De Filippis R, etal., Clin Genet. 2012 Oct;82(4):395-403. doi: 10.1111/j.1399-0004.2011.01810.x. Epub 2011 Dec 13.
Mutations in the Forkhead box G1 (FOXG1) gene, a brain specific transcriptional factor, are responsible for the congenital variant of Rett syndrome. Until now FOXG1 point mutations have been reported in 12 Rett patients. Rec
ently seven additional patients have been reported with a quite homogeneous severe phenotype designated as the FOXG1 syndrome. Here we describe two unrelated patients with a de novo FOXG1 point mutation, p.Gln46X and p.Tyr400X, respectively, having a milder phenotype and sharing a distinctive facial appearance. Although FoxG1 action depends critically on its binding to chromatin, very little is known about the dynamics of this process. Using fluorescence recovery after photobleaching, we showed that most of the GFP-FoxG1 fusion protein associates reversibly to chromatin whereas the remaining fraction is bound irreversibly. Furthermore, we showed that the two pathologic derivatives of FoxG1 described in this paper present a dramatic alteration in chromatin affinity and irreversibly bound fraction in comparison with Ser323fsX325 mutant (associated with a severe phenotype) and wild type Foxg1 protein. Our observations suggest that alterations in the kinetics of FoxG1 binding to chromatin might contribute to the pathological effects of FOXG1 mutations.
Rett syndrome (RTT) is a severe neurodevelopmental disorder associated with mutations in either MECP2, CDKL5 or FOXG1. The precise molecular mechanisms that lead to the pathogenesis of RTT have yet to be elucidated. We recently reported that expression of GluD1
(orphan glutamate receptor delta-1 subunit) is increased in iPSC-derived neurons obtained from patients with mutations in either MECP2 or CDKL5. GluD1 controls synaptic differentiation and shifts the balance between excitatory and inhibitory synapses toward the latter. Thus, an increase in GluD1 might be a critical factor in the etiology of RTT by affecting the excitatory/inhibitory balance in the developing brain. To test this hypothesis, we generated iPSC-derived neurons from FOXG1(+/-) patients. We analyzed mRNA and protein levels of GluD1 together with key markers of excitatory and inhibitory synapses in these iPSC-derived neurons and in Foxg1(+/-) mouse fetal (E11.5) and adult (P70) brains. We found strong correlation between iPSC-derived neurons and fetal mouse brains, where GluD1 and inhibitory synaptic markers (GAD67 and GABA AR-alpha1) were increased, whereas the levels of a number of excitatory synaptic markers (VGLUT1, GluA1, GluN1 and PSD-95) were decreased. In adult mice, GluD1 was decreased along with all GABAergic and glutamatergic markers. Our findings further the understanding of the etiology of RTT by introducing a new pathological event occurring in the brain of FOXG1(+/-) patients during embryonic development and its time-dependent shift toward a general decrease in brain synapses.
Boggio EM, etal., Neuroscience. 2016 Jun 2;324:496-508. doi: 10.1016/j.neuroscience.2016.03.027. Epub 2016 Mar 19.
The Forkead Box G1 (FOXG1 in humans, Foxg1 in mice) gene encodes for a DNA-binding transcription factor, essential for the development of the telencephalon in mammalian forebrain. Mutations in FOXG1
FOXG1 have been reported to be involved in the onset of Rett Syndrome, for which sequence alterations of MECP2 and CDKL5 are known. While visual alterations are not classical hallmarks of Rett syndrome, an increasing body of evidence shows visual impairment in patients and in MeCP2 and CDKL5 animal models. Herein we focused on the functional role of FOXG1 in the visual system of animal models (Foxg1(+/Cre) mice) and of a cohort of subjects carrying FOXG1 mutations or deletions. Visual physiology of Foxg1(+/Cre) mice was assessed by visually evoked potentials, which revealed a significant reduction in response amplitude and visual acuity with respect to wild-type littermates. Morphological investigation showed abnormalities in the organization of excitatory/inhibitory circuits in the visual cortex. No alterations were observed in retinal structure. By examining a cohort of FOXG1-mutated individuals with a panel of neuro-ophthalmological assessments, we found that all of them exhibited visual alterations compatible with high-level visual dysfunctions. In conclusion our data show that Foxg1 haploinsufficiency results in an impairment of mouse and human visual cortical function.
Ariani F, etal., Am J Hum Genet. 2008 Jul;83(1):89-93. doi: 10.1016/j.ajhg.2008.05.015. Epub 2008 Jun 19.
Rett syndrome is a severe neurodevelopmental disease caused by mutations in the X-linked gene encoding for the methyl-CpG-binding protein MeCP2. Here, we report the identification of FOXG1-truncating mutations in two patients affected by the congenital variant
of Rett syndrome. FOXG1 encodes a brain-specific transcriptional repressor that is essential for early development of the telencephalon. Molecular analysis revealed that Foxg1 might also share common molecular mechanisms with MeCP2 during neuronal development, exhibiting partially overlapping expression domain in postnatal cortex and neuronal subnuclear localization.
Le Guen T, etal., Neurogenetics. 2011 Feb;12(1):1-8. doi: 10.1007/s10048-010-0255-4. Epub 2010 Aug 24.
Mutations in the FOXG1 gene have been shown to cause congenital variant of Rett syndrome. To date, point mutations have been reported only in female patients. We screened the entire coding region of the gene for mutations in 50 boys with congenital encephalopath
y, postnatal microcephaly, and complex movement disorders, a clinical picture very similar to that described in girls with FOXG1 mutations. We found one boy carrying the de novo c.256_257dupC frameshift mutation. He presented the association of postnatal microcephaly, severe axial dystonia with severe feeding difficulties with protruding tongue movements during the first year of life that subsequently evolved into dyskinetic movement disorders with hand stereotypies. In contrast to his severe motor impairment, he developed nonverbal communication skills and relative good eye contact. Brain MRI showed frontal gyral simplification with dramatic myelination delay most prominent in both frontal lobes. Altogether the presentation in this male patient is highly reminiscent of that observed in FOXG1-mutated females with the congenital variant of Rett syndrome. This new case confirms the prediction that congenital variant of Rett syndrome should be found also in males, with the characteristic hallmarks consisting of postnatal microcephaly, dyskinetic movement disorder with Rett-like features, i.e., hand stereotypies, and frontal gyral simplification with myelination delay. FOXG1 screening should be considered in individuals with these clinical features.
McMahon KQ, etal., Am J Med Genet A. 2015 Dec;167A(12):3096-102. doi: 10.1002/ajmg.a.37353. Epub 2015 Sep 14.
FOXG1-related disorders are caused by heterozygous mutations in FOXG1 and result in a spectrum of neurodevelopmental phenotypes including postnatal microcephaly, intellectual disability with absent speech, epilepsy, chorea
, and corpus callosum abnormalities. The recurrence risk for de novo mutations in FOXG1-related disorders is assumed to be low. Here, we describe three unrelated sets of full siblings with mutations in FOXG1 (c.515_577del63, c.460dupG, and c.572T > G), representing familial recurrence of the disorder. In one family, we have documented maternal somatic mosaicism for the FOXG1 mutation, and all of the families presumably represent parental gonadal (or germline) mosaicism. To our knowledge, mosaicism has not been previously reported in FOXG1-related disorders. Therefore, this report provides evidence that germline mosaicism for FOXG1 mutations is a likely explanation for familial recurrence and should be considered during recurrence risk counseling for families of children with FOXG1-related disorders.
Kawaguchi D, etal., Dev Biol. 2016 Apr 1;412(1):139-47. doi: 10.1016/j.ydbio.2016.02.011. Epub 2016 Feb 16.
Foxg1 expression is highly restricted to the telencephalon and other head structures in the early embryo. This expression pattern has been exploited to generate conditional knockout mice, based on a widely used Foxg1-Cre kno
ck-in line (Foxg1(tm1(cre)Skm)), in which the Foxg1 coding region was replaced by the Cre gene. The utility of this line, however, is severely hampered for two reasons: (1) Foxg1-Cre mice display ectopic and unpredictable Cre activity, and (2) Foxg1 haploinsufficiency can produce neurodevelopmental phenotypes. To overcome these issues, we have generated a new Foxg1-IRES-Cre knock-in mouse line, in which an IRES-Cre cassette was inserted in the 3'UTR of Foxg1 locus, thus preserving the endogenous Foxg1 coding region and un-translated gene regulatory sequences in the 3'UTR, including recently discovered microRNA target sites. We further demonstrate that the new Foxg1-IRES-Cre line displays consistent Cre activity patterns that recapitulated the endogenous Foxg1 expression at embryonic and postnatal stages without causing defects in cortical development. We conclude that the new Foxg1-IRES-Cre mouse line is a unique and advanced tool for studying genes involved in the development of the telencephalon and other Foxg1-expressing regions starting from early embryonic stages.
Roche-Martinez A, etal., Rev Neurol. 2011 May 16;52(10):597-602.
INTRODUCTION: Rett syndrome (RS) is a neurodevelopmental disorder that affects girls almost exclusively. The identification of mutations in the MECP2 and CDKL5 genes offers genetic confirmation of the clinical diagnosis. The FOXG1 gene appears to be a novel cau
se of the congenital variant of RS. CASE REPORT: We describe the first Spanish patient with the atypical (congenital) variant of RS with mutation of the FOXG1 gene and the case is compared with 12 patients previously reported in the literature; clinical criteria that suggest alterations in FOXG1 are proposed. The patient was referred at the age of 6 months due to overall retardation, axial hypotonia, microcephaly and a peculiar phenotype. Magnetic resonance imaging of the brain revealed hypoplasia of the corpus callosum, frontal atrophy and ventriculomegaly. The appearance of hand-to-mouth stereotypic movements at 12 months pointed the clinical diagnosis towards an atypical variant of RS, the congenital form; there was progressive improvement of visual contact and interest in her surroundings. Frequent respiratory infections and obstructive sleep apnoea syndrome. At the age of 5 years there was partial control over the axial tone, grasping with the hands, good contact and babbling, without epilepsy or behavioural disorders. The MECP2 and subtelomeric deletion study did not reveal any alterations; two polymorphisms were identified in the CDKL5 gene and a pathogenic mutation was found in FOXG1 (c.624C>G p.Tyr203X). CONCLUSIONS: It has been shown that 92% of patients with mutations in the FOXG1 gene present the congenital form of RS with severe generalised hypotonia, early acquired microcephaly (-3 to -6 standard deviations) and peculiar phenotype. When faced with a diagnosis of RS with no alterations in the MECP2 and CDKL5 genes, especially in the case of the congenital variant, the FOXG1 gene must be investigated. The molecular diagnosis confirms the clinical diagnosis and provides the family with genetic counselling.
Frullanti E, etal., Eur J Hum Genet. 2016 Feb;24(2):252-7. doi: 10.1038/ejhg.2015.79. Epub 2015 May 13.
Foxg1 gene encodes for a transcription factor essential for telencephalon development in the embryonic mammalian forebrain. Its complete absence is embryonic lethal while Foxg1 heterozygous mice are viable but display microc
ephaly, altered hippocampal neurogenesis and behavioral and cognitive deficiencies. In order to evaluate the effects of Foxg1 alteration in adult brain, we performed expression profiling in total brains from Foxg1+/- heterozygous mutants and wild-type littermates. We identified statistically significant differences in expression levels for 466 transcripts (P<0.001), 29 of which showed a fold change >/= 1.5. Among the differentially expressed genes was found a group of genes expressed in the basal ganglia and involved in the control of movements. A relevant (three to sevenfold changes) and statistically significant increase of expression, confirmed by qRT-PCR, was found in two highly correlated genes with expression restricted to the hypothalamus: Oxytocin (Oxt) and Arginine vasopressin (Avp). These neuropeptides have an important role in maternal and social behavior, and their alteration is associated with impaired social interaction and autistic behavior. In addition, Neuronatin (Nnat) levels appear significantly higher both in Foxg1+/- whole brain and in hippocampal neurons after silencing Foxg1, strongly suggesting that it is directly or indirectly repressed by Foxg1. During fetal and neonatal brain development, Nnat may regulate neuronal excitability, receptor trafficking and calcium-dependent signaling and, in the adult brain, it is predominantly expressed in parvalbumin-positive GABAergic interneurons. Overall, these results implicate the overexpression of a group of neuropeptides in the basal ganglia, hypothalamus, cortex and hippocampus in the pathogenesis FOXG1 behavioral impairments.
BACKGROUND: Rett syndrome is a severe neurodevelopmental disorder representing one of the most common genetic causes of mental retardation in girls. The classic form is caused by MECP2 mutations. In two patients affected by the congenital variant of Rett we have recently identified mutations in the
FOXG1 gene encoding a brain specific transcriptional repressor, essential for early development of the telencephalon. METHODS: 60 MECP2/CDKL5 mutation negative European Rett patients (classic and variants), 43 patients with encephalopathy with early onset seizures, and four atypical Rett patients were analysed for mutations in FOXG1. RESULTS AND CONCLUSIONS: Mutations have been identified in four patients, independently classified as congenital Rett variants from France, Spain and Latvia. Clinical data have been compared with the two previously reported patients with mutations in FOXG1. In all cases hypotonia, irresponsiveness and irritability were present in the neonatal period. At birth, head circumference was normal while a deceleration of growth was recognised soon afterwards, leading to severe microcephaly. Motor development was severely impaired and voluntary hand use was absent. In contrast with classic Rett, patients showed poor eye contact. Typical stereotypic hand movements with hand washing and hand mouthing activities were present continuously. Some patients showed abnormal movements of the tongue and jerky movements of the limbs. Brain magnetic resonance imaging showed corpus callosum hypoplasia in most cases, while epilepsy was a variable sign. Scoliosis was present and severe in the older patients. Neurovegetative symptoms typical of Rett were frequently present.
Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by microcephaly, psychomotor regression, seizures and stereotypical hand movements. Recently, deletions and inactivating mutations in FOXG1, encoding a brain-specific transcription factor
that is critical for forebrain development, have been found to be associated with the congenital variant of RTT. Here we report the clinical features and molecular characteristics of two cases of the congenital variant of RTT. We conducted mutation screenings of FOXG1 in a cohort of 15 Japanese patients with a clinical diagnosis of atypical RTT but without MECP2 and CDKL5 mutations. Two unrelated female patients had heterozygous mutations (c.256dupC, p.Gln86ProfsX35 and c.689G>A, pArg230His). Both showed neurological symptoms from the neonatal period, including hypotonia, irritability and severe microcephaly. Further, their psychomotor development was severely impaired, as indicated by their inability to sit unaided or acquire speech sounds, and they had a hyperkinetic movement disorder, because both displayed hand stereotypies and jerky movements of the upper limbs. Brain magnetic resonance imaging scans revealed delayed myelination with hypoplasia of the corpus callosum and frontal lobe. These cases confirm the involvement of FOXG1 in the molecular etiology of the congenital variant of RTT and show the characteristic features of FOXG1-related disorder.
Obendorf M, etal., J Steroid Biochem Mol Biol. 2007 May;104(3-5):195-207. Epub 2007 Mar 23.
The androgen receptor (AR) is a ligand-dependent transcriptional regulator which belongs to the nuclear receptor superfamily. The basal transcriptional activity of the androgen receptor is regulated by interaction with coactivator or corepressor proteins. The exact mechanism whereby comodulators inf
luence target gene transcription is only partially understood, especially for corepressors. Whereas several coactivators are described for the AR, only a few corepressors are known. Here, we describe the discovery of a new androgen receptor corepressor, FoxG1, which belongs to the forkhead family. By using a fragment of the AR (aa 325-919) as bait in a yeast two hybrid screen, the C-terminal region (aa 175-489) of FoxG1 (also known as BF1), was identified as AR-interacting protein. Binding of AR to the FoxG1 fragment was verified by one- and two-hybrid assays, and pull-down experiments. In addition, we show that the full-length form of FoxG1 functions as a strong corepressor in the AR-mediated transactivation. The FoxG1 expression profile in adult individuals is restricted to brain and testis in human and decreases during aging in the rodent brain. Both AR and FoxG1 expression are developmentally regulated. Besides its reported role in neurogenesis, the strong expression of FoxG1 in AR-abundant areas of the adult brain suggests possible involvement in neuroendocrine regulation. Taken together, the data presented suggest that, in addition to repression of transcription by direct binding to DNA, FoxG1 may interact with AR in vivo, thereby targeting its repressor function specifically to sex hormone signaling.
Philippe C, etal., J Med Genet. 2010 Jan;47(1):59-65. doi: 10.1136/jmg.2009.067355. Epub 2009 Jun 29.
BACKGROUND: The FOXG1 gene has been recently implicated in the congenital form of Rett syndrome (RTT). It encodes the fork-head box protein G1, a winged-helix transcriptional repressor with expression restricted to testis and brain, where it is critical for fore
brain development. So far, only two point mutations in FOXG1 have been reported in females affected by the congenital form of RTT. Aim To assess the involvement of FOXG1 in the molecular aetiology of classical RTT and related disorders. METHODS: The entire multi-exon coding sequence of FOXG1 was screened for point mutations and large rearrangements in a cohort of 35 MECP2/CDKL5 mutation-negative female patients including 31 classical and four congenital forms of RTT. RESULTS: Two different de novo heterozygous FOXG1-truncating mutations were identified. The subject with the p.Trp308X mutation presented with a severe RTT-like neurodevelopmental disorder, whereas the p.Tyr400X allele was associated with a classical clinical RTT presentation. CONCLUSIONS: These new cases give additional support to the genetic heterogeneity in RTT and help to delineate the clinical spectrum of the FOXG1-related phenotypes. FOXG1 screening should be considered in the molecular diagnosis of RTT.
Van der Aa N, etal., Mol Syndromol. 2011 Sep;1(6):290-293. Epub 2011 Aug 9.
We screened a cohort of 5 male and 20 female patients with a Rett spectrum disorder for mutations in the coding region of FOXG1, previously shown to cause the congenital variant of Rett syndrome. Two de novo mutations were identified. The first was a novel misse
nse mutation, p.Ala193Thr (c.577G>A), in a male patient with congenital Rett syndrome, and the second was the p.Glu154GlyfsX301 (c.460dupG) truncating mutation in a female with classical Rett syndrome, a mutation that was previously reported in an independent patient. The overall rate of FOXG1 mutations in our cohort is 8%. Our findings stress the importance of FOXG1 analysis in male patients with Rett syndrome and in female patients when mutations in the MECP2 and CDKL5 genes have been excluded.
Das DK, etal., Gene. 2014 Mar 15;538(1):109-12. doi: 10.1016/j.gene.2013.12.063. Epub 2014 Jan 9.
Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by the progressive loss of intellectual functioning, fine and gross motor skills and communicative abilities, deceleration of head growth, and the development of stereotypic hand movements, occurring after a period of normal
development. The classic form of RTT involves mutation in MECP2 while the involvement of CDKL5 and FOXG1 genes has been identified in atypical RTT phenotype. FOXG1 gene encodes for a fork-head box protein G1, a transcription factor acting primarily as transcriptional repressor through DNA binding in the embryonic telencephalon as well as a number of other neurodevelopmental processes. In this report we have described the molecular analysis of FOXG1 gene in Indian patients with Rett syndrome. FOXG1 gene mutation analysis was done in a cohort of 34 MECP2/CDKL5 mutation negative RTT patients. We have identified a novel mutation (p. D263VfsX190) in FOXG1 gene in a patient with congenital variant of Rett syndrome. This mutation resulted into a frameshift, thereby causing an alteration in the reading frames of the entire coding sequence downstream of the mutation. The start position of the frameshift (Asp263) and amino acid towards the carboxyl terminal end of the protein was found to be well conserved across species using multiple sequence alignment. Since the mutation is located at forkhead binding domain, the resultant mutation disrupts the secondary structure of the protein making it non-functional. This is the first report from India showing mutation in FOXG1 gene in Rett syndrome.
Zhang Q, etal., BMC Med Genet. 2017 Aug 29;18(1):96. doi: 10.1186/s12881-017-0455-y.
BACKGROUND: We aimed to delineate clinical phenotypes associated with FOXG1 mutations in Chinese patients with Rett syndrome (RTT) or RTT-like mental retardation (MR). METHODS: Four hundred and fifty-one patients were recruited, including 41
8 with RTT and 33 with RTT-like MR. Gene mutations were identified by a target capture method and verified by Sanger sequencing. RESULTS: Four FOXG1 mutations were detected in four patients (three with RTT and one with RTT-like MR), including one previously described mutation and three novel mutations. These mutations included one missense and three micro-insertion mutations. Overall, 0.7% (3/418) of patients who had RTT in our cohort had FOXG1 mutations. All patients had early global developmental delays followed later by severe mental retardation. None of the patients acquired speech or purposeful hand movements, and all of them presented with severe hypotonia, epilepsy, and hypoplasia of the corpus callosum. CONCLUSIONS: Our findings extend the spectrum of FOXG1 mutations and the clinical features of RTT in Chinese patients. We recommend that patients with congenital RTT and Rett-like MR, especially those with brain malformations, such as hypoplasia of the corpus callosum, should be tested for FOXG1 mutations.
The Forkhead box G1 (FOXG1) gene has been implicated in severe Rett-like phenotypes. It encodes the Forkhead box protein G1, a winged-helix transcriptional repressor critical for forebrain development. Recently, the core FOXG1
an> syndrome was defined as postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and dysgenesis of the corpus callosum. We present seven additional patients with a severe Rett-like neurodevelopment disorder associated with de novo FOXG1 point mutations (two cases) or 14q12 deletions (five cases). We expand the mutational spectrum in patients with FOXG1-related encephalopathies and precise the core FOXG1 syndrome phenotype. Dysgenesis of the corpus callosum and dyskinesia are not always present in FOXG1-mutated patients. We believe that the FOXG1 gene should be considered in severely mentally retarded patients (no speech-language) with severe acquired microcephaly (-4 to-6 SD) and few clinical features suggestive of Rett syndrome. Interestingly enough, three 14q12 deletions that do not include the FOXG1 gene are associated with phenotypes very reminiscent to that of FOXG1-mutation-positive patients. We physically mapped a putative long-range FOXG1-regulatory element in a 0.43 Mb DNA segment encompassing the PRKD1 locus. In fibroblast cells, a cis-acting regulatory sequence located more than 0.6 Mb away from FOXG1 acts as a silencer at the transcriptional level. These data are important for clinicians and for molecular biologists involved in the management of patients with severe encephalopathies compatible with a FOXG1-related phenotype.
Rett syndrome is a clinically defined neurodevelopmental disorder almost exclusively affecting females. Usually sporadic, Rett syndrome is caused by mutations in the X-linked MECP2 gene in approximately 90-95% of classic cases and 40-60% of individuals with atypical Rett syndrome. Mutations in the C
DKL5 gene have been associated with the early-onset seizure variant of Rett syndrome and mutations in FOXG1 have been associated with the congenital Rett syndrome variant. We report the clinical features and array CGH findings of three atypical Rett syndrome patients who had severe intellectual impairment, early-onset developmental delay, postnatal microcephaly and hypotonia. In addition, the females had a seizure disorder, agenesis of the corpus callosum and subtle dysmorphism. All three were found to have an interstitial deletion of 14q12. The deleted region in common included the PRKD1 gene but not the FOXG1 gene. Gene expression analysis suggested a decrease in FOXG1 levels in two of the patients. Screening of 32 atypical Rett syndrome patients did not identify any pathogenic mutations in the PRKD1 gene, although a previously reported frameshift mutation affecting FOXG1 (c.256dupC, p.Gln86ProfsX35) was identified in a patient with the congenital Rett syndrome variant. There is phenotypic overlap between congenital Rett syndrome variants with FOXG1 mutations and the clinical presentation of our three patients with this 14q12 microdeletion, not encompassing the FOXG1 gene. We propose that the primary defect in these patients is misregulation of the FOXG1 gene rather than a primary abnormality of PRKD1.
Focal malformations of cortical development (FMCDs) account for the majority of drug-resistant pediatric epilepsy. Postzygotic somatic mutations activating the phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway are found in a wid
e range of brain diseases, including FMCDs. It remains unclear how a mutation in a small fraction of cells disrupts the architecture of the entire hemisphere. Within human FMCD-affected brain, we found that cells showing activation of the PI3K-AKT-mTOR pathway were enriched for the AKT3(E17K) mutation. Introducing the FMCD-causing mutation into mouse brain resulted in electrographic seizures and impaired hemispheric architecture. Mutation-expressing neural progenitors showed misexpression of reelin, which led to a non-cell autonomous migration defect in neighboring cells, due at least in part to derepression of reelin transcription in a manner dependent on the forkhead box (FOX) transcription factor FOXG1. Treatments aimed at either blocking downstream AKT signaling or inactivating reelin restored migration. These findings suggest a central AKT-FOXG1-reelin signaling pathway in FMCD and support pathway inhibitors as potential treatments or therapies for some forms of focal epilepsy.
Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%)
nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.
Cases O, etal., PLoS One. 2015 Jun 24;10(6):e0129518. doi: 10.1371/journal.pone.0129518. eCollection 2015.
Myopia is a common ocular disorder generally due to increased axial length of the eye-globe. Its extreme form high myopia (HM) is a multifactorial disease leading to retinal and scleral damage, visual impairment or loss and is an important health issue. Mutations in the endocytic receptor LRP2 gene
result in Donnai-Barrow (DBS) and Stickler syndromes, both characterized by HM. To clearly establish the link between Lrp2 and congenital HM we inactivated Lrp2 in the mouse forebrain including the neural retina and the retinal and ciliary pigment epithelia. High resolution in vivo MRI imaging and ophthalmological analyses showed that the adult Lrp2-deficient eyes were 40% longer than the control ones mainly due to an excessive elongation of the vitreal chamber. They had an apparently normal intraocular pressure and developed chorioretinal atrophy and posterior scleral staphyloma features reminiscent of human myopic retinopathy. Immunomorphological and ultrastructural analyses showed that increased eye lengthening was first observed by post-natal day 5 (P5) and that it was accompanied by a rapid decrease of the bipolar, photoreceptor and retinal ganglion cells, and eventually the optic nerve axons. It was followed by scleral thinning and collagen fiber disorganization, essentially in the posterior pole. We conclude that the function of LRP2 in the ocular tissues is necessary for normal eye growth and that the Lrp2-deficient eyes provide a unique tool to further study human HM.
Bahi-Buisson N, etal., Neurogenetics. 2010 May;11(2):241-9. doi: 10.1007/s10048-009-0220-2. Epub 2009 Oct 6.
The Forkhead box G1 (FOXG1) is a transcription factor that is critical for forebrain development, where it promotes progenitor proliferation and suppresses premature neurogenesis. Recently, the FOXG1 gene was implicated in
the molecular aetiology of the congenital variant of Rett syndrome. So far, 15 FOXG1 molecular alterations, including only eight point mutations, have been reported. We screened the FOXG1 gene in a cohort of 206 MECP2 and CDKL5 mutation negative patients (136 females and 70 males) with severe encephalopathy and microcephaly. The screening was negative in all males, but two de novo mutations (c.1248C>G, p.Y416X and c.460_461dupG, p.E154GfsX300) were identified in two unrelated girls. Both patients showed neurological symptoms from the neonatal period with poor reactivity, hypotonia, and severe microcephaly. During the first year of life, both patients had feeding difficulties and made slow developmental progress. At 5 years old, the girls were significantly neurologically impaired with gross hypotonia, no language, convergent strabismus, and no voluntary hand use. Moreover, they presented a combination of jerky movements, hand-mouthing, and hand-washing stereotypies. Hence, FOXG1 mutation patients demonstrate severe encephalopathy compatible with the congenital variant, as well as additional features such as absent eye contact, inconsolable crying during the perinatal period, and delayed myelination with thin to hypoplastic corpus callosum. Although the overall frequency of mutations in FOXG1 in females with severe mental retardation and microcephaly appears to be low (1.5%), our findings suggest the requirement to investigate both point mutations and gene dosage in the FOXG1 gene in patients with severe encephalopathy with microcephaly and some Rett-like features.
Kortum F, etal., J Med Genet. 2011 Jun;48(6):396-406. doi: 10.1136/jmg.2010.087528. Epub 2011 Mar 25.
BACKGROUND: Submicroscopic deletions in 14q12 spanning FOXG1 or intragenic mutations have been reported in patients with a developmental disorder described as a congenital variant of Rett syndrome. This study aimed to further characterise and delineate the phen
otype of FOXG1 mutation positive patients. METHOD: The study mapped the breakpoints of a 2;14 translocation by fluorescence in situ hybridisation and analysed three chromosome rearrangements in 14q12 by cytogenetic analysis and/or array comparative genomic hybridisation. The FOXG1 gene was sequenced in 210 patients, including 129 patients with unexplained developmental disorders and 81 MECP2 mutation negative individuals. RESULTS: One known mutation, seen in two patients, and nine novel mutations of FOXG1 including two deletions, two chromosome rearrangements disrupting or displacing putative cis-regulatory elements from FOXG1, and seven sequence changes, are reported. Analysis of 11 patients in this study, and a further 15 patients reported in the literature, demonstrates a complex constellation of features including mild postnatal growth deficiency, severe postnatal microcephaly, severe mental retardation with absent language development, deficient social reciprocity resembling autism, combined stereotypies and frank dyskinesias, epilepsy, poor sleep patterns, irritability in infancy, unexplained episodes of crying, recurrent aspiration, and gastro-oesophageal reflux. Brain imaging studies reveal simplified gyral pattern and reduced white matter volume in the frontal lobes, corpus callosum hypogenesis, and variable mild frontal pachgyria. CONCLUSIONS: These findings have significantly expanded the number of FOXG1 mutations and identified two affecting possible cis-regulatory elements. While the phenotype of the patients overlaps both classic and congenital Rett syndrome, extensive clinical evaluation demonstrates a distinctive and clinically recognisable phenotype which the authors suggest designating as the FOXG1 syndrome.
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory re
ceptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5(-/-) olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5-Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome.