Mortlock DP and Innis JW, Nat Genet. 1997 Feb;15(2):179-80.
There are several human syndromes which involve defects of the limbs and the Mullerian ducts or its derivatives. The hand-foot-genital (HFG) syndrome is an autosomal dominant, fully penetrant disorder that was originally described by Stern et al. Additional reports describing other affected families
have also been published. Limb anomalies include short first metacarpals of normal thickness, small distal phalanges of the thumbs, short middle phalanges of the fifth fingers, and fusion or delayed ossification of wrist bones. In the feet, the great toe is shorter due to a short first metatarsal and a small, pointed distal phalanx. Uterine anomalies are common in females with HFG, and typically involve a partially divided (bicornuate) or completely divided (didelphic) uterus, representing defects of Mullerian duct fusion. Urinary tract malformations in affected HFG females include a displaced urethral opening and malposition of ureteral orifices in the bladder wall; affected males may have hypospadias (ventrally misplaced urethral opening) of variable severity. We report the identification of a HOXA13 nonsense mutation in a family with hand-foot-genital syndrome. The mutation converts a highly conserved tryptophan residue in the homeodomain to a stop codon, which truncates 20 amino acids from the protein and likely eliminates or greatly reduces the ability of the protein to bind to DNA.
Liu L, etal., J Clin Endocrinol Metab. 2015 Dec;100(12):E1512-22. doi: 10.1210/jc.2015-2815. Epub 2015 Oct 20.
CONTEXT: Bipedalism separates humans from most other animal species, but results in significant physiologic challenges, particularly with respect to the maintenance of pregnancy and induction of parturition. A contracted lower uterine segment (LUS) and a relaxed uterine fundal myometrium (FUN) duri
ng pregnancy are required to prevent pressure on the cervix from the fetal head due to gravity. With the onset of labor, this regionalization of myometrial function must be reversed, allowing descent of the fetus, dilation of the cervix, and expulsion of the fetus through the birth canal. However, the molecular mechanisms remain unclear. OBJECTIVE AND DESIGN: This study sought to identify phenotypic regionalization of LUS and FUN during pregnancy, RNA sequencing was performed to analyze the human myometrial transcriptome. Real-time PCR and immunoblotting were applied to validate sequencing results. Cell contraction/adhesion assays and gene microarrays were used to study the cellular functions of the identified genes. RESULTS: Homeobox A13 (HoxA13), prostacyclin synthase (PTGIS), and periostin (POSTN) genes are more highly expressed in LUS than FUN of nonlaboring, but not laboring, myometrial cells at term. HoxA13 up-regulates transcription of PTGIS and POSTN genes. Elevated HoxA13 expression enhances myometrial cell contractility and cell-cell adhesion. Gene microarray studies show that HoxA13-regulated genes are associated with immune response, gap junction/cell adhesion, and pregnancy. CONCLUSION: The LUS expresses higher levels of HoxA13, PTGIS, and POSTN, and is more contractile than the FUN at term prior to labor. This pregnancy-maintaining regionalization of myometrial function may be mediated by HoxA13.
Guttmacher syndrome, a dominantly inherited combination of distal limb and genital tract abnormalities, has several features in common with hand-foot-genital syndrome (HFGS), including hypoplastic first digits and hypospadias. The presence of features not seen in HFGS, however, including postaxial p
olydactyly of the hands and uniphalangeal 2(nd) toes with absent nails, suggests that it represents a distinct entity. HFGS is caused by mutations in the HOXA13 gene. We have therefore re-investigated the original Guttmacher syndrome family, and have found that affected individuals are heterozygous for a novel missense mutation in the HOXA13 homeobox (c.1112A>T; homeodomain residue Q50L), which arose on an allele already carrying a novel 2-bp deletion (-78-79delGC) in the gene's highly conserved promoter region. This deletion produces no detectable abnormalities on its own, but may contribute to the phenotype in the affected individuals. The missense mutation, which alters a key residue in the recognition helix of the homeodomain, is likely to perturb HOXA13's DNA-binding properties, resulting in both a loss and a specific gain of function.
Scotti M, etal., Genesis. 2015 Jun;53(6):366-76. doi: 10.1002/dvg.22859. Epub 2015 May 30.
The developing limb is a useful model for studying organogenesis and developmental processes. Although Cre alleles exist for conditional loss- or gain-of-function in limbs, Cre alleles targeting specific limb subdomains are desirable. Here we report on the generation of the Hoxa13
700;'>Hoxa13:Cre line, in which the Cre gene is inserted in the endogenous Hoxa13 gene. We provide evidence that the Cre is active in embryonic tissues/regions where the endogenous Hoxa13 gene is expressed. Our results show that cells expressing Hoxa13 in developing limb buds contribute to the entire autopod (hand/feet) skeleton and validate Hoxa13 as a distal limb marker as far as the skeleton is concerned. In contrast, in the limb musculature, Cre-based fate mapping shows that almost all muscle masses of the zeugopod (forearm) and part of the triceps contain Hoxa13-expressing cells and/or their descendants. Besides the limb, the activity of the Cre is detectable in the urogenital system and the hindgut, primarily in the epithelium and smooth muscles. Together our data show that the Hoxa13:Cre allele is a useful tool for conditional gene manipulation in the urogenital system, posterior digestive tract, autopod and part of the limb musculature.
Wallis M, etal., Am J Med Genet A. 2016 Mar;170(3):717-24. doi: 10.1002/ajmg.a.37478. Epub 2015 Nov 21.
We describe a male patient with dual genetic diagnoses of atypical hand-foot-genital syndrome (HFGS) and developmental delay. The proband had features of HFGS that included bilateral vesicoureteric junction obstruction with ectopic ureters, brachydactyly of various fingers and toes, hypoplastic then
ar eminences, and absent nails on both 4th toes and right 5th toe. The atypical features of HFGS present were bilateral hallux valgus malformations and bilateral preaxial polydactyly of the hands. Chromosomal microarray analysis identified a de novo 0.5 Mb deletion at 2p16.3, including the first four exons of the NRXN1 gene. Whole exome sequencing and subsequent Sanger sequencing identified a de novo missense mutation (c.1123G>T, p.Val375Phe) in exon 2 of the HOXA13 gene, predicted to be damaging and located in the homeobox domain. The intragenic NRXN1 deletion is thought to explain his developmental delay via a separate genetic mechanism.
Homeobox (HOX) genes, including HOXA13, are involved in human cancer. We found that HOXA13 expression was associated with glioma grade and prognosis. Bioinformatics analysis revealed that most of the HOXA13
:700;'>HOXA13-associated genes were enriched in cancer-related signaling pathways and mainly involved in the regulation of transcription. We transfected four glioma cell lines with Lenti-si HOXA13. HOXA13 increased cell proliferation and invasion and inhibited apoptosis. HOXA13 decreased beta-catenin, phospho-smad2, and phospho-smad3 in the nucleus and increased phospho-beta-catenin in the cytoplasm. Furthermore, downregulation of HOXA13 in orthotopic tumors decreased tumor growth. We suggest that HOXA13 promotes glioma progression in part via Wnt- and TGF-beta-induced EMT and is a potential diagnostic biomarker for glioblastoma and an independent prognostic factor in high-grade glioma.