| 5490988 | GSTA1, GSTO1 and GSTO2 gene polymorphisms in Italian asthma patients. | Polimanti R, etal., Clin Exp Pharmacol Physiol. 2010 Aug;37(8):870-2. Epub 2010 Mar 30. | 1. Previous studies have established that genetic alterations in glutathione S-transferase enzymes may change the ability of the airway to deal with toxic substances and increase the risk of asthma. The present study analysed the association between asthma and GSTA1, GSTO1 STO1 and GSTO2 gene polymorphisms. 2. The GSTA1*-69C/T, GSTO1*A140D and GSTO2*N142D polymorphisms were detected by polymerase chain reaction-restriction fragment length polymorphism, whereas the GSTO1*E155del polymorphism was detected using the confronting two-pair primer method. 3. Distribution of the GSTA1*-69C/T genotype differed significantly between asthmatics and controls. Subjects with at least one allele -69T in the GSTA1 genotype have an increased risk of asthma (odds ratio (OR) 3.45; 95% confidence interval (CI) 1.80-6.62). The distribution of the GSTO1 genotype was nearly equal between the control group and asthmatics, however, the distribution of the GSTO2 gene differed significantly between asthmatics and controls (Chi-squared test). Subjects who had the GSTO2 homozygous D142 genotype were found to have an increased risk of asthma (OR 5.91; 95% CI 1.80-19.42). 4. The results show a potential association between the GST genes and asthma. This is particularly significant given that, in the literature, there are no epidemiological studies on alpha and omega classes of glutathione transferases in asthma. | 20374258 | 2010-09-01 |
| 11055169 | GSTO1-1 modulates metabolism in macrophages activated through the LPS and TLR4 pathway. | Menon D, etal., J Cell Sci. 2015 May 15;128(10):1982-90. doi: 10.1242/jcs.167858. Epub 2015 Apr 23. | Macrophages mediate innate immune responses that recognise foreign pathogens, and bacterial lipopolysaccharide (LPS) recruits a signalling pathway through Toll-like receptor 4 (TLR4) to induce pro-inflammatory cytokines and reactive oxygen species (ROS). LPS activation also skews the metabolism of m acrophages towards a glycolytic phenotype. Here, we demonstrate that the LPS-triggered glycolytic switch is significantly attenuated in macrophages deficient for glutathione transferase omega-1 (GSTO1, note that GSTO1-1 refers to the dimeric molecule with identical type 1 subunits). In response to LPS, GSTO1-1-deficient macrophages do not produce excess lactate, or dephosphorylate AMPK, a key metabolic stress regulator. In addition, GSTO1-1-deficient cells do not induce HIF1alpha, which plays a key role in maintaining the pro-inflammatory state of activated macrophages. The accumulation of the TCA cycle intermediates succinate and fumarate that occurs in LPS-treated macrophages was also blocked in GSTO1-1-deficient cells. These data indicate that GSTO1-1 is required for LPS-mediated signalling in macrophages and that it acts early in the LPS-TLR4 pro-inflammatory pathway. | 25908843 | 2015-04-01 |
| 11526523 | GSTP1 and GSTO1 single nucleotide polymorphisms and the response of bladder cancer patients to intravesical chemotherapy. | Deng X, etal., Sci Rep. 2015 Sep 10;5:14000. doi: 10.1038/srep14000. | SNPs may restrict cell detoxification activity and be a potential risk factor for cancer chemosensitivity. We evaluated the predictive value of these polymorphisms on the sensitivity of bladder cancer patients to epirubicin and mitomycin chemotherapy instillation as well as their toxicities. SNPs we re analyzed by TaqMan genotyping assays in 130 patients treated with epirubicin and 114 patients treated with mitomycin. Recurrence-free survival (RFS) was estimated by the Kaplan-Meier method, and hazard ratios (HRs) and 95% confidence intervals (CIs) of the HRs were derived from multivariate Cox proportional hazard models. GSTP1 rs1695 and GSTO1 rs4925 were also associated with RFS in the epirubicin group. Patients carrying the GSTP1 AG+GG and GSTO1 AC+AA genotypes had an unfavorable RFS. Patients with the GSTP1 AA and GSTO1 CC genotypes had a reduced risk of recurrence after the instillation of epirubicin. In addition, patients with the GSTP1 rs1695 AA genotype had an increased risk of irritative voiding symptoms; while patients with the GSTO1 rs4925 CC genotype had a decreased risk of hematuria. Our results suggest that GSTP1 and GSTO1 polymorphisms are associated with epirubicin treatment outcomes as well as with epirubicin-related toxicity. | 26354850 | 1000-08-01 |
| 5490514 | Three SNPs in the GSTO1, GSTO2 and PRSS11 genes on chromosome 10 are not associated with age-at-onset of Alzheimer's disease. | Ozturk A, etal., Neurobiol Aging. 2005 Aug-Sep;26(8):1161-5. Epub 2004 Dec 18. | Linkage studies suggest the presence of putative risk and/or age-at-onset genes for Alzheimer's disease on Chromosome 10. Recently, a genomic converging approach using a combination of linkage, expression and association studies has reported significant associations of the glutathione S-transferase omega 1 and 2 (GSTO1 and GSTO2) genes and possibly the protease serine 11 (PRSS11) gene on chromosome 10 with age-at-onset, but not risk, for Alzheimer's disease (AD) and Parkinson disease. We investigated the association of the reported three polymorphisms in 990 sporadic late-onset AD cases (26% autopsy confirmed) and 735 controls. In our sample, we found no association either with age-at-onset in AD cases or with disease risk in the case-control cohort. However, haplotype analysis revealed a modest association of one haplotype with AD risk (p = 0.04). Additional markers in these genes need to be screened to explore their role in the etiology of AD. | 15917099 | 2005-09-01 |