Malignant insulinoma is an rare form of cancer with poor prognosis and a reported 5-year survival of 35%. Relatively little is known about the etiology of this disease or of the oncogenes and tumor suppressor genes that participate in its genesis and progression. To address this issue, several proto
oncogenes, including K-ras, N-ras, erbB-2, erbB-3,c-myc, c-fos, c-jun were examined. Also analyzed was the expression of the growth factors TGF-alpha, EGF, and insulin as well as the EGF receptor (EGF-R), p53 and the putative anti-metastasis gene nm23-H1. These were examined in malignant insulinomas, benign insulinomas, pancreatic B cell hyperplasias and in normal endocrine pancreas. Normal endocrine pancreas showed moderate immunoreaction for c-myc and a strong reaction for insulin. All other parameters were negative. Benign pancreatic B cell hyperplasias were slightly or moderately positive for N-ras and TGF-alpha, and were weakly positive for EGF-R. They were strongly positive for c-myc and insulin. In malignant insulinomas there was strong immunoreaction for c-myc, TGF-alpha, N-ras, K-ras and p53. Insulin reaction was moderate or strong. Molecular genetic studies have been performed for the presence of activating point mutations in codon 12 of the c-K-ras oncogene. Mutations were detected using primer-mediated, mutant-enriched, polymerase chain reaction-restriction fragment length polymorphism analysis and were further characterized by allele-specific oligonucleotide hybridization. Four out of six patients with malignant insulinoma and two out of eight patients with benign insulinoma harbored K-ras point mutations at codon 12. All patients with mutated K-ras oncogene also had elevated levels of p53 protein as well as c-myc and TGF-alpha. In one extremely malignant case we found concomitant mutation at codon 12 of K-ras and codon 61 of the N-ras gene. Our data are consistent with the idea that malignant progression is accompanied by the progressive accumulation of multiple genetic lesions and suggest that activation of myc, TGF-alpha and ras genes may be early events in the development of insulinoma.
BACKGROUND: Trichilemmoma is a benign follicular epithelial tumour exhibiting outer root sheath differentiation. It is associated with Cowden syndrome and naevus sebaceus (NS), but the pathogenesis of sporadic tumours is poorly understood. Recently, NS was found to be caused by postzygoti
c HRAS or KRAS mutations. OBJECTIVES: We sought to determine whether NS-related and NS-unrelated trichilemmomas harbour RAS mutations. METHODS: Formalin-fixed and paraffin-embedded blocks of 12 NS-related and 15 NS-unrelated trichilemmomas from 26 individuals were retrieved and analysed to determine the presence of mutations in exons 1 and 2 of the HRAS, KRAS and NRAS genes by polymerase chain reaction and direct sequencing. Mutational hotspots of the FGFR3 and PIK3CA genes were also analysed for NS-unrelated cases. RESULTS: Among the 27 cases, mutually exclusive HRAS c.37G>C and c.182A>G mutations were observed in 17 and three tumours, respectively. Of the 12 NS-related tumours, 11 (92%) harboured the HRAS c.37G>C substitution. Of the 15 sporadic tumours, nine (60%) harboured HRAS mutations, including six c.37G>C and three c.182A>G. An HRAS c.182A>G mutation was observed only in sporadic tumours. No mutations were observed in the other genes that were tested. CONCLUSIONS: The high frequency of HRAS activating mutations, including the c.182A>G substitution, which was rather rare in NS, suggests that most trichilemmomas are authentic neoplasms.
Kiessling MK, etal., Oncotarget. 2015 Dec 8;6(39):42183-96. doi: 10.18632/oncotarget.5619.
HRAS is a frequently mutated oncogene in cancer. However, mutant HRAS as drug target has not been investigated so far. Here, we show that mutant HRAS hyperactivates the RAS and the mTOR
pathway in various cancer cell lines including lung, bladder and esophageal cancer. HRAS mutation sensitized toward growth inhibition by the MEK inhibitors AZD6244, MEK162 and PD0325901. Further, we found that MEK inhibitors induce apoptosis in mutant HRAS cell lines but not in cell lines lacking RAS mutations. In addition, knockdown of HRAS by siRNA blocked cell growth in mutant HRAS cell lines. Inhibition of the PI3K pathway alone or in combination with MEK inhibitors did not alter signaling nor had an impact on viability. However, inhibition of mTOR or combined inhibition of MEK and mTOR reduced cell growth in a synergistic manner. Finally, Ba/F3 cells transformed with mutant HRAS isoforms Q61L, Q61R and G12V demonstrated equal sensitivity towards MEK and mTOR inhibition. Our results show that HRAS mutations in cancer activate the RAS and mTOR pathways which might serve as a therapeutic option for patients with HRAS mutant tumors.
Gripp KW, etal., Am J Med Genet A. 2006 Oct 15;140(20):2163-9.
De novo heterozygous HRAS point mutations have been reported in more than 81 patients with Costello syndrome (CS), but genotype/phenotype correlation remains incomplete because the majority of patients share a common mutation, G12S, seen in 65/81 (80%). Somatic
HRAS mutations have previously been identified in solid tumors, and mutation hot spots related to a gain-of-function effect of the gene product are known. The germline mutations causing CS occur at these hot spots and convey a gain-of-function effect, thus accounting for the greatly increased cancer risk. Diagnostic testing for HRAS mutations is now available and the identification of a mutation in a patient with consistent clinical findings confirms a diagnosis of CS. It is not clear yet if the absence of an HRAS mutation precludes a diagnosis of CS. Because there is a significant overlap in the clinical findings of Costello, cardio-facio-cutaneous, and Noonan syndromes, diagnostic uncertainty remains in patients lacking an HRAS mutation. We report here on a female with findings suggestive of CS in whom mutation analysis performed with standard techniques on white blood cell derived DNA did not show an HRAS mutation. However, analysis of DNA derived from three independently collected buccal swabs showed a sequence change qualitatively consistent with the G12S mutation. Allelic quantitation showed the presence of the mutation in approximately 25%-30% of the sampled buccal cells. In this patient, standard technology failed to identify the disease causing mutation on DNA derived from a blood sample, highlighting the potential pitfalls in the interpretation of negative mutation studies. This is the first reported CS patient mosaic for the common HRAS mutation, likely due to a somatic mutation occurring very early in fetal development.
Costello syndrome is a multiple congenital anomaly and mental retardation syndrome characterized by coarse face, loose skin, cardiomyopathy and predisposition to tumors. We identified four heterozygous de novo mutations of HRAS in 12 of 13 affected individuals,
all of which were previously reported as somatic and oncogenic mutations in various tumors. Our observations suggest that germline mutations in HRAS perturb human development and increase susceptibility to tumors.
Herault J, etal., Psychiatry Res 1993 Mar;46(3):261-7.
We tested for an association between autism and genes coding for enzymes involved in monoaminergic metabolism and for a linked marker, c-Harvey-Ras-1 (HRAS 1), using restriction fragment length polymorphisms. We did not find evidence of an association between au
tism and genes coding for tyrosine hydroxylase, dopamine-beta-hydroxylase (DBH), and tryptophan hydroxylase. However, we report a positive association between autism and the locus containing the gene for HRAS-1.
van Steensel MA, etal., Exp Dermatol. 2006 Sep;15(9):731-4.
Costello syndrome (CS) is a rare multiple congenital anomaly/mental retardation syndrome characterized by coarse face, loose skin and cardiomyopathy. It is often associated with benign and malignant tumors. Several groups have now demonstrated that CS is caused by recurring mutations in the HRAS
yle='font-weight:700;'>HRAS gene in different ethnic groups. Here, we describe three unrelated Dutch patients and show that they all have the same mutation, G12S, in HRAS. To our knowledge, our patients are the first Dutch to be analysed. The syndrome seems to be genetically homogeneous. We discuss the pertinent nosology of the syndrome.
Costello syndrome (CS) is a rare congenital condition caused by heterozygous de novo missense mutations affecting the codon for glycine 12 or 13 of the HRAS gene. We have identified 39 CS patients harboring the p.Gly12Ser mutation (NM_005343.2:c.34 G > A), two p
atients with c.35G > C mutations resulting in p.Gly12Ala substitutions, and one patient carrying the p.Gly13Cys substitution (c.37G > A). We analyzed the region flanking the mutated sites in 42 probands and 59 parents, and used four polymorphic markers to trace the parental origin of the germline mutations: one highly polymorphic hexanucleotide (GGGCCT) repeat region, defining three alleles with different numbers of repeat units (two, three, or four), and three SNPs. One of the SNPs, rs12628 (c.81T > C), was found in strong linkage disequilibrium with the hexanucleotide repeat region. Out of a total of 24 probands with polymorphic markers, 16 informative families were tested and the paternal origin of the germline mutation was found in 14 CS probands; a distribution that is neither consistent with an equal likelihood of mutations arising in either parent (P = 0.0018), nor with exclusive paternal origin.
Huang L and Counter CM, PLoS One. 2015 Apr 22;10(4):e0123918. doi: 10.1371/journal.pone.0123918. eCollection 2015.
In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigene
sis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118) have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S) in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.
s in HRAS were identified in 12 Japanese and Italian patients with clinical information available on 7 of the Japanese patients. To expand the molecular delineation of Costello syndrome, we performed mutation analysis in 34 North American and 6 European (total 40) patients with Costello syndrome, and detected missense mutations in HRAS in 33 (82.5%) patients. All mutations affected either codon 12 or 13 of the protein product, with G12S occurring in 30 (90.9%) patients of the mutation-positive cases. In two patients, we found a mutation resulting in an alanine substitution in position 12 (G12A), and in one patient, we detected a novel mutation (G13C). Five different HRAS mutations have now been reported in Costello syndrome, however genotype-phenotype correlation remains incomplete.
Lund P, etal., Oncogene. 2006 Aug 10;25(35):4890-903. doi: 10.1038/sj.onc.1209502. Epub 2006 Mar 27.
Silencing of gene expression by methylation of CpG islands in regulatory elements is frequently observed in cancer. However, an influence of the most common oncogenic signalling pathways onto DNA methylation has not yet been investigated thoroughly. To address this issue, we identified genes suppres
sed in HRAS-transformed rat fibroblasts but upregulated after treatment with the demethylating agent 5-Aza-2-deoxycytidine and with the MEK1,2 inhibitor U0126. Analysis of gene expression by microarray and Northern blot analysis revealed the MEK/ERK target genes clusterin, matrix metalloproteinase 2 (Mmp2), peptidylpropyl isomerase C-associated protein, syndecan 4, Timp2 and Thbs1 to be repressed in the HRAS-transformed FE-8 cells in a MEK/ERK- and methylation-dependent manner. Hypermethylation of putative regulatory elements in HRAS-transformed cells as compared to immortalized fibroblasts was detected within a CpG island 14.5 kb upstream of clusterin, within the clusterin promoter and within a CpG island of the Mmp2 promoter by bisulphite sequencing. Furthermore, hypermethylation of the clusterin promoter was observed 10 days after induction of HRAS in immortalized rat fibroblasts and a clear correlation between reduced clusterin expression and hypermethlyation could also be observed in distinct rat tissues. These results suggest that silencing of individual genes by DNA methylation is controlled by oncogenic signalling pathways, yet the mechanisms responsible for initial target gene suppression are variable.
Aberrant activation of Ras signaling is a common finding in human glioblastomas. To determine the contribution of Ras gene mutations to this aberration, we screened 94 glioblastomas for mutations in the three Ras family genes NRAS, KRAS and HRAS. All tumors were
additionally analyzed for mutations in BRAF, which encodes a Ras-regulated serine/threonine kinase with oncogenic properties. Mutation analysis of the entire coding regions of NRAS and KRAS, as well as the known mutation hot-spot sites in HRAS, identified somatic point mutations in two glioblastomas, both affecting codon 12 of NRAS (c.35G>A, p.G12D). Three additional tumors carried BRAF mutations altering the known hot-spot codon 599 (c.1796T>A, p.V599E). None of these five glioblastomas showed amplification of the EGFR or PDGFRA genes, while three of the tumors, including two with NRAS and one with BRAF mutation, demonstrated PTEN missense mutations or loss of PTEN mRNA expression. Taken together, our data suggest activating mutations in NRAS or BRAF as a molecular alteration that contributes to aberrant Ras signaling in a small fraction of glioblastomas.
Groesser L, etal., Nat Genet. 2012 Jun 10;44(7):783-7. doi: 10.1038/ng.2316.
Nevus sebaceous is a common congenital cutaneous malformation. Affected individuals may develop benign and malignant secondary tumors in the nevi during life. Schimmelpenning syndrome is characterized by the association of nevus sebaceous with extracutaneous abnormalities. We report that of 65 seba
ceous nevi studied, 62 (95%) had mutations in the HRAS gene and 3 (5%) had mutations in the KRAS gene. The HRAS c.37G>C mutation, which results in a p.Gly13Arg substitution, was present in 91% of lesions. Nonlesional tissues from 18 individuals had a wild-type sequence, confirming genetic mosaicism. The HRAS c.37G>C mutation was also found in 8 of 8 associated secondary tumors. Mosaicism for HRAS c.37G>C and KRAS c.35G>A mutations was found in two individuals with Schimmelpenning syndrome. Functional analysis of HRAS c.37G>C mutant cells showed constitutive activation of the MAPK and PI3K-Akt signaling pathways. Our results indicate that nevus sebaceous and Schimmelpenning syndrome are caused by postzygotic HRAS and KRAS mutations. These mutations may predispose individuals to the development of secondary tumors in nevus sebaceous.
Kerr B, etal., J Med Genet. 2006 May;43(5):401-5. Epub 2006 Jan 27.
BACKGROUND: Costello syndrome (CS) is a rare multiple congenital abnormality syndrome, associated with failure to thrive and developmental delay. One of the more distinctive features in childhood is the development of facial warts, often nasolabial and in other moist body surfaces. Individuals with
CS have an increased risk of malignancy, suggested to be about 17%. Recently, mutations in the HRAS gene on chromosome 11p13.3 have been found to cause CS. METHODS: We report here the results of HRAS analysis in 43 individuals with a clinical diagnosis of CS. RESULTS: Mutations were found in 37 (86%) of patients. Analysis of parental DNA samples was possible in 16 cases for both parents and in three cases for one parent, and confirmed the mutations as de novo in all of these cases. Three novel mutations (G12C, G12E, and K117R) were found in five cases. CONCLUSIONS: These results confirm that CS is caused, in most cases, by heterozygous missense mutations in the proto-oncogene HRAS. Analysis of the major phenotypic features by mutation suggests a potential correlation between malignancy risk and genotype, which is highest for patients with an uncommon (G12A) substitution. These results confirm that mutation testing for HRAS is a reliable diagnostic test for CS.
Lorenz S, etal., Eur J Med Genet. 2012 Nov;55(11):615-9. doi: 10.1016/j.ejmg.2012.07.007. Epub 2012 Aug 7.
Costello syndrome (CS) is a rare congenital disorder characterized by severe failure to thrive, coarse facial appearance, cardiac and skin abnormalities, developmental delay, intellectual disability, and predisposition to malignancies. Heterozygous de novo germline mutations in the proto-oncogene ... (more)
pan style='font-weight:700;'>HRAS cause CS. About 80% of patients share the same mutation resulting in the amino acid change p.G12S and present a relatively homogeneous phenotype. Other less common lesions in HRAS can induce a milder phenotype on the one hand and a more severe phenotype on the other broadening the spectrum of clinical manifestations in CS-affected individuals. We report two new patients with the HRAS p.G12C and p.G12D substitutions and a severe neonatal manifestation causing death at the age of three months and 13 days, respectively. Both patients had particularly severe heart involvement with hypertrophic cardiomyopathy and tachyarrhythmia, generalized edema, and respiratory distress. In one case, hypertrophic cardiomyopathy was already noted prenatally. These cases together with other individuals harboring the rare HRAS mutations p.G12C, p.G12V, p.G12D, and p.G12E provide further evidence for a genotype-phenotype correlation that could be of importance for counseling and medical management.
Gripp KW, etal., Am J Med Genet A. 2012 Sep;158A(9):2106-18. doi: 10.1002/ajmg.a.35449. Epub 2012 Jul 20.
Costello syndrome is caused by HRAS germline mutations affecting Gly(12) or Gly(13) in >90% of cases and these are associated with a relatively homogeneous phenotype. Rarer mutations in other HRAS codons were reported in pat
ients with an attenuated or mild phenotype. Disease-associated HRAS missense mutations result in constitutive HRAS activation and increased RAF-MEK-ERK and PI3K-AKT signal flow. Here we report on a novel heterozygous HRAS germline alteration, c.266C>G (p.S89C), in a girl presenting with severe fetal hydrops and pleural effusion, followed by a more benign postnatal course. A sibling with the same mutation and fetal polyhydramnios showed a Dandy-Walker malformation; his postnatal course was complicated by severe feeding difficulties. Their apparently asymptomatic father is heterozygous for the c.266C>G change. By functional analyses we identified reduced levels of active HRAS(S89C) and diminished MEK, ERK and AKT phosphorylation in cells overexpressing HRAS(S89C) , which represent novel consequences of disease-associated HRAS mutations. Given our patients' difficult neonatal course and presence of this change in their asymptomatic father, we hypothesize that its harmful consequences may be time limited, with the late fetal stage being most sensitive. Alternatively, the phenotype may develop only in the presence of an additional as-yet-unknown genetic modifier. While the pathogenicity of the HRAS c.266C>G change remains unproven, our data may illustrate wide functional and phenotypic variability of germline HRAS mutations.
Goriely A, etal., Nat Genet. 2009 Nov;41(11):1247-52. Epub 2009 Oct 25.
Genes mutated in congenital malformation syndromes are frequently implicated in oncogenesis, but the causative germline and somatic mutations occur in separate cells at different times of an organism's life. Here we unify these processes to a single cellular event for mutations arising in male germ
cells that show a paternal age effect. Screening of 30 spermatocytic seminomas for oncogenic mutations in 17 genes identified 2 mutations in FGFR3 (both 1948A>G, encoding K650E, which causes thanatophoric dysplasia in the germline) and 5 mutations in HRAS. Massively parallel sequencing of sperm DNA showed that levels of the FGFR3 mutation increase with paternal age and that the mutation spectrum at the Lys650 codon is similar to that observed in bladder cancer. Most spermatocytic seminomas show increased immunoreactivity for FGFR3 and/or HRAS. We propose that paternal age-effect mutations activate a common 'selfish' pathway supporting proliferation in the testis, leading to diverse phenotypes in the next generation including fetal lethality, congenital syndromes and cancer predisposition.
Gripp KW, etal., Am J Med Genet A. 2015 Sep;167A(9):2085-97. doi: 10.1002/ajmg.a.37128. Epub 2015 Apr 25.
Heterozygous germline mutations in the proto-oncogene HRAS cause Costello syndrome (CS), an intellectual disability condition with severe failure to thrive, cardiac abnormalities, predisposition to tumors, and neurologic abnormalities. More than 80% of patients
share the HRAS mutation c.34G>A (p.Gly12Ser) associated with the typical, relatively homogeneous phenotype. Rarer mutations occurred in individuals with an attenuated phenotype and less characteristic facial features. Most pathogenic HRAS alterations affect hydrolytic HRAS activity resulting in constitutive activation. "Gain-of-function" and "hyperactivation" concerning downstream pathways are widely used to explain the molecular basis and dysregulation of the RAS-MAPK pathway is the biologic mechanism shared amongst rasopathies. Panel testing for rasopathies identified a novel HRAS mutation (c.179G>A; p.Gly60Asp) in three individuals with attenuated features of Costello syndrome. De novo paternal origin occurred in two, transmission from a heterozygous mother in the third. Individuals showed subtle facial features; curly hair and relative macrocephaly were seen in three; atrial tachycardia and learning difficulties in two, and pulmonic valve dysplasia and mildly thickened left ventricle in one. None had severe failure to thrive, intellectual disability or cancer, underscoring the need to consider HRAS mutations in individuals with an unspecific rasopathy phenotype. Functional studies revealed strongly increased HRAS(Gly60Asp) binding to RAF1, but not to other signaling effectors. Hyperactivation of the MAPK downstream signaling pathways was absent. Our results indicate that an increase in the proportion of activated RAS downstream signaling components does not entirely explain the molecular basis of CS. We conclude that the phenotypic variability in CS recapitulates variable qualities of molecular dysfunction.
Kluppel M, etal., Eur J Hum Genet. 2012 Aug;20(8):870-7. doi: 10.1038/ejhg.2012.12. Epub 2012 Feb 8.
Costello syndrome is a pediatric genetic disorder linked to oncogenic germline mutations in the HRAS gene. The disease is characterized by multiple developmental abnormalities, as well as predisposition to malignancies. Our recent observation that heart tissue f
rom patients with Costello syndrome showed a loss of the glycosaminoglycan chondroitin-4-sulfate (C4S) inspired our present study aimed to explore a functional involvement of the chondroitin sulfate (CS) biosynthesis gene Carbohydrate sulfotransferase 11/Chondroitin-4-sulfotransferase-1 (CHST11/C4ST-1), as well as an impaired chondroitin sulfation balance, as a downstream mediator of oncogenic HRAS in Costello syndrome. Here we demonstrate a loss of C4S, as well as a reduction in C4ST-1 mRNA and protein expression, in primary fibroblasts from Costello syndrome patients. We go on to show that expression of oncogenic HRAS in normal fibroblasts can repress C4ST-1 expression, whereas interference with oncogenic HRAS signaling in Costello syndrome fibroblasts elevated C4ST-1 expression, thus identifying C4ST-1 as a negatively regulated target gene of HRAS signaling. Importantly, we show that forced expression of C4ST-1 in Costello fibroblasts could rescue the proliferation and elastogenesis defects associated with oncogenic HRAS signaling in these cells. Our results indicate reduced C4ST-1 expression and chondroitin sulfation imbalance mediating the effects of oncogenic HRAS signaling in the pathogenesis of Costello syndrome. Thus, our work identifies C4ST-1-dependent chondroitin sulfation as a downstream vulnerability in oncogenic RAS signaling, which might be pharmacologically exploited in future treatments of not only Costello syndrome and other RASopathies, but also human cancers associated with activating RAS mutations.
Giannoulatou E, etal., Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20152-7. doi: 10.1073/pnas.1311381110. Epub 2013 Nov 20.
The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS
> mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline.
Kordes M, etal., Leukemia. 2016 Apr;30(4):937-46. doi: 10.1038/leu.2015.319. Epub 2015 Nov 19.
Activating BRAF mutations, in particular V600E/K, drive many cancers and are considered mutually exclusive with mutant RAS, whereas inactivating BRAF mutations in the D(594)F(595)G(596) motif cooperate with RAS via paradoxical MEK/ERK activation. Due to the increasing use of comprehensive tumor geno
mic profiling, many non-V600 BRAF mutations are being detected whose functional consequences and therapeutic actionability are often unknown. We investigated an atypical BRAF mutation, F595L, which was identified along with mutant HRAS in histiocytic sarcoma and also occurs in epithelial cancers, melanoma and neuroblastoma, and determined its interaction with mutant RAS. Unlike other DFG motif mutants, BRAF(F595L) is a gain-of-function variant with intermediate activity that does not act paradoxically, but nevertheless cooperates with mutant RAS to promote oncogenic signaling, which is efficiently blocked by pan-RAF and MEK inhibitors. Mutation data from patients and cell lines show that BRAF(F595L), as well as other intermediate-activity BRAF mutations, frequently coincide with mutant RAS in various cancers. These data define a distinct class of activating BRAF mutations, extend the spectrum of patients with systemic histiocytoses and other malignancies who are candidates for therapeutic blockade of the RAF-MEK-ERK pathway and underscore the value of comprehensive genomic testing for uncovering the vulnerabilities of individual tumors.
Mutations in genes involved in Ras signalling cause Noonan syndrome and other disorders characterised by growth disturbances and variable neuro-cardio-facio-cutaneous features. We describe two sisters, 46 and 31 years old, who presented with dysmorphic features, hypotonia, feeding difficulties, reta
rded growth and psychomotor retardation early in life. The patients were initially diagnosed with Costello syndrome, and autosomal recessive inheritance was assumed. Remarkably, however, we identified a germline HRAS mutation (G12A) in one sister and a germline KRAS mutation (F156L) in her sibling. Both mutations had arisen de novo. The F156L mutant K-Ras protein accumulated in the active, guanosine triphosphate-bound conformation and affected downstream signalling. The patient harbouring this mutation was followed for three decades, and her cardiac hypertrophy gradually normalised. However, she developed severe epilepsy with hippocampal sclerosis and atrophy. The occurrence of distinct de novo mutations adds to variable expressivity and gonadal mosaicism as possible explanations of how an autosomal dominant disease may manifest as an apparently recessive condition.
Nakamura Y, etal., Int J Cancer. 2006 May 15;118(10):2448-54.
Multistep tumorigenesis is a form of microevolution consisting of mutation and selection. To clarify the role of selection modalities in tumor development, we examined two alternative evolutionary conditions, r-selection in sparse culture, which allows cells to proliferate rapidly, and K-selection i
n confluent culture, in which overcrowding constrains cell proliferation. Using MYC- and EJ-RAS-transformed rat embryo fibroblasts, we found that K-selected cells acquired and stably maintained multidrug resistance (MDR) to DOX, VCR, MTX and Ara-C. Then, we examined the involvement of a number of factors potentially causal of the development of MDR, that is, ploidy, Tp53 mutation, doubling time and the expression levels of genes related to drug resistance. Although ploidy status and Tp53 mutations did not correlate with MDR, we found that Abcb1/Mdr1, encoding P-glycoprotein (Pgp), was significantly upregulated after K-selection. Cyclosporin A, a competitive inhibitor of Pgp, increased the intracellular accumulation of DOX and reduced the resistance to it. Indeed, the population of Pgp-transfected cells significantly expanded under K-, but not under r-selection. In addition to Pgp upregulation, altered expression of other genes such as Cda/cytidine deaminase and Slc29a1/equilibrative nucleoside transporter 1 and prolonged doubling times were associated with MDR. This system reproduces events associated with MDR in vivo and would be useful for analysis of MDR development.
BACKGROUND: Costello syndrome (CS) is a rare congenital disorder due to a G12S amino acid substitution in HRAS protoncogene. Previous studies have shown that Paired Associative Stimulation (PAS), a repetitive brain stimulation protocol inducing motor cortex plas
ticity by coupling peripheral nerve stimulation with brain stimulation, leads to an extremely pronounced motor cortex excitability increase in CS patients. Intermittent Theta Burst Stimulation (iTBS) represents a protocol able to induce motor cortex plasticity by trains of stimuli at 50 Hz. In healthy subjects PAS and iTBS produce similar after-effects in motor cortex excitability. Experimental models showed that HRAS-dependent signalling pathways differently affect LTP induced by different patterns of repetitive synaptic stimulation. OBJECTIVE: We aimed to compare iTBS-induced after-effects on motor cortex excitability with those produced by PAS in CS patients and to observe whether HRAS mutation differentially affects two different forms of neuromodulation protocols. METHODS: We evaluated in vivo after-effects induced by PAS and iTBS applied over the right motor cortex in 4 CS patients and in 21 healthy age-matched controls. RESULTS: Our findings confirmed HRAS-dependent extremely pronounced PAS-induced after-effects and showed for the first time that iTBS induces no change in MEP amplitude in CS patients whereas both protocols lead to an increase of about 50% in controls. CONCLUSIONS: CS patients are characterized by an impairment of iTBS-related LTP-like phenomena besides enhanced PAS-induced after-effects, suggesting that HRAS-dependent signalling pathways have a differential influence on PAS- and iTBS-induced plasticity in humans.
Activating mutations in v-Ha-ras Harvey rat sarcoma viral oncogene homolog (HRAS) have recently been identified as the molecular cause underlying Costello syndrome (CS). To further investigate the phenotypic spectrum associated with germline HRAS
ight:700;'>HRAS mutations and characterize their molecular diversity, subjects with a diagnosis of CS (N = 9), Noonan syndrome (NS; N = 36), cardiofaciocutaneous syndrome (CFCS; N = 4), or with a phenotype suggestive of these conditions but without a definitive diagnosis (N = 12) were screened for the entire coding sequence of the gene. A de novo heterozygous HRAS change was detected in all the subjects diagnosed with CS, while no lesion was observed with any of the other phenotypes. While eight cases shared the recurrent c.34G>A change, a novel c.436G>A transition was observed in one individual. The latter affected residue, p.Ala146, which contributes to guanosine triphosphate (GTP)/guanosine diphosphate (GDP) binding, defining a novel class of activating HRAS lesions that perturb development. Clinical characterization indicated that p.Gly12Ser was associated with a homogeneous phenotype. By analyzing the genomic region flanking the HRAS mutations, we traced the parental origin of lesions in nine informative families and demonstrated that de novo mutations were inherited from the father in all cases. We noted an advanced age at conception in unaffected fathers transmitting the mutation.
Pinilla-Macua I, etal., Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2122-7. doi: 10.1073/pnas.1520301113. Epub 2016 Feb 8.
Signaling from epidermal growth factor receptor (EGFR) to extracellular-stimuli-regulated protein kinase 1/2 (ERK1/2) is proposed to be transduced not only from the cell surface but also from endosomes, although the role of endocytosis in this signaling pathway is controversial. Ras is the only memb
rane-anchored component in the EGFR-ERK signaling axis, and therefore, its location determines intracellular sites of downstream signaling. Hence, we labeled endogenous H-Ras (HRas) with mVenus fluorescent protein using gene editing in HeLa cells. mVenus-HRas was primarily located at the plasma membrane, and in small amounts in tubular recycling endosomes and associated vesicles. EGF stimulation resulted in fast but transient activation of mVenus-HRas. Although EGF:EGFR complexes were rapidly accumulated in endosomes together with the Grb2 adaptor, very little, if any, mVenus-HRas was detected in these endosomes. Interestingly, the activities of MEK1/2 and ERK1/2 remained high beyond the point of the physical separation of HRas from EGF:EGFR complexes and down-regulation of Ras activity. Paradoxically, this sustained MEK1/2 and ERK1/2 activation was dependent on the active EGFR kinase. Cell surface biotinylation and selective inactivation of surface EGFRs suggested that a small fraction of active EGFRs remaining in the plasma membrane is responsible for continuous signaling to MEK1/2 and ERK1/2. We propose that, under physiological conditions of cell stimulation, EGFR endocytosis serves to spatially separate EGFR-Grb2 complexes and Ras, thus terminating Ras-mediated signaling. However, sustained minimal activation of Ras by a small pool of active EGFRs in the plasma membrane is sufficient for extending MEK1/2 and ERK1/2 activities.
Several candidate genes involved in the maintenance of normal growth control (H-rev) were identified by differential expression cloning on the assumption that they are expressed in phenotypically normal rat cells and repressed in closely related H-ras transformed cells. Previously the genes coding f
or lysyl oxidase (H-rev142) and for an 18K-protein of unknown function (H-rev107) were recovered as cDNAs by subtraction cloning. Here we describe the identification and expression pattern of ril, a novel member of the heterogeneous group of genes encoding proteins with LIM/double zinc finger domains. The ril gene is expressed in normal fibroblasts and down-regulated in H-ras-transformed derivatives. Expression is restored in several independent phenotypic revertants derived from H-ras transformed cells. The predicted protein product of ril harbors a single LIM domain but lacks a homeodomain. The ril gene is highly conserved during evolution and is transcribed in various normal cell lines. Northern blot analysis and in situ hybridization studies showed that ril is expressed in meiotic spermatocytes, in somites of developing mice, and in a wide variety of tissues of adult mice.
Miglietta G, etal., Sci Rep. 2015 Dec 17;5:18097. doi: 10.1038/srep18097.
HRAS is regulated by two neighbouring quadruplex-forming GC-elements (hras-1 and hras-2), located upstream of the major transcription start sites (doi: 10.1093/nar/gku 5784). In this st
udy we demonstrate that the C-rich strands of hras-1 and hras-2 fold into i-motif conformations (iMs) characterized under crowding conditions (PEG-300, 40% w/v) by semi-transitions at pH 6.3 and 6.7, respectively. Nondenaturing PAGE shows that the HRAS C-rich sequences migrate at both pH 5 and 7 as folded intramolecular structures. Chromatin immunoprecipitation shows that hnRNP A1 is associated under in vivo conditions to the GC-elements, while EMSA proves that hnRNP A1 binds tightly to the iMs. FRET and CD show that hnRNP A1 unfolds the iM structures upon binding. Furthermore, when hnRNP A1 is knocked out in T24 bladder cancer cells by a specific shRNA, the HRAS transcript level drops to 44 +/- 5% of the control, suggesting that hnRNP A1 is necessary for gene activation. The sequestration by decoy oligonucleotides of the proteins (hnRNP A1 and others) binding to the HRAS iMs causes a significant inhibition of HRAS transcription. All these outcomes suggest that HRAS is regulated by a G-quadruplex/i-motif switch interacting with proteins that recognize non B-DNA conformations.
Costello syndrome (CS) is a congenital disease that is characterized by a distinctive facial appearance, failure to thrive, mental retardation and cardiomyopathy. In 2005, we discovered that heterozygous germline mutations in HRAS caused CS. Several studies have
shown that CS-associated HRAS mutations are clustered in codons 12 and 13, and mutations in other codons have also been identified. However, a comprehensive comparison of the substitutions identified in patients with CS has not been conducted. In the current study, we identified four mutations (p.G12S, p.G12A, p.G12C and p.G12D) in 21 patients and analyzed the associated clinical manifestations of CS in these individuals. To examine functional differences among the identified mutations, we characterized a total of nine HRAS mutants, including seven distinct substitutions in codons 12 and 13, p.K117R and p.A146T. The p.A146T mutant demonstrated the weakest Raf-binding activity, and the p.K117R and p.A146T mutants had weaker effects on downstream c-Jun N-terminal kinase signaling than did codon 12 or 13 mutants. We demonstrated that these mutant HRAS proteins induced senescence when overexpressed in human fibroblasts. Oncogene-induced senescence is a cellular reaction that controls cell proliferation in response to oncogenic mutation and it has been considered one of the tumor suppression mechanisms in vivo. Our findings suggest that the HRAS mutations identified in CS are sufficient to cause oncogene-induced senescence and that cellular senescence might therefore contribute to the pathogenesis of CS.
Estep AL, etal., Am J Med Genet A. 2006 Jan 1;140(1):8-16.
Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized
that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort. No mutations were found which support a distinct genetic etiology between CS and CFC syndromes.
Sol-Church K, etal., Am J Med Genet A. 2009 Mar;149A(3):315-21. doi: 10.1002/ajmg.a.32639.
Costello syndrome is a rare congenital anomaly syndrome associated with mental retardation and predisposition to benign and malignant tumors, caused by heterozygous missense mutations in the HRAS oncogene. Previously, all molecularly analyzed mutations appeared
de novo, and most arose in the paternal germline. A single patient with somatic mosaicism for a Costello syndrome causing HRAS mutation has been reported. Here we describe the first documented transmission of an HRAS mutation from a parent with somatic mosaicism to a child with typical Costello syndrome. Prior to the identification of the underlying gene mutation in Costello syndrome, this family had been identified clinically. The proband was subsequently found to carry a G12S HRAS germline mutation. Testing of the parents for parental origin identified his father as mosaic for the same HRAS mutation. The mother was found not to carry an HRAS mutation. The causative familial mutation is identified as a c.34G > A, which is the most common mutation in the HRAS gene in patients with Costello syndrome. The father carries the mutation in 7-8% of his alleles. This is the second case of mosaicism observed in Costello syndrome and the first direct molecular evidence of father-to-son transmission of the disease-causing mutation. Our observation underlines the importance of parental evaluation, and may have implications for genetic counseling and clinical practice.
In many mouse models of skin cancer, only a few tumors typically form even though many cells competent for tumorigenesis receive the same oncogenic stimuli. These observations suggest an active selection process for tumor-initiating cells. Here, we use quantitative mRNA- and miR-Seq to determine th
e impact of Hras(G12V) on the transcriptome of keratinocytes. We discover that microRNA-203 is downregulated by Hras(G12V). Using a knockout mouse model, we demonstrate that loss of microRNA-203 promotes selection and expansion of tumor-initiating cells. Conversely, restoration of microRNA-203 using an inducible model potently inhibits proliferation of these cells. We comprehensively identify microRNA-203 targets required for Hras-initiated tumorigenesis. These targets include critical regulators of the Ras pathway and essential genes required for cell division. This study establishes a role for the loss of microRNA-203 in promoting selection and expansion of Hras mutated cells and identifies a mechanism through which microRNA-203 antagonizes Hras-mediated tumorigenesis.
Denayer E, etal., Hum Mutat. 2008 Feb;29(2):232-9.
Costello syndrome is a mental retardation syndrome characterized by high birth weight, postnatal growth retardation, coarse face, loose skin, cardiovascular problems, and tumor predisposition. De novo heterozygous missense mutations in HRAS codon 12 and 13 distu
rbing the intrinsic GTP hydrolysis cause Costello syndrome. We report a patient with typical Costello syndrome and a novel heterozygous missense mutation in codon 117 (c.350A>G, p.Lys117Arg) of the HRAS gene, resulting in constitutive activation of the RAS/MAPK pathway similar to the typical p.Gly12Ser and p.Gly12Ala mutations. Recombinant HRAS p.Lys117Arg demonstrates normal intrinsic GTP hydrolysis and responsiveness to GTPase-activating proteins, but the nucleotide dissociation rate is increased 80-fold. Consistent with the biochemical data, the crystal structure of the p.Lys117Arg mutant indicates an altered interaction pattern of the side chain that is associated with unfavorable nucleotide binding properties. Together, these data show that a RAS mutation that only perturbs guanine nucleotide binding has similar functional consequences as mutations that impair GTP hydrolysis and causes human disease.
Porocarcinomas are a rare eccrine carcinoma with significant metastatic potential. Oncogenic drivers of porocarcinomas have been underexplored, with PIK3CA-activating mutation reported in 1 case. We analyzed 5 porocarcinomas by next-generation sequencing using the DNA component of the Oncomine Compr
ehensive Assay, which provides data on copy number changes and mutational events in 126 cancer-relevant genes through multiplex polymerase chain reaction. We detected an average of 3.3 high-confidence nonsynonymous mutations per tumor (range, 1-6), including a spectrum of oncogenic activation and tumor suppressor inactivation events. Tumor suppressor mutations included TP53 (4/5, 80%), RB1 (3/5, 60%), ATM (2/5, 40%), ARID1A (1/5, 20%), and CDKN2A (1/5, 20%). In 4 (80%) of 5 tumors, at least 1 potential oncogenic driver was identified. Activating HRAS mutations were detected in 2 (40%) of 5, including G13D and Q61L hotspot mutations. Mutations of EGFR were identified in 2 (40%) of 5; these mutations have been previously reported in cancer but did not affect classic activation hotspot sites. EGFR and HRAS mutations were mutually exclusive. HRAS mutations were detected by targeted sequencing in a minority of benign eccrine poromas (2/17; 11.7%), suggesting that HRAS activation may rarely be an early event in sweat gland neoplasia. Together, our data suggest roles for HRAS and EGFR as drivers in a subset of poroma and porocarcinoma. TP53 and RB1 inactivation events are also likely to contribute to tumorigenesis. These findings suggest that porocarcinomas display diversity with respect to oncogenic drivers, which may have implications for targeted therapy in metastatic or unresectable cases.
RAS binding is a critical step in the activation of BRAF protein serine/threonine kinase and stimulation of the mitogen-activated protein kinase signaling pathway. Mutations in both RAS and BRAF are associated with many human cancers. Here, we report the solution nuclear magnetic resonance (NMR) and
X-ray crystal structures of the RAS-binding domain (RBD) from human BRAF. We further studied the complex between BRAF RBD and the GppNHp bound form of HRAS in solution. Backbone, side-chain, and (19)F NMR chemical shift perturbations reveal unexpected changes distal to the RAS-binding face that extend through the core of the RBD structure. Moreover, backbone amide hydrogen/deuterium exchange NMR data demonstrate conformational ensemble changes in the RBD core structure upon complex formation. These changes in BRAF RBD reveal a basis for allosteric regulation of BRAF structure and function, and suggest a mechanism by which RAS binding can signal the drastic domain rearrangements required for activation of BRAF kinase.
Gripp KW, etal., Am J Med Genet A. 2012 May;158A(5):1095-101. doi: 10.1002/ajmg.a.35294. Epub 2012 Apr 9.
Costello syndrome was delineated based on its distinctive phenotype including severe failure-to-thrive with macrocephaly, characteristic facial features, hypertrophic cardiomyopathy, papillomata, malignant tumors, and cognitive impairment. Heterozygous germline mutations in the proto-oncogene HRAS
style='font-weight:700;'>HRAS cause Costello syndrome, and its inheritance pattern would thus be autosomal dominant. With exception of two instances of parental mosaicism, one presumed gonadal and the other proven somatic mosaicism for the p.G12S change, all published cases resulted from de novo mutations, typically arising in the paternal germline. More than 90% of these mutations affect the glycine residues in position 12 or 13, and result in a gain-of-function of the altered protein. A rare heterozygous HRAS alteration (c.173C > T; p.T58I) associated with an attenuated phenotype was previously reported in one patient. We identified two additional individuals with this mutation, father and son. Further studies supported origin of the alteration in the grand-paternal germline. Transmission of the mutation underscores its attenuated phenotype compatible with reproduction. We reviewed the phenotype in the newly identified individuals (Patient 1, 2) and include updated information on the first previously reported individual with HRAS p.T58I (Patient 3). Macrocephaly was present in all three. Cardiac findings included hypertrophic cardiomyopathy with double-chambered right ventricle; or mitral valve prolapse in one patient each. While subtle neurologic abnormalities or developmental delay were present in all, only one showed significant cognitive and functional impairment. None developed papillomata or a malignant tumor. Genetic counseling for Costello syndrome needs to take into consideration the particular HRAS mutation.
Oncogenic, activating mutations in KRAS initiate pancreatic cancer. There are, however, two other Ras family members, Nras and Hras, which can be activated in the presence of oncogenic Kras. The role of these wild-type Ras proteins in cancer remains unclear, as
their disruption has been shown to enhance or inhibit tumorigenesis depending upon the context. As pancreatic cancer is critically dependent upon Ras signaling, we tested and now report that loss of Hras increases tumor load and reduces survival in an oncogenic Kras-driven pancreatic adenocarcinoma mouse model. These effects were traced to the earliest stages of pancreatic cancer, suggesting that wild-type Hras may suppress tumor initiation. In normal cells, activated Ras can suppress proliferation through p53-dependent mechanisms. We find that the tumor suppressive effects of Hras are nullified in a homozygous mutant p53 background. As such, loss of wild-type Hras fosters the earliest stages of pancreatic cancer in a p53-dependent manner.
The H-RAS-like suppressor (HRASLS) subfamily consists of five enzymes (1-5) in humans and three (1, 3, and 5) in mice and rats that share sequence homology with lecithin:retinol acyltransferase (LRAT). All HRASLS family memb
ers possess in vitro phospholipid metabolizing abilities including phospholipase A1/2 (PLA1/2) activities and O-acyltransferase activities for the remodeling of glycerophospholipid acyl chains, as well as N-acyltransferase activities for the production of N-acylphosphatidylethanolamines. The in vivo biological activities of the HRASLS enzymes have not yet been fully investigated. Research to date indicates involvement of this subfamily in a wide array of biological processes and, as a consequence, these five enzymes have undergone extensive rediscovery and renaming within different fields of research. This review briefly describes the discovery of each of the HRASLS enzymes and their role in cancer, and discusses the biochemical function of each enzyme, as well as the biological role, if known. Gaps in current understanding are highlighted and suggestions for future research directions are discussed.
Transgenic rats carrying human c-Ha-ras proto-oncogene (Hras128 rats) have been shown to be highly susceptible to induction of tumors. We have found an early induction of tongue tumors in Hras128 rats treated with 4-nitroqui
noline 1-oxide (4NQO). 4NQO was administered to the Hras128 and wild-type Sprague-Dawley (SD) rats for 4 and 8 weeks, respectively. The experiment was terminated at 14 (Hras128 rats) and 28 (SD rats) weeks. Either during or after treatment with 4NQO, dysplastic hyperplasia, papilloma and squamous cell carcinoma were found on the tongue of both Hras128 and wild-type rats, with a higher incidence and multiplicity in Hras128 rats. Treatment of the Hras128 rats with 4NQO significantly increased cell proliferation in the tumor compared to the control rats. In the tongue tumors of the Hras128 rats, there was a significant increase in the mRNA expression levels of cyclin D1 and COX2. To examine whether this experimental system is useful for screening of the candidate agents for cancer preventive effect, nimesulide, a selective COX2 inhibitor, was tested in the present model. Nimesulide significantly decreased total multiplicity of tongue lesions compared to the control rats. Treatment of Hras128 rats with nimesulide caused a significant decrease in the levels of mRNA expression of cyclin D1 and COX2 in the tumor. Therefore, the current 4NQO-induced Hras128 rat tongue carcinogenesis model provides a simple and rapid system for investigating carcinogenesis process and evaluating the effect of possible cancer preventive agents for human tongue cancer.