Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder, characterized by accumulation of homogentisic acid, leading to darkened urine, pigmentation of connective tissue (ochronosis), joint and spine arthritis, and destruction of cardiac valves. AKU is due to mutations in the homogentisa
te dioxygenase gene (HGD) that converts homogentisic acid to maleylacetoacetic acid in the tyrosine catabolic pathway. Here we report a comprehensive mutation analysis of 93 patients enrolled in our study, as well as an extensive update of all previously published HGD mutations associated with AKU. Within our patient cohort, we identified 52 HGD variants, of which 22 were novel. This yields a total of 91 identified HGD variations associated with AKU to date, including 62 missense, 13 splice site, 10 frameshift, 5 nonsense, and 1 no-stop mutation. Most HGD variants reside in exons 3, 6, 8, and 13. We assessed the potential effect of all missense variations on protein function, using five bioinformatic tools specifically designed for interpretation of missense variants (SIFT, POLYPHEN, PANTHER, PMUT, and SNAP). We also analyzed the potential effect of splice-site variants using two different tools (BDGP and NetGene2). This study provides valuable resources for molecular analysis of alkaptonuria and expands our knowledge of the molecular basis of this disease.
Zatkova A, etal., JIMD Rep. 2012;4:55-65. doi: 10.1007/8904_2011_68. Epub 2011 Oct 20.
Enzymatic loss in alkaptonuria (AKU), an autosomal recessive disorder, is caused by mutations in the homogentisate 1,2 dioxygenase (HGD) gene, which decrease or completely inactivate the function of the HGD protein to metab
olize homogentisic acid (HGA). AKU shows a very low prevalence (1:100,000-250,000) in most ethnic groups, but there are countries with much higher incidence, such as Slovakia and the Dominican Republic. In this work, we report 11 novel HGD mutations identified during analysis of 36 AKU patients and 41 family members from 27 families originating from 9 different countries, mainly from Slovakia and France. In Slovak patients, we identified two additional mutations, thus a total number of HGD mutations identified in this small country is 12. In order to record AKU-causing mutations and variants of the HGD gene, we have created a HGD mutation database that is open for future submissions and is available online ( http://hgddatabase.cvtisr.sk/ ). It is founded on the Leiden Open (source) Variation Database (LOVD) system and includes data from the original AKU database ( http://www.alkaptonuria.cib.csic.es ) and also all so far reported variants and AKU patients. Where available, HGD-haplotypes associated with the mutations are also presented. Currently, this database contains 148 unique variants, of which 115 are reported pathogenic mutations. It provides a valuable tool for information exchange in AKU research and care fields and certainly presents a useful data source for genotype-phenotype correlations and also for future clinical trials.
Nemethova M, etal., Eur J Hum Genet. 2016 Jan;24(1):66-72. doi: 10.1038/ejhg.2015.60. Epub 2015 Mar 25.
Alkaptonuria (AKU) is an autosomal recessive disorder caused by mutations in homogentisate-1,2-dioxygenase (HGD) gene leading to the deficiency of HGD enzyme activity. The DevelopAKUre project is underway to test nitisinone
as a specific treatment to counteract this derangement of the phenylalanine-tyrosine catabolic pathway. We analysed DNA of 40 AKU patients enrolled for SONIA1, the first study in DevelopAKUre, and of 59 other AKU patients sent to our laboratory for molecular diagnostics. We identified 12 novel DNA variants: one was identified in patients from Brazil (c.557T>A), Slovakia (c.500C>T) and France (c.440T>C), three in patients from India (c.469+6T>C, c.650-85A>G, c.158G>A), and six in patients from Italy (c.742A>G, c.614G>A, c.1057A>C, c.752G>A, c.119A>C, c.926G>T). Thus, the total number of potential AKU-causing variants found in 380 patients reported in the HGD mutation database is now 129. Using mCSM and DUET, computational approaches based on the protein 3D structure, the novel missense variants are predicted to affect the activity of the enzyme by three mechanisms: decrease of stability of individual protomers, disruption of protomer-protomer interactions or modification of residues in the region of the active site. We also present an overview of AKU in Italy, where so far about 60 AKU cases are known and DNA analysis has been reported for 34 of them. In this rather small group, 26 different HGD variants affecting function were described, indicating rather high heterogeneity. Twelve of these variants seem to be specific for Italy.