Manis AD, etal., JCI Insight. 2021 Jan 11;6(1):e143251. doi: 10.1172/jci.insight.143251.
Kir5.1 is an inwardly rectifying potassium (Kir) channel subunit abundantly expressed in the kidney and brain. We previously established the physiologic consequences of a Kcnj16 (gene encoding Kir5.1) knockout in the Dahl salt-sensitive rat (SSKcnj16
weight:700;'>Kcnj16-/-), which caused electrolyte/pH dysregulation and high-salt diet-induced mortality. Since Kir channel gene mutations may alter neuronal excitability and are linked to human seizure disorders, we hypothesized that SSKcnj16-/- rats would exhibit neurological phenotypes, including increased susceptibility to seizures. SSKcnj16-/- rats exhibited increased light sensitivity (fMRI) and reproducible sound-induced tonic-clonic audiogenic seizures confirmed by electroencephalography. Repeated seizure induction altered behavior, exacerbated hypokalemia, and led to approximately 38% mortality in male SSKcnj16-/- rats. Dietary potassium supplementation did not prevent audiogenic seizures but mitigated hypokalemia and prevented mortality induced by repeated seizures. These results reveal a distinct, nonredundant role for Kir5.1 channels in the brain, introduce a rat model of audiogenic seizures, and suggest that yet-to-be identified mutations in Kcnj16 may cause or contribute to seizure disorders.
Schlingmann KP, etal., J Am Soc Nephrol. 2021 Jun 1;32(6):1498-1512. doi: 10.1681/ASN.2020111587. Epub 2021 Apr 2.
BACKGROUND: The transepithelial transport of electrolytes, solutes, and water in the kidney is a well-orchestrated process involving numerous membrane transport systems. Basolateral potassium channels in tubular cells not only mediate potassium recycling for proper Na+,K+-ATPase function
but are also involved in potassium and pH sensing. Genetic defects in KCNJ10 cause EAST/SeSAME syndrome, characterized by renal salt wasting with hypokalemic alkalosis associated with epilepsy, ataxia, and sensorineural deafness. METHODS: A candidate gene approach and whole-exome sequencing determined the underlying genetic defect in eight patients with a novel disease phenotype comprising a hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. Electrophysiologic studies and surface expression experiments investigated the functional consequences of newly identified gene variants. RESULTS: We identified mutations in the KCNJ16 gene encoding KCNJ16, which along with KCNJ15 and KCNJ10, constitutes the major basolateral potassium channel of the proximal and distal tubules, respectively. Coexpression of mutant KCNJ16 together with KCNJ15 or KCNJ10 in Xenopus oocytes significantly reduced currents. CONCLUSIONS: Biallelic variants in KCNJ16 were identified in patients with a novel disease phenotype comprising a variable proximal and distal tubulopathy associated with deafness. Variants affect the function of heteromeric potassium channels, disturbing proximal tubular bicarbonate handling as well as distal tubular salt reabsorption.
Puissant MM, etal., FASEB J. 2019 Apr;33(4):5067-5075. doi: 10.1096/fj.201802257R. Epub 2019 Jan 3.
Acute and chronic homeostatic pH regulation is critical for the maintenance of optimal cellular function. Renal mechanisms dominate global pH regulation over longer time frames, and rapid adjustments in ventilation compensate for acute pH and CO2 changes. Ventilatory CO2 and pH chemoreflexes are pri
marily determined by brain chemoreceptors with intrinsic pH sensitivity likely driven by K+ channels. Here, we studied acute and chronic pH regulation in Kcnj16 mutant Dahl salt-sensitive (SS Kcnj16-/-) rats; Kcnj16 encodes the pH-sensitive inwardly rectifying K+ 5.1 (Kir5.1) channel. SS Kcnj16-/- rats hyperventilated at rest, likely compensating for a chronic metabolic acidosis. Despite their resting hyperventilation, SS Kcnj16-/- rats showed up to 45% reduction in the ventilatory response to graded hypercapnic acidosis vs. controls. SS Kcnj16-/- rats chronically treated with bicarbonate or the carbonic anhydrase inhibitor hydrochlorothiazide had partial restoration of arterial pH, but there was a further reduction in the ventilatory response to hypercapnic acidosis. SS Kcnj16-/- rats also had a nearly absent hypoxic ventilatory response, suggesting major contributions of Kir5.1 to O2- and CO2-dependent chemoreflexes. Although previous studies demonstrated beneficial effects of a high-K+ diet (HKD) on cardiorenal phenotypes in SS Kcnj16-/- rats, HKD failed to restore the observed ventilatory phenotypes. We conclude that Kir5.1 is a key regulator of renal H+ handling and essential for acute and chronic regulation of arterial pH as determinants of the ventilatory CO2 chemoreflex.-Puissant, M. M., Muere, C., Levchenko, V., Manis, A. D., Martino, P., Forster, H. V., Palygin, O., Staruschenko, A., Hodges, M. R. Genetic mutation of Kcnj16 identifies Kir5.1-containing channels as key regulators of acute and chronic pH homeostasis.
Castori M, etal., Birth Defects Res A Clin Mol Teratol. 2016 Jan;106(1):61-8. doi: 10.1002/bdra.23463. Epub 2015 Dec 11.
BACKGROUND: Campomelic dysplasia and acampomelic campomelic dysplasia (ACD) are allelic disorders due to heterozygous mutations in or around SOX9. Translocations and deletions involving the SOX9 5' regulatory region are rare causes of these disorders, as well as Pierre Robin sequence (PRS) and 46,XY
gonadal dysgenesis. Genotype-phenotype correlations are not straightforward due to the complex epigenetic regulation of SOX9 expression during development. METHODS: We report a three-generation pedigree with a novel approximately 1 Mb deletion upstream of SOX9 and including KCNJ2 and KCNJ16, and ascertained for dominant transmission of PRS. RESULTS: Further characterization of the family identified subtle appendicular anomalies and a variable constellation of axial skeletal features evocative of ACD in several members. Affected males showed learning disability. CONCLUSION: The identified deletion was smaller than all other chromosome rearrangements associated with ACD. Comparison with other reported translocations and deletions involving this region allowed further refining of genotype-phenotype correlations and an update of the smallest regions of overlap associated with the different phenotypes. Intrafamilial variability in this pedigree suggests a phenotypic continuity between ACD and PRS in patients carrying mutations in the SOX9 5' regulatory region.