| 11061818 | Novel KRT14 mutation causing epidermolysis bullosa simplex with variable phenotype. | Jankowski M, etal., Exp Dermatol. 2014 Sep;23(9):684-7. doi: 10.1111/exd.12478. | About 75% of cases of epidermolysis bullosa simplex result from mutations in KRT5 and KRT14 genes. Here, we report a family with a novel heterozygous missense mutation p.Leu418Gln in the KRT14 gene causing EBS of phenotype v arying from EBS-loc to EBS-gen intermed. To the best of our knowledge, the family reported by us is the largest one in which two different phenotypes can be distinguished. The molecular dynamics simulations show that p.Leu418Gln mutation results in clear disruption of intermolecular pi-stacking between KRT14:Tyr415 and KRT5:Tyr470, which in turn may affect putative phosphorylation site at KRT14:Thr414. This study further supports the importance of the EIATYR/KLLEGE motif in maintaining structural stability of KRT14:KRT5 heterodimer and indicates that physical properties of introduced amino acid can modulate the disease severity. The results obtained indicate further need of genotype-phenotype studies in EBS. In conclusion, genotype-based prognosis should be given to patients with caution. | 24981776 | 2014-04-01 |
| 598117821 | KRT5 and KRT14 Mutations in Epidermolysis Bullosa Simplex with Phenotypic Heterogeneity, and Evidence of Semidominant Inheritance in a Multiplex Family. | Vahidnezhad H, etal., J Invest Dermatol. 2016 Sep;136(9):1897-1901. doi: 10.1016/j.jid.2016.05.106. Epub 2016 Jun 7. | | 27283507 | 2016-09-01 |
| 598119456 | Naegeli-Franceschetti-Jadassohn syndrome and dermatopathia pigmentosa reticularis: two allelic ectodermal dysplasias caused by dominant mutations in KRT14. | Lugassy J, etal., Am J Hum Genet. 2006 Oct;79(4):724-30. doi: 10.1086/507792. Epub 2006 Aug 25. | Naegeli-Franceschetti-Jadassohn syndrome (NFJS) and dermatopathia pigmentosa reticularis (DPR) are two closely related autosomal dominant ectodermal dysplasia syndromes that clinically share complete absence of dermatoglyphics (fingerprint lines), a reticulate pattern of skin hyperpigmentation, thic kening of the palms and soles (palmoplantar keratoderma), abnormal sweating, and other subtle developmental anomalies of the teeth, hair, and skin. To decipher the molecular basis of these disorders, we studied one family with DPR and four families with NFJS. We initially reassessed linkage of NFJS/DPR to a previously established locus on 17q11.2-q21. Combined multipoint analysis generated a maximal LOD score of 8.3 at marker D17S800 at a recombination fraction of 0. The disease interval was found to harbor 230 genes, including a large cluster of keratin genes. Heterozygous nonsense or frameshift mutations in KRT14 were found to segregate with the disease trait in all five families. In contrast with KRT14 mutations affecting the central alpha -helical rod domain of keratin 14, which are known to cause epidermolysis bullosa simplex, NFJS/DPR-associated mutations were found in a region of the gene encoding the nonhelical head (E1/V1) domain and are predicted to result in very early termination of translation. These data suggest that KRT14 plays an important role during ontogenesis of dermatoglyphics and sweat glands. Among other functions, the N-terminal part of keratin molecules has been shown to confer protection against proapoptotic signals. Ultrastructural examination of patient skin biopsy specimens provided evidence for increased apoptotic activity in the basal cell layer where KRT14 is expressed, suggesting that apoptosis is an important mechanism in the pathogenesis of NFJS/DPR. | 16960809 | 2006-10-01 |
| 11530119 | Novel sporadic and recurrent mutations in KRT5 and KRT14 genes in Polish epidermolysis bullosa simplex patients: further insights into epidemiology and genotype-phenotype correlation. | Wertheim-Tysarowska K, etal., J Appl Genet. 2016 May;57(2):175-81. doi: 10.1007/s13353-015-0310-9. Epub 2015 Oct 2. | Epidermolysis bullosa simplex (EBS) is a hereditary genodermatosis characterised by trauma-induced intraepidermal blistering of the skin. EBS is mostly caused by mutations in the KRT5 and KRT14 genes. Disease severity partially depends on the affected keratin type and may be modulated by mutation type and location. The aim of our study was to identify the molecular defects in KRT5 and KRT14 in a cohort of 46 Polish and one Belarusian probands with clinical suspicion of EBS and to determine the genotype-phenotype correlation. The group of 47 patients with clinical recognition of EBS was enrolled in the study. We analysed all coding exons of KRT5 and KRT14 using Sanger sequencing. The pathogenic status of novel variants was evaluated using bioinformatical tools, control group analysis (DNA from 100 healthy population-matched subjects) and probands' parents testing. We identified mutations in 80 % of patients and found 29 different mutations, 11 of which were novel and six were found in more than one family. All novel mutations were ascertained as pathogenic. In the majority of cases, the most severe genotype was associated with mutations in highly conserved regions. In some cases, different inheritance mode and clinical significance, than previously reported by others, was observed. We report 11 novel variants and show novel genotype-phenotype correlations. Our data give further insight into the natural history of EBS molecular pathology, epidemiology and mutation origin. | 26432462 | 2016-08-01 |