| 1303994 | Involvement of LMO7 in the association of two cell-cell adhesion molecules, nectin and E-cadherin, through afadin and alpha-actinin in epithelial cells. | Ooshio T, etal., J Biol Chem 2004 Jul 23;279(30):31365-73. Epub 2004 May 12. | Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules that are involved in formation of cadherin-based adherens junctions (AJs). The nectin-based cell-cell adhesion induces activation of Cdc42 and Rac small G proteins, which eventually enhances the formation of AJs through reorganization of the actin cytoskeleton. Although evidence has accumulated that nectins recruit cadherins to the nectin-based cell-cell adhesion sites through their cytoplasm-associated proteins, afadin and catenins, it is not fully understood how nectins are physically associated with cadherins. Here we identified a rat counterpart of the human LIM domain only 7 (LMO7) as an afadin- and alpha-actinin-binding protein. Rat LMO7 has two splice variants, LMO7a and LMO7b, consisting of 1,729 and 1,395 amino acids, respectively. LMO7 has calponin homology, PDZ, and LIM domains. Western blotting revealed that LMO7 was expressed ubiquitously in various rat tissues. Immunofluorescence and immunoelectron microscopy revealed that LMO7 localized at cell-cell AJs, where afadin localized, in epithelial cells of rat gallbladder. In addition, LMO7 localized at the cytoplasmic faces of apical membranes in the same epithelial cells. We furthermore revealed that LMO7 bound alpha-actinin, an actin filament-bundling protein, which bound to alpha-catenin. Immunoprecipitation analysis revealed that LMO7 was associated with both the nectin-afadin and E-cadherin-catenin systems. LMO7 was assembled at the cell-cell adhesion sites after both the nectin-afadin and E-cadherin-catenin systems had been assembled. These results indicate that LMO7 is an afadin- and alpha-actinin-binding protein that connects the nectin-afadin and E-cadherin-catenin systems through alpha-actinin. | 15140894 | 2004-12-01 |
| 13524620 | Lmo7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes. | Holaska JM, etal., Hum Mol Genet. 2006 Dec 1;15(23):3459-72. doi: 10.1093/hmg/ddl423. Epub 2006 Oct 26. | X-linked Emery-Dreifuss muscular dystrophy (X-EDMD) is inherited through mutations in emerin, a nuclear membrane protein. Emerin has proposed roles in nuclear architecture and gene regulation, but direct molecular links to disease were unknown. We report that Lim-domain only 7 (Lmo7 ght:700;'>Lmo7) binds emerin directly with 125 nM affinity; the C-terminal half of human Lmo7 (hLmo7C) was sufficient to bind emerin in vitro. Lmo7 appeared relevant to EDMD because a deletion that removes Lmo7 (plus eight exons of a neighboring gene) in mice causes dystrophic muscles [Semenova, E., Wang, X., Jablonski, M.M., Levorse, J. and Tilghman, S.M. (2003) An engineered 800 kilobase deletion of Uchl3 and Lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina. Hum. Mol. Genet., 12, 1301-1312]. Lmo7 localizes in the nucleus, cytoplasm and cell surface, particularly adhesion junctions [Ooshio, T., Irie, K., Morimoto, K., Fukuhara, A., Imai, T. and Takai, Y. (2004) Involvement of LMO7 in the association of two cell-cell adhesion molecules, nectin and E-cadherin, through afadin and alpha-actinin in epithelial cells. J. Biol. Chem., 279, 31365-31373]. Our data suggest endogenous Lmo7 is a nucleocytoplasmic shuttling protein, and might also localize at focal adhesions in HeLa cells. Two key results show that Lmo7 regulates emerin gene expression: rat Lmo7 isoforms directly activated a luciferase reporter gene in vivo, and emerin mRNA expression decreased 93% in Lmo7-downregulated HeLa cells. Thus, Lmo7 not only binds emerin protein but is also required for emerin gene transcription. Microarray analysis of Lmo7-downregulated HeLa cells identified over 4200 misregulated genes, including 46 genes important for muscle or heart. Misregulation of 11 genes, including four (CREBBP, NAP1L1, LAP2, RBL2) known to be misregulated in X-EDMD patients and emerin-null mice [Bakay, M., Wang, Z., Melcon, G., Schiltz, L., Xuan, J., Zhao, P., Sartorelli, V., Seo, J., Pegoraro, E., Angelini, C. et al. (2006) Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain, 129, 996-1013; Melcon, G., Kozlov, S., Cutler, D.A., Sullivan, T., Hernandez, L., Zhao, P., Mitchell, S., Nader, G., Bakay, M., Rottman, J.N. et al. (2006) Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet., 15, 637-651] was confirmed by real-time PCR. Overexpression of wild-type emerin, but not emerin mutant P183H (which causes EDMD and selectively disrupts binding to Lmo7), decreased the expression of CREBBP, NAP1L1 and LAP2, suggesting Lmo7 activity is both EDMD-relevant and inhibited by direct binding to emerin. We conclude that Lmo7 positively regulates many EDMD-relevant genes (including emerin), and is feedback-regulated by binding to emerin. | 17067998 | 2006-12-01 |