clues for further research on these low-risk susceptibility alleles.
Maxeiner S, etal., Mol Biol Cell. 2015 May 1;26(9):1652-64. doi: 10.1091/mbc.E14-05-1005. Epub 2015 Feb 25.
Actin cytoskeleton remodeling is fundamental for Fcgamma receptor-driven phagocytosis. In this study, we find that the leukocyte-specific protein 1 (LSP1) localizes to nascent phagocytic cups during Fcgamma receptor-mediated phagocytosis, where it displays the s
ame spatial and temporal distribution as the actin cytoskeleton. Down-regulation of LSP1 severely reduces the phagocytic activity of macrophages, clearly demonstrating a crucial role for this protein in Fcgamma receptor-mediated phagocytosis. We also find that LSP1 binds to the class I molecular motor myosin1e. LSP1 interacts with the SH3 domain of myosin1e, and the localization and dynamics of both proteins in nascent phagocytic cups mirror those of actin. Furthermore, inhibition of LSP1-myosin1e and LSP1-actin interactions profoundly impairs pseudopodial formation around opsonized targets and their subsequent internalization. Thus the LSP1-myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcgamma receptor-driven phagocytosis.