Ain NU, etal., J Med Genet. 2021 May;58(5):351-356. doi: 10.1136/jmedgenet-2020-106929. Epub 2020 Jun 26.
BACKGROUND: Studies exploring molecular mechanisms underlying congenital skeletal disorders have revealed novel regulators of skeletal homeostasis and shown protein glycosylation to play an important role. OBJECTIVE: To identify the genetic cause of rhizomelic skeletal dysplasia
in a consanguineous Pakistani family. METHODS: Clinical investigations were carried out for four affected individuals in the recruited family. Whole genome sequencing (WGS) was completed using DNA from two affected and two unaffected individuals from the family. Sequencing data were processed, filtered and analysed. In silico analyses were performed to predict the effects of the candidate variant on the protein structure and function. Small interfering RNAs (siRNAs) were used to study the effect of Gnpnat1 gene knockdown in primary rat chondrocytes. RESULTS: The patients presented with short stature due to extreme shortening of the proximal segments of the limbs. Radiographs of one individual showed hip dysplasia and severe platyspondyly. WGS data analyses identified a homozygous missense variant c.226G>A; p.(Glu76Lys) in GNPNAT1, segregating with the disease. Glucosamine 6-phosphate N-acetyltransferase, encoded by the highly conserved gene GNPNAT1, is one of the enzymes required for synthesis of uridine diphosphate N-acetylglucosamine, which participates in protein glycosylation. Knockdown of Gnpnat1 by siRNAs decreased cellular proliferation and expression of chondrocyte differentiation markers collagen type 2 and alkaline phosphatase, indicating that Gnpnat1 is important for growth plate chondrocyte proliferation and differentiation. CONCLUSIONS: This study describes a novel severe skeletal dysplasia associated with a biallelic, variant in GNPNAT1. Our data suggest that GNPNAT1 is important for growth plate chondrogenesis.
Elhossini RM, etal., Am J Med Genet A. 2022 Oct;188(10):2861-2868. doi: 10.1002/ajmg.a.62933. Epub 2022 Aug 11.
Spondylo-epi-metaphyseal dysplasias (SEMDs) are a clinically and genetically heterogeneous group of skeletal dysplasias characterized by short stature and abnormal modeling of the spine and long bones. A novel form of rhizomelic skeletal dysplasia, Ain-Naz type, associated with a homozygous variant
in GNPNAT1 was recently identified. Herein, we report an Egyptian patient, offspring of consanguineous parents, who presented with a severe form of unclassified SEMD. Whole exome sequencing identified a novel homozygous variant in exon 3, c.77T>G, (p.Phe26Cys) in GNPNAT1, that was confirmed by Sanger sequencing and both parents were found to be heterozygous for the identified variant. Main features included severe short stature, rhizomelic limb shortening, and wide flared metaphysis. Short broad long bones, brachydactyly, delayed epiphyseal ossification of long bones, advanced bone age, and immunodeficiency were additional findings expanding the clinical phenotype described in the previously reported family. We conclude that variants in the GNPNAT1 gene cause an autosomal recessive form of SEMD resembling Desbuquois like dysplasia caused by PGM3, which is involved in the same pathway as GNPNAT1.
Sabbagh Q, etal., Eur J Med Genet. 2022 Jun;65(6):104495. doi: 10.1016/j.ejmg.2022.104495. Epub 2022 Apr 12.
Spondyloepimetaphyseal dysplasias (SEMDs) belong to a clinically and genetically heterogeneous group of inherited skeletal disorders defined by a defect in the growth and shape of vertebrae, epiphyses and metaphyses. Rhizomelic SEMD is characterized by a disproportionate small stature caused by seve
re shortening and deformation of the limbs' proximal bones, with the cranio-facial sphere unaffected. We report a second individual, an 8-year-old girl, with autosomal recessive rhizomelic SEMD associated with a homozygous exonic missense variant, c.226G > A p.(Glu76Lys), in GNPNAT1 identified by trio genome sequencing. Our data corroborate the recent findings of Ain et al. and further delineate the clinical and radiographic features of this form of SEMD associated with rhizomelic dysplasia while outlining a potential hotspot in this newly described genetic disorder.